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Abstract 

In an effort to advance green monopropellant propulsion using ionic liquids, the Center for 

Space Exploration and Technology Research (cSETR) has developed a pellet based catalyst bed 

for the decomposition of AF-M315E. The present paper will go over some of the fundamental 

research conducted towards the development of a catalyst bed and some of its applications. Three 

different catalyst bed designs were produced where each uses a different ceramic substrate 

material. The three different substrates are aluminum oxide, tungstated zirconia, silicon carbide 

each coated with iridium as the catalyst material. An experimental setup for testing the catalytic 

decomposition AF-M315E was built. The system utilizes a syringe pump as the propellant source 

flow the propellant through the catalyst be at specified flow rates. Current tests have shown 

decomposition temperatures up to 1400°C for flow rates in the range of 0.195 to 0.341 g/s for all 

three catalyst beds. The duty cycle conducted on these catalyst beds also revealed the silicon 

carbide based catalyst to perform the best in terms of lifetime. 
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Chapter 1: Introduction 

1.1 Cube Satellites Background 

With the rise of the microsatellite, specifically the CubeSat or Cube Satellite, many 

universities in the United States have become more interested in space applications [1]. These 

CubeSats are typically used for low earth orbit and have rose in popularity in the new millennium 

because of their relatively low cost. They vary in size depending on the application but the most 

common dimension is a 10 by 10 by 10 cm chassis that incorporates all of its components and 

payload technologies within this volume [2]. Since CubeSats are already very limited in volume, 

monopropellant systems would be favorable bi-propellant systems due to simplicity in flight 

hardware. The monopropellant that has mostly been used in past decades is hydrazine. While 

offering the performance necessary in terms of specific impulse and thrust levels, hydrazine comes 

with many hazards. Therefore, the efforts of the past decade have been focused on alternative green 

monopropellants that can replace this hazardous hydrazine [2]. 

1.2 Project Overview 

At the Center for Space Exploration and Technology Research at the University of Texas 

at El Paso, a CubeSat propulsion module is being developed. This propulsion module will be a 

part of a 2U CubeSat know as Orbital Factory X or OFX. OFX will have 3D printing capabilities, 

hence the name, and also have maneuvering capabilities with a monopropellant system. 

Specifically, the propulsion system will use four 1N monopropellant thrusters and six other micro 

cathode thrusters. The monopropellant used will be AF-M315E. The CAD model of the propulsion 

module with its components can be seen below if figure 1. 
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Figure 1: Orbital Factory X Propulsion Module 

 
1.3 Monopropellant Systems 

Monopropellant systems work on the principal of chemical decomposition of a single fluid. 

The fluid is required to be slightly unstable and release high amounts of heat energy when it 

decomposes. This high amount of heat energy creates the high temperatures inside of a thrust 

chamber that causes the acceleration and momentum exchange of particles. Decomposition of this 

chemical or monopropellant is caused by thermal energy, a catalyst, or both. Catalytic 

decomposition can occur at either room temperature or at elevated temperatures, depending on the 

type of monopropellant used.  

As previously mentioned, hydrazine has been the dominant propellant when it comes to 

monopropellant systems. It has been an industry standard for several past decades, especially in 

the 20th century, because it provided the best performance in terms of specific impulse from other 

monopropellants. Hydrazine however is a very toxic and flammable chemical that poses numerous 

health hazards when handling and operating. Therefore, much of the effort in the propulsion 

community has been dedicated to finding a suitable alternative to hydrazine that can provide 

relatively the same performance without all the hazards. In recent years the Center for Space 

AF-M315E Thrusters 

Cathode Arc Thrusters 
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Exploration and Technology Research has investigated the performance and characteristics of 

several of these safer monopropellants. The three propellants investigated by cSETR are High Test 

Peroxide, LMP-103s, and AF-M315E and these fall into the category of “Green Monopropellants”. 

The term green comes from the fact that the chemicals are more environmentally benign.  

High test peroxide is a homogenous solution consisting of aqueous a mixture of hydrogen 

peroxide and water. Several different concentrations are used typical in the range of 86-98%, and 

cSETR has mostly focused on using 90% concentration. The theoretical decomposition products 

species of high test peroxide are oxygen and steam. It has been found that solid silver catalysts are 

the most effective when it comes to the propellant decomposition. HTP has a specific impulse in 

range of 150s [6]. 

LMP-103S is an ionic ammonia dinitramide (ADN) based liquid homogenous solution. 

The solution itself contains fuel/oxidizer mixture. This green monopropellant was developed in 

1997 by the Ecological Advanced Propulsions Systems (ECAPS) in Sweden [7]. It is superior 

when compared to hydrazine in storability, handling safety, and performance with a specific 

impulse in the range of 252s.  

AF-M315E is another ionic monopropellant that was created in and by the Air Force 

Research lab in 1998. Similar to LMP-103S, it contains a fuel/oxidizer mixture among other 

components. Specifically, AF-M315E is an aqueous homogenous solution consisting of 

hydroxylethylhydrazine nitrate (HEHN), hydroxylammonium nitrate, and water, and also 

ammonium nitrate (AN). It has both a higher density and a higher specific impulse when compared 

to hydrazine, resulting in an overall higher density-specific impulse of 50%. The ionic compounds 

in the solution keep it in liquid form due to their coulombic attraction. This greatly reduces the 

danger of toxic gases filling the container or the surrounding since essentially no AF-M315E 
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vapors are formed. Leakage of the propellant is also classified as critical, as opposed to hydrazine 

leakage classified as catastrophic, failure which would result in a simpler system with less 

components and overall mass [5]. 

1.4 Project Objective 

The objective of this project is to develop a catalyst bed that is efficient in decomposing 

AF-M315E and can withstand the high temperatures of the reaction. This objective is tested in two 

sets of experiments. The first set of experiments is conducted to determine the temperatures that 

the catalytic decomposition of AF-M315E yields and therefore determine if effective 

decomposition is occurring. The second set of experiments is conducted to determine the catalyst 

bed lifetime by duty cycle testing. 

1.5 Practical Relevance 

The most widely used monopropellant for attitude control and reaction control systems is 

hydrazine. However, as previously mentioned, this monopropellant is extremely dangerous when 

handling and operating. The potential safer alternative that can replace hydrazine is AF-M315E 

which superior in virtually every way. The only drawback of AF-M315E is that it is not a 

propellant that will decompose at room temperature. The propellant is required to be preheated 

and then exposed to an effective catalyst before any reaction can occur. Currently there aren’t 

many catalyst deigns nor heating methods for ionic propellants. Therefore an effective catalyst 

bed and heating method is required which will the focus of this dissertation. 

1.6 Literature Review 

When it comes to monopropellant systems, the catalyst bed is one of the most important 

components because it is essentially, in combination with the propellant, what will drive force. 

The catalyst will serve to reduce the activation energy of the incoming propellant in order to greatly 
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increase the decomposition rate. Since AF-M315E is relatively new, only being around for the past 

few decades, studies found in literature for catalyst beds and AF-M315E are very limited. In fact 

currently only a handful of companies have produced working catalysts and thruster systems that 

incorporate the ionic propellant.  

One of the companies that has produced a working catalyst bed for the decomposition of 

AF-M315E is Busek. Busek developed several robust catalyst designs which can be found in the 

patent “Long Life Thruster”. One such design consists of elongate wires or tubes of catalytic 

material, shown below in figure 2, such as platinum or iridium. The wires or tubes are held together 

in a bundle by the use of a metallic ferrule. This catalyst bed composed of the bundle of tubes is 

integrated into a thruster by welding the ferrule to the combustion or decomposition chamber, as 

shown in figure 2. This specific design has a scalability that allows for it to be integrated into three 

different thruster designs with force outputs of 0.1, 0.5, and 5N for thruster named BGT-X1, BGT-

X5, and BGT-5, respectively [8]. 

 

Figure 2: Busek Co. First Catalyst Bed Design [8] 
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Additionally, Busek developed an alternative catalyst reactor design found in the “Long 

Life Thruster” patent. The reactor design can be seen below in figure 3. It consists of two 

catalyst sections; a section containing iridium coated alumina pellets and a later section 

containing the bundled tubes of catalytic material as the previous design discussed prior. The 

first section with respect to the fluid flow, the iridium coated alumina pellets, is used primarily to 

evaporate and partially decompose the incoming AF-M315E. The propellant then follows into 

the second section of catalyst tubes where it fully decomposes. The alumina pellet section is kept 

relatively short to prevent exposing the ceramic pellets to the full decomposition temperatures of 

the AF-M315E and risk damaging the catalyst [8].  

 

Figure 3: Busek Co. Alternate Catalyst Bed Design [8] 

 

This iridium coated alumina pellet section is very similar to the catalyst design that is presented 

in this dissertation. The one major difference is that the catalyst bed that cSETR produced is able 

to withstand the full decomposition temperatures of the AF-M315E. A heat treatment method 

that significantly enhances the mechanical strength and therefore the lifetime of the catalyst bed 

was discovered and implemented. This heat treatment process and the strengthened catalyst bed 

pellets will be further discussed in later sections.  
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 The NASA Space Technology Mission Directorate began an effort back in 2015 to 

develop a propulsion system module. This propulsion system was meant to be integrated into the 

payload of an ESPA-Launched Ball microsatellite. The system would use five of Aerojet 

Rocketdyne’s GR-1 thrusters: 4 attitude control and 1 divert thruster. These GR-1 thrusters 

would use AF-M315E as the monopropellant and the patent pending catalyst bed design, LCH-

240, from Aerojet Rocketdyne [5]. This LCH-240 catalyst design consists of 5% iridium on 

hafnium oxide granules. These granules range in size from 0.025 to 0.050 in [9]. The propulsion 

module and the GR-1 thruster can be seen below in figure 4. Although this project was never 

completed, the catalyst design used is very similar to the one presented in this dissertation, using 

small ceramic pieces coated in iridium. 
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Chapter 2: Methodology 

2.1 Catalyst Bed Description 

 

 The catalyst beds used in this investigation are composed of stacked cylindrical ceramic 

pellets coated with iridium. Three different types of ceramics are used as the substrate material 

which results in three different catalyst beds. The first catalyst bed consists of aluminum oxide, or 

alumina, cylindrical pellets coated with 25% iridium loading factor by weight. The alumina pellets 

are on average 3 mm in both length and diameter. Approximately 100 of these coated pellets are 

stacked tightly in a cylindrical volume with a 0.385in diameter and a 1.5in length to make the first 

catalyst bed. The alumina ceramic is white in color. 

 The second catalyst bed consists of tungstated zirconia pellets coated with 25% iridium 

loading factor by weight. Tungstated zirconia were chosen over regular zirconia pellets in an 

attempt to reinforce the ceramic. These pellets are very similar in size to the alumina pellets, being 

3mm in both length and diameter on average. Approximately 100 of these iridium coated 

tungstated zirconia pellets stacked in a volume of 0.385in diameter and a 1.5in length make up the 

second catalyst bed. The tungstated zirconia ceramic is white in color. 

 The third and final catalyst bed produced and tested consists of silicon carbide pellets 

coated with iridium. These pellets are also cylindrical in shape with average size of 1.5mm in both 

length and diameter. They are coated with an iridium loading factor of 25% by weight. Since these 

pellets are smaller in size, about 420 of these tightly stacked in the volume mentioned make up the 

third catalyst bed. The silicon carbide ceramic is black in color. 

2.2 Experimental Setup 

A test rig at cSETR was assembled to run the AF-M315 catalytic decomposition 

experiments. Figure 4 below shows the experimental schematic that is used with all of its 

components. The setup begins with a syringe pump that injects the propellant into the system at a 
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specified volumetric flow rate. A Genie Plus infusion pump is used for this. Most of the 

calculations done at cSETR are done using mass flow rate rather than volumetric flow rate so a 

conversion is made using the density of AF-M315E at room temperature, 1.46 g/cm. The fluid 

then flows through a series of hand operated and check valves before reaching the catalyst holder. 

The catalyst holder is piece that is used to contain the catalyst bed and preheat it to an initial 

temperature of 400°C. The catalyst bed needs to be preheated to 400°C before any decomposition 

can begin to occur. The catalyst holder part will be discussed in more detail in the next section. 

Decomposition temperature and pressure measurements are taken and recorded. The primary 

function of this experimental setup is to decompose the propellant and record the conditions inside 

the reaction chamber using temperature and pressure transducers. However, this test rig is also 

designed with the capabilities of capturing the decomposed species or gases of AF-M315E. This 

secondary function will come into play once the AF-M315E has decomposed and left the catalyst 

holder. Following downstream of the catalyst holder is another series of hand operated and 

solenoid valves before reaching the sample cylinders. The sample cylinders is where the 

decomposed gases are collected after closing the inlet valve. In order for gas to be collected without 

any outside contaminants, vacuum in the system is pulled prior to beginning experimentation. The 

vacuum is achieved by the use of a venturi device. The venturi device is connected perpendicular 

to the main line and high velocity gas is flown through it. The high velocity gas causes a pressure 

drop in the system by the venturi principle. Once the gage indicates the pressure is low enough, 

the isolation valve is shut to maintain the vacuum. The sample cylinders with the collected gases 

are then transferred to a mass spectrometer and subject to chemical composition analysis. An 

acrylic enclosure surrounds the catalyst holder to safely exhaust any potential leaks. A helium tank 
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is connected to the main line to purge the system of residual gases once testing has concluded for 

the day.  

 

 

Figure 4: AF-M315 Catalytic Decomposition Experimental Setup Schematic 

 

The experimental setup assembled with all of its components can be seen below in figure 

5. The figure shows the exhaust system attached to the acrylic enclosure. Several different sample 

cylinders are attached in parallel. These sample cylinders range in size volume capacity from 300 

to 1000 ml. 
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Figure 5: Experimental Setup for AF-M315E Catalytic Decomposition Studies 

 
In order to obtain pressure measurements that can closely simulate those that would be 

created inside a 1N thruster, a thruster attachment was designed. It was designed with a nozzle 

expansion for El Paso ambient pressure and a thrust level of 1N. This thruster attachment connects 

directly to the outlet of the catalyst holder piece. This is accomplished by disconnecting HOV-103 

in figure 4. This effectively disconnects the entire system downstream of HOV-103 and is then 

replaced by the thruster attachment piece. This thruster attachment piece is shown below in figure 

6. The attachment, shown on the left of figure 6, has two ports on opposite ends of the combustion 

chamber. One of the ports is for temperature measurement and the other is for pressure 

measurement conditions inside of chamber during AF-M315E decomposition.  
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Figure 6: 1N Sea Level Nozzle Attachment 

 
2.3 Catalyst Holder 

The stacked pellets that compose the catalyst beds are held inside of a part called the 

catalyst holder. The inner cylindrical volume of this piece has dimensions of 0.385in for its 

diameter and 1.5in for its length. The catalyst holder has two major functions. The first function is 

to house the catalyst bed inside during catalytic decomposition experiments, as just mentioned. 

The second major function is the preheating of the catalyst bed to the initial desired temperature 

before beginning the experiments. The CAD model of the catalyst holder piece can be seen below 

in figure 7. The part was machined out of Inconel 718 in order to withstand the high decomposition 

temperatures of the exothermic reaction. In the figure, the yellow cylinder represents the placement 

of the catalyst bed. Six cartridge heaters are used to preheat the catalyst bed to the desired 

temperature of 400°C. The cartridge heaters each have an output of 100 watts. With a total of 600 

watt output, it takes the system approximately 25 minutes to preheat the catalyst bed to 400°C. 

The cartridge heaters can be seen in figure 7 as red cylinders inserted around the perimeter of the 

catalyst bed. The part also has two Swagelok stem fittings attached to its outer surface. The fittings 

are used to attach K-type thermocouples. These thermocouples run all the way down to the center 

of the holder, where they measure the direct decomposition temperature of the AF-M315E. The 
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first thermocouple, denoted either TC-01 or TC-101, is located at the point 25% of the catalyst bed 

length. The second thermocouple, denoted either TC-02 or TC-102, is located at the point 50% or 

halfway the length of the catalyst bed. Silver plated stainless steel O-rings are used to seal the inlet 

and outlet interfaces of the catalyst holder. 

 

 

 

 

 

The heating profile for the catalyst bed using the six cartridge heaters is shown below in figure 8. 

Starting at room temperature the catalyst bed begins rising rapidly in temperature then slows down 

as it gets closer to the goal temperature. It takes a total of about 1500s or 25 minutes to rise to 

400°C.  

 

100 W each 

1 in length 

1/4  Diameter 

Figure 7: CAD Model of Catalyst Holder 



14 

 
Figure 8: Catalyst Holder Heating Profile with 6 Cartridge Heaters 

 

2.4 Data Acquisition 

The catalyst decomposition studies are conducted using NI LabVIEW program. Figure 9 

below shows the user interface with the toggle switches for the purge and drain valves. An LED 

indicator signals when the system heaters have been activated. TC-102 and TC-103 are the 

temperature data reading for the thermocouples situated directly on the catalyst bed. The Labview 

VI uses the temperature reading of TC-102 to control the heaters. Once TC-102 reaches 400°C, 

the heaters are turned off and turned back on if the system falls below the said temperature. TC-

surface measures the temperature of the catalyst holder outer wall and TC-104 measures the 

temperature inside the thruster attachment directly downstream of the catalyst bed. A pressure 

gage indicator measures the voltage of the pressure transducer. The pressure transducer is located 

on the thruster attachment and takes readings of the conditions inside. The block diagram for the 

LabVIEW interface is shown in figure 10.  
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Figure 9: Guide User Interface for Catalytic Decomposition Studies 
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Figure 10: NI LabVIEW Block Diagram for AF-M315E Catalytic Decomposition Studies 

 
2.5 Electronic Configuration 

 The electronic bus box containing all the electronic components is shown in figure 11. 

DAQ NI 9211 is used to acquire all the analog input signals for the thermocouples used in the 

system. DAQ NI 6008 is used to acquire the analog input signals from the pressure transducer and 

also to send the output digital signal to the relays. Three solid state AC relays are used to control 

the valves and the heaters in the setup. Relays labeled 101 and 102 are used to control the purge 
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valve and drain valve, respectively. The relay labeled 104 is used to control all six cartridge 

heaters. DAQ 6008 sends the voltage to the relays to activate them and allow the AC current to 

follow to the respective device. Table 1 below describes the physical connections as they are 

hooked up to the DAQs.  

 

Figure 11: Electronic Setup for AF-M315E Catalytic Decomposition Studies 
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Table 1: Instrumentation and Component List 

Component 

Identifier 
Description 

Data 

Acquisition 

and Device 

Number 

Physical 

Channel 

Port 

Number 

Signal 

Conditioner 

Required 

Voltage 

SP-1 
Syringe Pump 

ac 
N/A N/A N/A 120V ac 

TC-Surface Thermocouple NI 9211 6 and 7 N/A 

Provided by 

Thermocouple 

Hub (NI 

9211) 

TC-101 Thermocouple NI 9211 0 and 1 N/A 

Provided by 

Thermocouple 

Hub (NI 

9211) 

TC-102 Thermocouple NI 9211 2 and 3 N/A 

Provided by 

Thermocouple 

Hub (NI 

9211) 

TC-104 Thermocouple NI 9211 4 and 5 N/A 

Provided by 

Thermocouple 

Hub (NI 

9211) 

SOV-101 
Solenoid 

Valve 

Heaters (NI 

6008) 
17 and 32 N/A 120V ac 

SOV-102 
Solenoid 

Valve 

Heaters (NI 

6008) 
18 32 N/A 120V ac 

HEATERS 
Cartridge 

Heaters 

Heaters (NI 

6008) 
31 and 32 N/A 120V ac 

PT-101 
Pressure 

Transducer 

Heaters (NI 

6008) 
20 and 32 SG-1 120 ac 

PR 
Pressure 

Relief Valve 
N/A N/A N/A N/A 

      

      

      

 

 

2.6 Preliminary Testing 

 At the start of the project, the plan was to impregnate or coat alumina pellets and run 

experiments to investigate their effectiveness in decomposing AF-M315E. As a benchmark for 

quantifying the performance of the catalyst bed, the experimental system is first run with no 
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catalyst bed present. With no catalyst present the catalyst holder is preheated to 400°C and AF-

M315E is flown through it at various flow rates. Figure 12 below shows the temperatures achieved 

with only thermal decomposition of the propellant. Both thermocouples showed a similar 

temperature profile, peaking close to the 700°C mark for TC-01.  

 

Figure 12: Thermal Decomposition of AF-M315E at 400°C Initial Temperature 

 

 After the thermal decomposition test of AF-M315E, a test using alumina pellets with no 

iridium coating was conducted using similar AF-M315E flow rates. Figure 13 below shows the 

decomposition temperature obtained using alumina pellets with a 0% iridium loading factor. This 

test was conducted to observe the changes in temperatures that occur between testing with nothing 

inside the catalyst holder (thermal decomposition) and testing with uncoated alumina pellets. As 

expected, the presence of the alumina pellets with no catalytic material coating caused the 

temperatures to peak to lower values since the pellets acted as a large thermal sink. The 

decomposition temperatures obtained reached values close the 600°C mark.  
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Figure 13: AF-M315E Decomposition Temperatures with Alumina w/0% Loading Factor at 

400°C Initial Temperature 

 

When the first series of tests were conducted with the iridium catalyst bed loaded, very 

strange catalyst bed temperature plots were recorded. The testing began as planned, at the initial 

catalyst preheated temperature of 400°C. Once the system reached 400°C, the syringe pump began 

injecting the AF-M315E into the system and through the catalyst bed. Figure 14 below shows this 

said erratic behavior captured by both thermocouples. At the start of the test, the quick drop in 

temperature is due to the evaporation of the water in the solution. In both temperatures readings, 

there is a sudden rise immediately after the water has evaporated, then the temperature continues 

to increase at a much slower rate before plummeting down and rising back up again. The catalyst 

bed was inspected after the test and it was noticed that the pellets had undergone structural damage. 

A portion of the pellets had fractured, exposing much of the aluminum oxide. A picture of the 

fractured pellets can be seen in figure 15. At first it was believed that the crumbling of the catalyst 

bed was what caused the multiple peaks and drops in temperature. As the pellets where broken 

down, the exposed alumina effectively reduced the surface area of the catalytic material. However, 
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as the catalyst bed continued to be broken down it approached its powder form, which is 

theoretically its most efficient form in terms of surface area. Therefore, there is a continuous toggle 

between the exposed alumina and the continuously decreasing particle size.  

 

 

 
Figure 14: AF-M315E Catalytic Decomposition using Alumina Catalyst Bed with 10% Iridium 

Loading Factor 

 

Figure 15 shows part of the aluminum oxide catalyst bed that was used in the first catalytic 

decomposition test. As can be seen, some of the pellets are still intact in its initial cylindrical form 

but many others were shattered into smaller irregular forms. This trend continued for every test 

thereafter using the same catalyst bed, rapidly reducing the pellets down to near powder form after 

only a handful of tests.  
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Figure 15: Aluminum Oxide Catalyst Bed with 10% Iridium Loading Factor after First 

Decomposition Test 

 

The other batches of coated alumina pellets had an iridium loading factor of 12% and 

14.8% by weight. Figures 16 and 17 below show two of the tests done for each respective iridium 

loading factor test. As expected, the higher iridium LF (Loading Factor) yielded higher 

temperatures. However, the catalyst beds continued to fail structurally. 

 

 
Figure 16: AF-M315E Catalytic Decomposition Temperatures using Alumina Catalyst Bed with 

12% LF 
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Figure 17: AF-M315E Catalytic Decomposition Temperatures using Alumina Catalyst Bed with 

14.8% LF 

 
A catalyst batch using tungstated zirconia coated with 4.2% iridium was also produced 

initially and tested. Figure 18 below shows the temperatures obtained with this batch. It is evident 

the temperatures were not nearly as high as the ones obtained using the alumina catalyst, with 

temperatures peaking only to the 800-900°C mark. This can be expected since the catalytic 

material was not as high. However, the tungstated zirconia catalyst bed had almost completely 

pulverized after one single test. It had pulverized significantly more than the alumina catalyst bed 

even though only one single test was conducted with this batch.  
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Figure 18: AF-M315E Catalytic Decomposition Temperatures using Tungstated Zirconia 

Catalyst Bed with 4.2% LF 

 
2.7 Catalyst Substrate Strength Reinforcement 

After the initial decomposition tests, shown in the previous preliminary testing section, 

were completed, it was hypothesized that the crumbling of the ceramic pellets was causing the 

unsteady temperatures. Although relatively high peak temperatures were achieved, the catalyst bed 

simply would not survive more than a few tests. This would render them impractical for spaceflight 

and propulsion systems since a new catalyst bed would need to be replaced frequently. Even if the 

catalyst bed was easily replaceable, the unsteady temperatures would create unsteady and 

unpredictable forces. Therefore it was imperative to reinforce the structural integrity of these 

catalyst beds.  

One theory that was formulated involved the iridium loading factor of the catalyst beds. 

An inverse correlation was observed with between the iridium LF and the percentage of catalyst 

bed fracture. Therefore, it was hypothesized that increasing the loading factor of the catalytic 

material on the pellets would enhance their mechanical properties. This theory was tested by 

performing a series of compression tests on iridium coated alumina pellets. The small single pellet 

is seen placed on the compression machine in figure 19.  
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Figure 19: Compression Test Machine with Single Iridium Coated Alumina Pellet 

 

The stress-strain plot in figure 20 was obtained using a pellet with iridium loading factor 

of 12%. It is evident that the pellet deforms in an elastic manner for the beginning of the 

compression test until about 8 MPa. After this point, the ceramic begins to experience plastic 

deformation for the remainder of the test until complete fracture is achieved.  The orange sloped 

line is the trend line approximation for the young’s modulus or modulus of elasticity.  

 

Figure 20: Stress-Strain Plot for Single Alumina Pellet Coated with 12% Iridium by Weight 
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Similar plots were obtained for the other different iridium loading factors tested. These 

tests can be seen in table 2 below. The table shows the modulus of elasticity obtained from each 

of the different loading factors tested. Some of the loading factors were tested multiple times to 

obtain a standard deviation. Another value that is found on this table is the modulus of resilience 

which is a measure of the material’s toughness to resist fracture. The modulus of resilience is the 

value the team used for evaluating and comparing the mechanical strength of the coated ceramic. 

The modulus of resilience is calculated by obtaining the area under the stress-strain curve of each 

plot. Since the plots are not regular functions, a trapezoidal rule is implemented to numerical 

integrate and obtain the approximate area. The data, however, showed no reasonable correlation 

between loading factors as was hypothesized. Since the mechanical strength of the ceramic was 

not significantly affected by the iridium coating loading factor, an alternative approach was taken. 

Table 2: Test Matrix for Pellet Compression Tests 

 

After a team meeting with several subject matter experts, the Center for space Exploration 

and Technology Research decided to heat treat the ceramic pellets. Once the heat treatment process 

was complete, the pellets were tested one time to evaluate them. The decomposition temperatures 

Test Loading Factor Ur (Mpa) E (Mpa)

3 0% 0.13438 285.5

4 11% 0.04705 174.9

5 12% 0.093404 452.1

6 14% 0.336868 161.4

7 20% 0.091902 420.8

8 0% 0.234134 165.7

9 0% 0.075742 360

10 0% 0.151374 374.1

11 11% 0.124556 194.4

12 11% 0.065709 339.8

13 11% 0.044546 245.9

14 12% 0.405712 129.2

15 12% 0.086078 639.3

16 12% 0.08357 338.7
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were higher and significantly steadier than before. The catalyst holder was opened and the pellets 

were inspected to reveal virtually no damage. It was then concluded that the heat treatment process 

successfully enhanced the mechanical strength of these ceramic pellets. The specific heat treatment 

process cannot be discussed in detail for proprietary reasons.   

2.8 Test Matrix 

With the new heat treated pellets, a test matrix was developed to test and evaluate the 

catalytic decomposition temperatures of AF-M315E using these catalyst beds. This test matrix is 

shown in table 2. The data will be useful when designing an Af-M315E thruster system because 

the temperatures in the combustion chamber will be similar. A separate test matrix was also 

developed for evaluating the lifetime of the catalyst beds. This test matrix, shown in table 3, 

involves a type of duty cycle testing. In this duty cycle tests the catalyst beds are first preheated to 

400°C and then exposed to 30 seconds of AF-M315E decomposition. After the 30 seconds, the 

system is allowed to cool back down to 400°C before running propellant again through the catalyst 

bed for another 30 seconds. This cycle is repeated until the catalyst failure criteria is satisfied. In 

this case, the failure criteria is satisfied when the decomposition temperatures in the catalyst holder 

chamber fall below 1000°C. 1000°C was chosen because it is the temperature typically found with 

hydrazine systems. Therefore, if AF-M315E is producing temperatures equal or below those of 

hydrazine then its performance is no longer valuable to the propulsion system. 
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Table 3: Test Matrix for Duty Cycle Testing of the Three Different Catalyst Beds 
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Chapter 3: Experimental Results 

3.1 Catalytic Decomposition Temperatures of AF-M315E 

The first set of experiments were conducted to determine the temperatures produced when 

the AF-M315E catalytically decomposes which each different catalyst bed. Several different flow 

propellants were chosen to obtain a range of decomposition temperatures. These propellant flow 

rates fall in the range of 0.05 to 0.341 g/s. The first catalyst bed tested was the alumina based, 

followed by the tungstated zirconia based, followed by the silicon carbide.  

3.3.1 Aluminum Oxide Catalyst Bed 

The aluminum oxide based catalyst bed consists of approximately 100 alumina pellets 

coated with iridium. The iridium coating for each pellet was 25% loading factor by weight. At first 

sight, the decomposition temperatures obtained are much steadier than the preliminary testing 

results. As before, the system was first preheated 400°C before running any AF-M315E through 

the catalyst. From figure 21 shown below, it can be seen that the temperatures begin to rise rapidly 

when the testing has commenced. After the first peak, the temperatures plateau and remain steady 

around an average value. This continues until the flow of propellant is stopped and the temperature 

plummets back down to the initial temperature. The flow rates were allowed to run for a minimum 

of 2 minutes to allow the system to reach steady state. The initial rise becomes steeper with 

increasing propellant flow rate, indicating a higher temperature gradient. However, at the higher 

flow rates, this difference in slope becomes much more insignificant. The highest temperatures 

achieved lie in the 1400°C mark. Also at the higher flow rates, 0.195 g/s and above, the 

temperatures begin to overlap or steady out around the same peak value. From this data it is 

deduced that increasing the AF-M315E flow rate past this point will not result in higher 
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decomposition temperatures for the current catalyst configuration. A temperature of 1400°C for 

the combustion chamber gases is enough to support a thrust of 1N in a monopropellant system. 

 

Figure 21: AF-M315E Catalytic Decomposition Temperatures with Aluminum Oxide Catalyst 

Bed (TC-101) 

 
3.3.2 Tungstated Zirconia Catalyst Bed 

 The tungstated zirconia catalyst bed consists of approximately 100 tungstated zirconia 

pellets coated with iridium. The AF-M315E decomposition temperature plots obtained are very 

similar to those obtained using the alumina catalyst bed. This can be expected since both catalyst 

beds use the same coating of catalytic material, namely iridium. The tests begin at the preheated 

temperature of 400°C and rapidly rose to the peak temperatures where they plateaued and steadied 

out for the duration of the test. These plots are shown below in figure 22. The higher range of flow 

rates, specifically from 0.195 to 0.341 g/s of AF-M315E, produced temperatures very close to the 

1400°C mark. As mentioned with the alumina catalyst bed, these 1400°C temperatures are enough 

to support thrust in a 1N AF-M315E thruster.  
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Figure 22: AF-M315E Catalytic Decomposition Temperatures with Tungstated Zirconia Catalyst 

Bed (TC-101) 

 
3.3.3 Silicon Carbide Catalyst Bed 

 The last set of AF-M315E catalytic decomposition temperatures are shown below in figure 

16. These temperatures were produced using the silicon carbide based catalyst bed. This catalyst 

bed consists of approximately 420 silicon carbide pellets coated with iridium. The iridium loading 

factor used is 25% by weight. One significant difference about these results from the previous two 

is the point of measurement. The temperatures shown in figure 23 were recorded with 

thermocouple TC-102, at the point half way of the catalyst bed length. The previous two results, 

figures 21 and 22, were obtained using TC-101. In the silicon carbide tests, TC-102 was used 

because technical difficulties caused the thermocouple at TC-101 port to fail. However, as 

mentioned in previous sections, it was observed that the temperature difference between TC-101 

and TC-102 is almost always 200°, with TC-101 being the higher reading. With this information, 

and from figure 23, it is deduced that temperatures obtained at the TC-101 point are approximately 

in the same range for those obtained in figure 21 and 22. Therefore, the catalytic decomposition 
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temperatures produced by the silicon carbide catalyst bed are comparable to those obtained with 

the previous two catalyst beds. Once again, this was expected since the catalytic material is the 

same for all three catalyst beds. Fewer AF-M315E flow rates values chosen for testing because it 

was predicted that the lower values would yield relatively low temperatures.  

 

Figure 23: AF-M315E Catalytic Decomposition Temperatures with Silicon Carbide Catalyst Bed 

(TC-102) 

 
3.2 Duty Cycle Testing of Catalyst Bed Substrates  

3.3.1 Aluminum Oxide Catalyst Bed Duty Cycle 

The entirety of the aluminum oxide catalyst bed duty cycle experiments are shown in one 

graph in figure 24. These are a total of 104 plots. As mentioned before, the duty cycle testing 

consists of exposing the catalyst bed to the Af-M315E decomposition temperatures for a specified 

flow rate for 30 second intervals. The flow rate chosen was 0.243 g/s because figures 21, 22, and 

23 showed that flow rates above this value did not significantly increase the decomposition 

temperature of the catalyst bed. This would allow the system to reach the high temperatures 

without requiring too much propellant. As before with the decomposition tests, the duty cycle tests 
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begin at the initial catalyst bed temperature of 400°C. From figure 24, it can be seen that initially 

the decomposition temperatures reach the 1400°C. As the tests continue the plots begin to 

gradually drop in peak temperatures. In theory, this trend of decreasing decomposition temperature 

will continue until the peak temperature is approximately 700°C, the temperature produced when 

there is no catalyst bed is present in the system. However, once the decomposition temperatures 

reached approximately 1000°C, the duty cycle testing was considered complete and the catalyst 

holder was opened to inspect the pellets. The 1000°C mark was taken as the cutoff criteria because 

this is the temperature hydrazine produces when catalytically decomposed. If the system is allowed 

to produce temperatures below 1000°C, then in theory, it will perform worse than hydrazine.  

 

Figure 24: Aluminum Oxide Catalyst Bed Duty Cycle Experiments 

 
 Figure 25 below shows the aluminum oxide catalyst bed after the duty cycle was 

completed. In the figure 25, the pellets isolated to the left of the container are those which suffered 

damage in the form of fracturing and shattering. The rest of the pellets which suffered virtually no 

visible damage are on the right of the container. The percentage of pellets that fractured is 

approximately 22%. The total accumulated run time of 4203 s or 1.17 hr.  
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Figure 25: Aluminum Oxide Catalyst Bed after Duty Cycle Testing. 22% of Pellets Fractured 

 
In figure 24, if all the temperature peaks are averaged out about the mean peak point, then 

the barcode of average temperatures, shown in figure 26, is obtained. From these average 

temperatures in figure 26, an average rate of decay can be calculated. The average rate of decay 

for the aluminum oxide catalyst bed is 13.46°C/Test. This means that the peak temperatures obtain 

from AF-M315E decomposition using the alumina catalyst bed is dropping by approximately 13 

degrees Celsius every test. The 1N thruster that has been designed by the OFX team has a catalyst 

chamber that is identical to catalyst chamber inside the catalyst holder. The thruster is also being 

tested in firing periods of 30 seconds. Since the flow rates for both systems are relatively similar, 

it can be assumed that the conditions inside the 1N thruster will drop 13°C after every hot fire test. 

This will inadvertently also affect the thruster performance.  
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Figure 26: Aluminum Oxide Catalyst Bed Duty Cycle Averaged Temperatures for 0.24 g/s of 

AF-M315E 

 
3.3.2 Tungstated Zirconia Catalyst Bed Duty Cycle 

 The tungstated zirconia duty cycle is also shown completely in one graph, figure 26. For 

these experiments, only 22 complete tests were conducted. On the 23rd test, thermocouple TC-101 

began reading very strange temperature drops and peaks. These sudden drops and peaks resembled 

those obtained from the preliminary testing experiments. For this reason, it was assumed that the 

catalyst bed had suffered some damage and the duty cycle testing was ended. All twenty two 

decomposition temperature plots can be seen in figure 27. The temperature plots follow a similar 

trend to those from the aluminum oxide catalyst duty cycle tests. Initially the temperatures peak to 

the 1400°C mark and then gradually decay as the tests continue. Once again, the cutoff criteria 

was 1000°C for reasons explained in section 3.3.1. However, as seen from figure 27, the catalyst 

bed failed before the temperatures decayed down to 1000°C. 
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Figure 27: Tungstated Zirconia Catalyst Bed Duty Cycle Experiments 

 
 Once the duty cycle for the tungstated zirconia catalyst was completed, the catalyst holder 

was opened and the pellets were inspected. Figure 28 below shows the state of the catalyst bed 

after the duty cycle of 22 runs were completed. As seen, the pellets had completely fractured down 

to power form with a few shards of ceramic. Although the most efficient configuration of a catalyst 

bed is powered form, it is not very practical for a simple monopropellant system. Without a 

sophisticated containment mechanism, the powder would quickly wash away in only a few thruster 

hot firings. For this reason, it is concluded that the tungstated zirconia catalyst bed performed 

significantly worse than the alumina catalyst bed in terms of lifetime. The total run time for this 

duty cycle experiment was 943 seconds or 15.7 minutes. 
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Figure 28: Tungstated Zirconia Catalyst Bed after Duty Cycle Testing. 100% of Pellets Fractured 

 

Once again, the peak temperatures for the zirconia duty cycle were averaged about the 

mean point. This generated the temperature barcode shown in figure 29. From this, the tungstated 

zirconia was calculated to have a performance rate of decay of 15.05°C/Test. This means the 

temperature peaks inside of the catalyst holder were approximately 15°C lower for each successive 

test run.  
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Figure 29: Tungstated Zirconia Catalyst Bed Averaged Duty Cycle Temperatures for 0.24 g/s of 

AF-M315E 

 
3.3.3 Silicon Carbide Catalyst Bed Duty Cycle 

 The silicon carbide based catalyst bed duty cycle experiments can be seen in figure 30. The 

figure shows the graph containing all 101 duty cycle tests conducted using this catalyst bed. In a 

strikingly similar pattern to the duty cycle of tests of aluminum oxide, the silicon carbide 

temperatures rapidly rise and peak to their steady values. The values reach the 1400°C mark for 

the initial tests, then begin to gradually decay in peak temperature. Following the same failure 

criteria as the previous two duty cycle tests, the silicon carbide duty cycle was ended once the 

temperature began reaching levels of 1000°C. The duty cycle test lasted for 3680 seconds. The 

catalyst holder was opened to inspect the ceramic pellets for damage. Surprisingly enough, 

virtually no damage of the catalyst bed was visible present.  
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Figure 30: Silicon Carbide Catalyst Bed Duty Cycle Experiments 

 
After the silicon carbide catalyst bed duty cycle was completed, the catalyst holder was 

opened to inspect the ceramic pellets for damage. Surprisingly enough, virtually no damage of the 

catalyst bed was visible present. The only irregularity found was a chunk of catalyst bed composed 

from several pellets bonded together presumably from the residual propellant. The catalyst bed 

after the duty cycle can be seen in figure 31 below. The results obtained from these set of 

experiments are interesting because the catalyst bed suffered practically no mechanical damage. 

In past tests it had been concluded that the decay in peak temperatures was due to the fracturing of 

the pellets. However, since the silicon carbide catalyst bed suffered no mechanical damage during 

the duty cycle testing, the same conclusion could not be drawn. One possible theory that the OFX 

team proposed is the washing away of the catalytic material from pellets. In other words, the flow 

of the liquid AF-M315E through the catalyst bed is gradually removing the iridium from the pellets 

after each test run. Since silicon carbide itself is black, same color as the iridium, it is difficult to 

visually observe any difference in color shading that would indicate loss of catalytic material. 
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Therefore, the post duty cycle pellets were subject to energy dispersive x-ray spectroscopy or EDS 

analysis. This EDS analysis will be discussed in more detail in later sections. 

 

 

Figure 31: Silicon Carbide Catalyst Bed after Duty Cycle Testing with 0% of Pellets Fractured 

 
If the temperature peaks in figure 30 are averaged, the remaining graph is a barcode of 

mean temperatures shown in figure 32. From these average temperatures, it can be calculated that 

silicon carbide catalyst bed performance rate of decay is 2.56°C/Test. This performance rate of 

decay is significantly smaller when compared to the rate of decay of the other two catalyst beds. 

This can be explained the significant difference in pellet fracture percentage between the catalyst 

beds. Since silicon carbide suffered virtually no fracture damage, it was able to maintain a more 

constant temperature peak throughout the duty cycle experiments.  
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Figure 32: Silicon Carbide Catalyst Bed Duty Cycle Averaged Peak Temperatures for 0.24 g/s of 

AF-M315E 

 
3.3 Catalyst Bed Iridium Loss 

3.3.1 Silicon Carbide Catalyst Bed Chemical Microanalysis 

 With the virtually nonexistent fracture damage to the silicon carbide catalyst bed after the 

duty cycle testing, it was questioned as to why the system experienced a temperature decay. Since 

it was previously concluded that the cause of the temperature peaks decay was due to the fracturing 

of the pellets, there had to be something else responsible for this loss in AF-M315E decomposition 

performance with the silicon carbide pellets. One potential hypothesis was that the catalytic 

material, or iridium, was washing away from the pellets with each passing duty cycle test. As the 

pellets loose the iridium, the catalytic surface area of the catalyst bed is reduced, resulting in a loss 

of decomposition effectiveness. In order to test this hypothesis, a few silicon carbide catalyst 

pellets were subject to chemical microanalysis.  

3.3.2 Scanning Electron Microscopy Analysis on Silicon Carbide Catalyst Bed 

 The scanning electron microscopy and energy dispersive x-ray spectroscopy analysis were 

performed on the silicon carbide catalyst bed to determine the amount of catalytic material that 
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had been lost during testing. The photos in figure 33 were taken before beginning the duty cycle 

experiments. The photos magnified 10 and 50 micro meters show how the catalytic material, or 

iridium, in white is distributed over a single silicon carbide pellet.  

 

Figure 33: Silicon Carbide Catalytic before Catalytic Decomposition Experiments 

 
 After the duty cycle tests experiments were performed, three different set of photographs 

from the energy dispersive x-ray spectroscopy were taken. These three sets include photos taken 

for pellets near the inlet section, pellets near the middle section, and pellets near the nozzle 

attachment section. The reason for this division of three separate sections analysis is based on 

observations made during the AF-M315E catalytic decomposition tests. As discussed in earlier 

sections, if was mostly found that the decomposition temperatures were higher near the inlet of the 

chamber as indicated by the thermocouples TC-101 and TC-102. In fact, TC-101 would read 

approximately 200°C higher than TC-102. Therefore, it was hypothesized that the pellets would 

suffer the most mechanical damage near the inlet, followed by the middle, and lastly near the 

outlet. This hypothesis would also apply to the theory that the liquid propellant would wash away 

the catalytic material from the pellets. Near the inlet section, the pellets would be exposed to the 

most of the liquid phase propellant since the AF-M315E would not fully decompose until reaching 

the middle or end section of the catalyst bed. Therefore, the inlet section of the catalyst bed would 
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experience the most iridium loss, followed by the middle section, and lastly the section near the 

thruster nozzle attachment. Figure 34 shows three different magnification scales, 500 100 and 10 

micro meters. From these figures, 34 to 36, we can see the amount of iridium present is virtually 

the same in the three sample pellets taken from each section. The darker spots on the images to 

right of the figures are spots of higher depth in the pellet.  

 

Figure 34: Scanning Electron Microscopy Analysis on Pellets near the Outlet Section 

 

 

Figure 35: Scanning Electron Microscopy Analysis on Pellets near the Middle Section 
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Figure 36: Scanning Electron Microscopy Analysis on Pellets near the Inlet Section 

 
3.3.3 Energy Dispersive X-Ray Analysis on Silicon Carbide Catalyst Bed 

Figure 37 below shows the energy dispersive x-ray analysis performed on a single silicon 

carbide pellet. This pellet was analyzed after the duty cycle test had been completed. From the 

graph, the several peaks represent the different elements or compounds detected by the x-rays. 

These different compounds are given in specific percentages present in table 4. 25.54% carbon 

and 54.79% was present from the ceramic itself, 17.49% from the catalytic material, and a small 

2.18% possibly from the residual aluminum oxide left in the system from previous tests. The initial 

iridium loading factor for the silicon carbide pellets was 25%. Since the weight difference in the 

catalyst bed before and after the duty cycle testing is 0.658 g and the iridium loading factor 

difference is 7.51%, it is concluded that the silicon carbide catalyst bed lost catalytic material 

during the duty cycle tests. This is what explains the temperature peak rate of decay since 

essentially no silicon carbide pellet fractured.  
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Figure 37: Materials Present on a Silicon Carbide Pellet 

 

Table 4: Percentage of Materials Present on Silicon Carbide Pellet Post Duty Cycle Testing 
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Chapter 4: Summary and Conclusion 

4.1 Summary 

 Three different catalyst bed designs were produced to be integrated into a 1N AF-M315E 

thruster. The designs use three different ceramic substrates in the form of cylindrical pellets. The 

ceramic materials used are aluminum oxide, tungstated zirconia, and silicon carbide. The ceramic 

pellets were heat treated to reinforce their mechanical strength. A test setup was assembled to fully 

characterize these catalyst beds. Experiments were conducted to find the temperatures the 

decomposition of AF-M315E would produce with these catalyst beds. Duty cycle tests performed 

on each individual catalyst bed revealed their respective lifetime. In terms of these two parameters, 

the silicon carbide based catalyst bed had the highest performance.  

4.2 Conclusion 

All three of the catalyst beds produced AF-M315E decomposition temperatures of 

approximately 1400°C for mass flow rates in the range of 0.195 to 0.341 g/s. This was expected 

since the catalytic material was iridium with a similar loading factor for every case. 1400°C is 

enough temperature to create thrust and support propulsion in a monopropellant system. Therefore, 

these three catalyst bed designs can create the gas conditions desired in the combustion chamber 

for a 1N thruster.  

Although all three catalyst bed designs are able to create the conditions to propulsion thrust 

in a 1N AF-M315E thruster, their lifetime, or how long they are able to produce high 

decomposition temperatures, varied significantly. At the lowest end of the lifetime performance 

scale was the tungstated zirconia pellets catalyst bed. These said pallets completely pulverized, 

rendering them useless, after only 22 duty cycle tests or 943 seconds. In powder form, the catalyst 

bed will quickly wash away through the nozzle with the incoming propellant. The next best 
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performing catalyst bed was the aluminum oxide based. These pellets were able to survive for 

4203 seconds with approximately 22% of the catalyst bed fracturing. The highest performing 

catalyst bed was the silicon carbide based. The duty cycle for these pellets lasted for 3680 seconds 

and the catalyst suffered virtually no mechanical damage. The only anomaly found was a chunk 

of pellets bunched and bonded together presumably from the residual AF-M315E. With no 

fracturing of the silicon carbide catalyst bed, it is by far the superior choice for long duration 

missions that will require large total impulses. The silicon carbide catalyst bed also performed best 

in terms of the decomposition temperature peaks rate of decay which was only 2.56 °C/Test. With 

the smallest rate of decay, the highest lifetime, and the overall decomposition effectiveness of AF-

M315E, silicon carbide based catalyst bed is the superior choice for propulsion applications. 

It was observed that the peak decomposition temperatures produced with the silicon 

carbide catalyst still gradually decayed. With no fracturing of the pellets occurring to explain this 

decay, it was hypothesized that the iridium had washed away from all the incoming propellant. To 

test this theory, a series of scanning electron microscopy (SEM) and energy dispersive x-ray 

spectroscopy (EDS) were conducted on the post duty cycle pellets. The analysis showed that some 

catalytic material, or iridium, had been lost in the duty cycle experiments. Specifically, 

approximately 8% of the iridium had been lost. This is believed to be the cause of the gradual 

decay of the AF-M315E decomposition temperatures when the silicon carbide catalyst bed is used.  
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Chapter 5: Future Work 

5.1 Lattice Pressure Drop Tests 

 The Center for Space Exploration and Technology Research received seven printed lattice 

cubes from NASA Marshall Space Flight Center. Three of the cubes are 10 mm3, and the other 

four are 12 mm3. These were printed out of titanium 64. These cubes were given to the OFX team 

to perform pressure drop tests across them. The experimental setup used for performing these 

pressure drop tests can be seen below in figure 38. 

 

Figure 38: Lattice Pressure Drop Test Experimental Setup 

 
The experimental schematic is shown in figure 39. From this schematic, it can be seen that 

the lattice cube sample sits between two pressure transducers that measure the pressure of the fluid 

before and after. The pressure drop is determined by taking the difference between PT-01 and PT-

02. The pressurizing fluid is nitrogen and is regulated using a K-bottle regulator and a gas flow 

meter.  
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Figure 39: Lattice Pressure Drop Test Experimental Schematic 

 

 
Currently, the team has tested one of the 10 mm3 lattice cubes codenamed “Pentagon”. The 

results for the pressure drop tests for Pentagon can be seen below in table 5. From the table, it can 

be seen that five different pressures were tested ranging from 20 psi to 100 psi. For all five of the 

tests, no mass change was detected for the lattice cube. Table 6 below the codenames and the 

respective cube sizes for the lattices that will continue to be tested in the near future.  

Table Error! No text of specified style in document.: Lattice Cube Pressure Drop Test Results 
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Table 6: Lattice Cube Sizes and Names 

 

The purpose of these tests is to obtain a good understanding of the pressure losses these 

lattice designs will create. With the pellet catalyst beds mostly characterized, the Center for space 

Exploration and Technology Research is moving in the direction of producing its own printed 

catalyst design using additive manufacturing capabilities. These printed catalyst beds can be in the 

form of pellets or as a single monolithic ceramic foam that will be coated with catalytic material 

such as iridium.  
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