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Abstract 

The main goal of this work is to support automated seizure prediction by identifying preictal 

states using multiple detectors of high-frequency oscillations (HFOs). Assessment of HFOs from 

a seizure onset zone may be facilitated using automatic HFO detectors.  However, studies have 

shown that HFOs can be generated by physiological or pathological brain processes.  

Distinguishing between pathological and physiological HFOs is challenging due to a lack of 

discriminant information in signals’ morphology and other characteristics.  Other complicating 

factors include a lack of consistency in definitions of HFO frequency ranges, the need for expert 

verification of HFO detection, and lack of robustness of automatic HFO detectors.  In addition, 

artifacts, spatial subsampling, and filtering of spikes and their high-frequency harmonics may 

introduce uncertainty and make automatic HFO detection difficult.  This work introduces an 

automatic HFO detector based on detecting changes in signal mean energy through cumulative 

sum computation with the aim of including it in a consensus detector. Leveraging a set of 

automatic HFO detectors is justified by the expectation that detection must be accurate to 

automatically identify changes from the interictal state to the preictal state in 

electroencephalogram (EEG) signals, but there is no single automatic HFO detector with a 

positive detection rate sufficiently close to one hundred percent and a sufficiently low false 

detection rate.  Even though the cusum detector performed lowly it is better if combined with 

other methods. 
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Chapter 1: Introduction  

As the result of a brain injury or a disorder, whether genetic or acquired, an individual may 

develop epilepsy, which is characterized by unpredictable, unprovoked seizures.  Electrical 

activity of the brain can suddenly change during a seizure and affect movement, feeling, and 

sensation of the body.  Epilepsy may be treated through medication or surgery.  When treatment 

results with medication are inadequate, surgery may be undertaken. Although it is only effective 

in 10% of cases [8].  For surgery to be successful, the location of the epileptogenic zone (EZ) or 

zones, i.e., brain tissue that initiates seizures, must be accurately established, as resection of 

incorrect tissue is even more detrimental to patients than the effects of untreated epilepsy per se. 

While presurgical examination for resective surgery aims at delineating the epileptogenic zone, its 

localization depends on determining spatially related zones including the irritative zone which 

generates interictal discharges, the seizure onset zone (SOZ), the epileptogenic lesions, and the 

functional deficit zone.  The authors indicate that removal of tissue that generates high-frequency 

oscillations (HFOs), which oscillate faster than typical clinical brain signals, has been related to 

improved postsurgical outcomes compared to results from resecting only the SOZ.  

Epileptogenic zone identification can prove difficult, however, because its activity cannot be 

measured directly and diagnostic tests must be utilized to identify it [2].  Such tests may include a 

history of seizure semiology, electroencephalogram (EEG) recordings, and magnetic resonance 

imaging.  Intracranial depth electrodes and observation of interictal EEG spikes can help finalize 

epileptogenic zone localization.  HFOs could help also to locate the epileptogenic zone. In order 

to detect HFOs, at least an 800Hz sampling rate with surface and depth electrodes may be needed. 

While HFOs can be physiological or pathological, there is a difference between HFOs. On the one 

hand, the former are bound to have HFOs during deep sleep and while recalling information. On 
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the other hand, HFOs in patients with epilepsy will be associated also with epileptogenic brain 

zones.  Results using HFOs for epileptogenic zone localization are still inconclusive since the 

number of studied patients so far is very small.  

Treatment or removal of an epileptogenic zone may reduce or eliminate seizures, but seizure 

source location and identification of epileptogenic zones are active research areas. For patients 

with untreatable epilepsy, i.e., those whose seizures cannot be eradicated through medication or 

surgery, seizure prediction may be an alternative. Work in this area started in the 1970’s with an 

aim to identify precursors of seizures that could be used either to generate warnings for patients 

and care-givers or to trigger mechanisms to suppress impending seizures [8].  Reliable indicators 

remain unknown, but recent studies have identified HFOs, especially signals above the high 

gamma range, as promising biomarkers of the SOZ and preictal indicators [1].  HFOs are defined 

as either ripples or fast ripples covering the frequency range from high gamma to 250 Hz and 

above 250 Hz, respectively.  While expert visual inspection of EEGs to detect HFOs is the gold 

standard for their identification, it can be a time-consuming, tedious, and unpredictable process, 

as events may be misclassified or missed [11].  Instead, automatic detectors can be used to inspect 

signals to detect and classify HFOs in an accurate fashion.  The goal of automatic detectors is to 

detect the same events a neurologist would.   
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1.1  Problem statement 

The main goal of this work is to support automated seizure prediction by using multiple 

detectors. Assessment of HFOs from SOZs may be facilitated using automatic HFO detectors.  

However, studies have shown that HFOs can be generated by physiological or pathological 

processes within the brain [9,19].  Distinguishing between pathological and physiological HFOs 

is nontrivial due to a lack of discriminant information in signals’ morphology and other 

characteristics [9].  A second complicating factor is the lack of consistency in definitions of HFO 

frequency range. For instance, some authors define high gamma signals in the 80 – 150Hz range, 

ripples in the 150 – 250Hz range, and fast ripples in the >250Hz range, with the latter being 

associated with pathological activity by some authors [9].  However, other authors define these 

ranges differently [5,3,21,22].  A third complicating factor is that detected HFOs must be visually 

verified by experts, which is a time-consuming, and can also become very tedious [11] A fourth 

complicating factor is that automatic HFO detectors have yet to reach a large consensus [24].  In 

addition, artefacts, spatial subsampling, and filtering of spikes and their high-frequency harmonics 

may introduce uncertainty and make automatic HFO detection difficult.  This work will leverage 

results from a set of automatic HFO detectors as references for the performance and analysis of a 

proposed detector based on detecting changes in signal mean RMS energy through computing the 

cumulative sum of mean RMS energy [29].  This approach is justified by the expectation that HFO 

detection must be accurate to automatically detect changes from the interictal state to the preictal 

state in EEG signals but there is no automatic detector with a one hundred percent HFO detection 

rate [19]. This work will evaluate the utilization of a cumulative sum detector for automatic 

detection of HFOs. 
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1.2 Related work 

Par A number of methods for automatic detection of HFOs in EEG signals have been proposed by 

several authors as discussed below. No approach has proven successful in general because of 

variations in algorithms used, the need for data-specific adjustments, and the lack of a widely 

accepted set of evaluation parameters and a corpus that offer a reference for performance appraisal 

of detection algorithms.  

1.2.1 Algorithms to detect high frequency oscillations in human intracerebral EEG    

(Rahul Chander, 2007) 

Chandler developed an automatic baseline detector to remove any ambiguity introduced by visual 

identification of the signal baseline, which is the background activity surrounding HFOs.  

Detection methods used are modifications of previously introduced detectors [25,26] to support 

time-invariant modes. The first method can detect HFOs but not classify them into ripples or fast 

ripples.  The second method can have arbitrary resolution in the frequency or the time domain. 

The dataset used comprises interictal EEGs from 5 epileptic patients.  The reviewer went over non-

rapid eye movement (NREM) sleep, as interictal HFOs occur more frequently in NREM sleep than 

when the subject is awake.  EEG signals were visually reviewed and classified into one of four 

categories: background, HFO’s (oscillations, Spikes-with-HFO's), Spikes-without-HFO's, and 

grey areas.  Then, EEGs were separated into training and validation sets. Algorithms were applied 

with different parameters to compute the sensitivity and discovery rates for each patient dataset.  

The HFO’s were correctly identified in certain cases with a method but not with the other.   
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1.2.2 Pitfalls of high pass filtering for detecting epileptic oscillations: A technical note on 

“false rippled (C.G. Benar et al, 2009) 

EEG recordings of brain activity have proved useful in recent studies for HFO detection and 

classification.  Signals of interest are classified according to their fundamental frequencies into a 

number of ranges including delta (2-4Hz), theta (4-7Hz), alpha (7-13Hz), beta (13-25 Hz), gamma 

(30-100 Hz), and higher frequencies (200-500 Hz), which include ripple and fast ripple signals.  

Normal ripples are different from pathological ones in their frequency range and location.  

Recorded signals, however, lose some frequency components when filtered.  By the same token, 

some signal components are not band-limited and their energy may spread over very wide ranges. 

To study the effects of such signals, the authors simulate Gaussian spikes, sinusoidal oscillations, 

triangular spikes, and triangular oscillations. They also recorded signals from rats.  Both simulated 

and rat signals were filtered with a band edge set at multiple frequencies: 40 Hz (low gamma band), 

80 Hz (high gamma band), and 250 Hz (fast ripple band). For anti-aliasing, they low-pass filtered 

signals at 600Hz.  Authors show that the presence of sharp transients and harmonics of non-

sinusoidal signals, may introduce artifacts in filtered signals that are very similar to HFOs and 

raise the false positive detection rate of automatic detection algorithms. This should not affect the 

results of visual inspection, as reviewers compare filtered and raw signals to ensure identification 

of only true HFOs. 
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1.2.3 Automatic detection of fast oscillations (40-200 Hz) in scalp EEG recordings     

(Nicolas Von Ellenrieder et al, 2012) 

Von Ellenrieder et al. define fast oscillations (FOs) as having frequencies above the low gamma 

range and they propose a two-stage algorithm for automatic FO detection in scalp EEGs. Their 

definition of FOs is consistent with HFO definitions by other authors, except for focusing on events 

in the 40—200 Hz range, i.e., the high-gamma to low-ripple range, which they refer to as the 

broadband.  The first stage of their algorithm extracts events from the background and the second 

stage classifies FOs while ignoring artifacts.  The first stage detects approximately sinusoidal 

signal segments as RMS power increments within 10Hz bands.  This produces greater, more 

detectable increments than changes over the whole broadband and reduces the number of false 

positives.  Detector performance is evaluated against the performance of an expert in terms of 

finding events at the same time and channel with the goal of determining whether their detector 

would provide automatic support for finding the epileptogenic zone, which would be related to the 

channels with a high number of FOs.    

 

1.2.4 A comparison between detectors of high frequency oscillations                                    

(R. Zelmann et al, 2012) 

Zelmann et al. state that HFOs can be detected in the epileptogenic zone during interictal periods 

and they may be accompanied by spikes.  This leads to a higher identification of HFOs within 

SOZs than in any other areas in the brain, which indicates the location in the brain where epileptic 

seizures originate.  The authors sampled EEG signals from intractable epileptic patients at 2KHz 

and filtered them at 500Hz to detect HFOs.  Data from 45 patients was gathered, but 20 were 

randomly selected and one was excluded due to artifacts.  Two experienced reviewers visually 
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identified HFOs in the 80—250Hz range as ripples and in the 250—500Hz range as fast ripples. 

HFOs found by reviewers were used as the gold standard to determine automatic detector 

performance.  Three previously designed detectors, referred to by Zelmann as the RMS detector, 

the Line Length detector, and the Hilbert detector, were compared against a detector designed at 

Montreal Neurological Institute (MNI).  The utilized automatic detectors find events by 

comparison of the signal energy level vs. a per-detector threshold within EEG epochs. While 

detectors where designed for different HFO-generating brain regions, energy thresholds, and event 

morphologies, they all improve when tuned for the test dataset and using the same filters. 

 

1.2.5 Automatic detection and classification of high-frequency oscillations in depth-EEG 

signals (Nisirine Jrad et al, 2017) 

Authors present an HFO detector classifier for gamma (30—80Hz), high-gamma (80—120Hz), 

ripples (120—250Hz), and fast ripple (250—600Hz) EEG signals. Using event energy ratios and 

duration for detection and a support vector machine (SVM) for classification, the algorithm finds 

HFOs and rejects artifacts, which results in a low FDR. A Gabor transformation is applied to EEGs 

to determine their components in each band of interest. Then the Gabor RMS energy of each band 

is used to find events longer than 6.5 ms and over an optimal threshold. Finally, events found are 

classified based on their energy ratio using a SVM. Compared to Staba’s RMS detector [25], this 

detector classifier achieves a higher sensitivity and a lower false detection rate.    
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1.2.6 Estimating the dominant frequency of high frequency oscillations in depth EEG 

signals (M. Shamas, 2017) 

The authors evaluate methods to determine the dominant frequency of HFOs to enable keeping 

their morphological and spectral features, which may be related to the cortical regions that 

generated the HFOs. Using a biophysical simulation model, the authors can tune the oscillation 

frequency of epileptic patches in the model to generate synthetic HFOs for algorithmic 

performance analysis of estimators.  They conclude that the HFO median frequency suffices to 

find its dominant frequency, but they warn that energy of slow components will shift down the 

median frequency.     

 

1.2.7 The viability of high-frequency oscillations analysis in EEG signals for seizure 

prediction (B.D Kern, 2016) 

People affected by epilepsy are about one percent of the world population.  To avoid having to 

deal with seizures, epileptic medication may help up to 80% of the patients. For the rest, brain 

surgery is their next possible option.  About ten percent may be successfully treated with surgery. 

Remaining patients have no other means of eliminating their seizures. In this case, seizure 

prediction could provide an alternative for those who cannot undergo surgery.  If available, seizure 

prediction could be useful for imminent seizure suppression. To determine whether HFOs can be 

used as preictal correlates of imminent seizures for a reliable seizure prediction, Kern uses the 

Ripplelab implementation of the MNI detector to locate potential HFOs in EEG recordings. His 

dataset includes EEGs recorded during slow wave sleep, which includes a number of seizures, and 

interictal EEG recordings when the patient is awake.  HFOs detected by the MNI detector are 

manually verified. This ensures a correct identification and classification of HFOs since a high 
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sensitivity is used for automatic detection and this produces a large number of false positives. In 

addition, preprocessing was used to search and find the SOZ using intracranial grid electrode 

recordings. Since the dataset comprises many hours of recordings with a full grid, looking for 

HFO’s in data from electrodes next to or within an SOZ reduces significantly the amount of data 

to process.  

 

1.2.8 Assessing performance of detectors of high frequency oscillations in EEG Signals 

(Deeksha Seethrama Bhat, 2018) 

The gold standard for HFO detection is visual inspection of EEG recordings by trained 

neurologists.  However, this is a very slow and unreliable process as many hours of recordings 

must be analyzed to find events lasting milliseconds and determinations always differ among 

groups of experts. This led to the development of algorithms for automatic HFO detection, which 

started gaining ground within the last few years [11].  Seetharama’s work focuses on performance 

assessment of HFO detectors and the possibility of automatic detection using MATLAB and 

Alexnet, a deep-learning neural network trained for image classification [REF].  Ripplelab enables 

visual inspection of EEG signals and provides four automatic HFO detectors.  Two detectors were 

chosen for her work: the Montreal Neurological Institute (MNI) detector and the Short Time 

Energy (STE) detector.  Raw signals from the Epilepsiae database [8,9] were detrended and high-

pass filtered before using them for HFO detection with Ripplelab. While filtering is necessary, 

care must be taken to avoid artefactual HFOs produced by the process of filtering the signals [10].  

Ripplelab detector parameters can be adjusted based on EEG signal and target HFO characteristics. 
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                                              Chapter 2: Theoretical Foundation 

This chapter introduces background information including the electroencephalogram (EEG) which 

is used to record electrical activity of the brain, EEG signal frequency bands which crucial for the 

discussion and analysis of HFO detection and classification, the SOZ which is a brain region where 

seizures originate, and cumulative sum computations as a means for HFO detection.  

This chapter introduces background information including the electroencephalogram (EEG) which 

is used to record electrical activity of the brain, EEG signal frequency bands which crucial for the 

discussion and analysis of HFO detection and classification, the SOZ which is a brain region where 

seizures originate, and cumulative sum computations as a means for HFO detection.  

 

2.1 HFO Frequency Bands 

During brain activity, neurons send electrical pulses for communication with other neurons.  They 

communicate normally when the subject is awake and reduce communication when the subject is 

asleep.  Such communication signals can be detected as aggregate biopotentials by an 

electroencephalogram (EEG).  EEG frequencies vary depending on the action being performed by 

the subject.  HFOs are comprised of ripples (80-250Hz) [12] and fast ripples in the range above 

250Hz.  There is a likelihood that HFO’s are non-exclusively generated by multiple mechanisms 

at the cellular level.  HFO frequencies also depend on the activity being done by the individual.  

Human cognition has been studied predominantly in the gamma range (30-100Hz). For instance, 

high frequency oscillations are associated with cognitive processing in human recognition memory 

[13].  Information retrieved within this frequency range shows neurons that deal with attention, 

the ability to learn, and memory.  For this research, the range considered will include HFOs in the 

80Hz-500Hz range.  
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Clinical EEGs signals are in a lower range including infraslow signals (<0.5Hz), delta (0.5-3Hz), 

theta (3-8Hz), alpha(8-12Hz), and beta (12-38Hz). Notice that different authors may slightly 

modify these signal ranges.  Infraslow waves of interest, which are difficult to detect due to 

filtering, oscillate about once per minute and interact with various neural functions that affect 

cognition states when an individual is awake or asleep [28].  Delta signals are the slowest clinical 

signals.  The deepest period of sleep is called non-REM sleep.  These signals are mainly generated 

and predominate during this stage of sleep, which is why they are also known as deep sleep waves 

[14].  Theta signals have basic roles dealing with the process of cognition, appear 

corticohippocampal, and play an important role for signaling microconnections that deal with 

learning [15].  During the rapid eye movement (REM) sleep stage, these signals mainly deal with 

dreams and imagination.  Alpha signals help with association throughout the brain;  10 Hz trains 

resonate through several brain structures.  Alpha signals also deal with the state of mind and can 

be seen when an individual is calm and relaxed.  Beta signals are involved with movement and are 

linked with the GABA neurotransmitter (gamma aminobutyric acid). GABA is distributed 

throughout cortical neurons and contributes with functions such as motor control and vision. These 

signals also deal with focus for problem solving and decision making.  Lower gamma frequencies 

have been found in an infant’s brain as young as four months old when testing brain responses to 

photographs [16].  The lower gamma signals range from 38Hz to 70 Hz and deal with information 

processing.  
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Figure 2.1: Clinical EEG waves 
 

 

Signals to be tested for this research range from 80Hz to over 500Hz.  These visible HFO’s will 

be referred to here as either ripples in the 80-250Hz range or fast ripples in the 250-500Hz range. 

As mentioned in Chapter One, Bryan Kern found correlation between HFOs and epileptic events.  

Other studies have shown that HFOs are associated with seizures (High-frequency oscillations 

(HFO’s) in clinical epilepsy, J. Jacobs et al). These ictal HFOs have been determined to reside as 

locally generated cortical signals that correlate with the SOZ along and seizures. 

For HFO detection, authors recommend a sampling rate four times the highest frequency of interest 

or, preferably, 2KHz or above [7].  They define HFOs as events with at least four consecutive 

oscillations clearly above baseline in the 80—500Hz range. Alternatively, HFOs have been 

Lower Gamma (30-
 

Delta (0.5-3Hz) Theta (3-8Hz) 

Alpha (8-12Hz) Beta (12-30Hz) 
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defined as an RMS amplitude greater than 5 standard deviations (SD) above background, lasting 

at least 6ms, and having at least 6 peaks greater than 3 SDs above the mean baseline. Automatic 

HFO detectors are key for the systematic study and clinical use of HFOs. 

 

2.2 Electroencephalogram 

Electroencephalography is an imaging technique High Frequency for recording electrical brain 

signals or biopotentials to help in the analysis of physiology and pathology of the brain.  Signal 

waves differ based on the state of the brain.  In relation to the present work, EEG signals show the 

amount of high frequency activity [7], EEGs can be recorded non-invasively from the scalp of the 

subject or invasively from cortical or depth electrodes, which are used when readings from deep 

structures such as the hippocampus are needed. Invasive EEGs are usually needed to identify the 

epileptic cortex when a patient is being considered for surgery to treat epilepsy. 

2.2 Seizure Onset Zone 

The area on the brain from which seizures originally propagate is called the seizure onset 

zone (SOZ).  The amount of gamma and fast ripple waves increases within the SOZ [18].    

Electrode positioning that includes the SOZ is used for identifying the right location for surgery.  

Then the electrodes from the EEG can then be used as a marker for the location of the SOZ. 
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Figure 2.2: Epileptogenic Zone (EZ) and Seizure Onset Zone (SOZ) 
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2.4 Cumulative Sum 

For this work, a cumulative sum is a sequence of partial sums of a function of an EEG signal 

channel. Given a channel and a function S(•) of its values. The cumulative sum of S(k), k = 1, n, 

is the sequence {𝑆𝑆1, 𝑆𝑆1 + 𝑆𝑆2,𝑆𝑆1 + 𝑆𝑆2 + 𝑆𝑆3, … }. In essence, each partial sum Pk in the sequence is 

computed as Pk = ∑ 𝑆𝑆𝑛𝑛𝑘𝑘
𝑛𝑛=1 .  In our case, we are interested in defining an S(•) for change point 

analysis to detect HFOs. Specifically, we are looking for changes in the mean of the signal RMS 

energy. Thus, the cusum sequence we will use has terms defined as 𝑆𝑆𝑘𝑘 =  𝑆𝑆𝑘𝑘−1 + (𝑋𝑋𝑘𝑘 − 𝑋𝑋�), where   

𝑋𝑋� = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  is the arithmetic mean of the channel signal. In addition, the sequence will include 

an initial term 𝑆𝑆0 =  0. Not knowing the underlying physiological and pathological processes that 

generate signal values and without loss of generality, we will assume that each channel signal is a 

sequence of independent identically distributed zero-mean Gaussian variables. To detect HFOs, 

we must set a change threshold 𝜃𝜃ℎ which, like in the case of energy threshold detector covered in 

Chapter one, may be a function of the channel standard deviation. However, in this case we will 

be using the standard deviation of the change in signal mean. To be conservative, we will use three 

standard deviations to detect HFOs. Since the computed cumulative sums will be partial sums of 

the differences between the signal RMS energy and the channel mean RMS energy, when energy 

is above average, the cusum will increase. Thus, positive slopes of the cusum will occur during 

periods when energy tends to be above average. Once the cusum crosses the HFO detection 

threshold, we will assume the signal contains a potential HFO which will be referred to in general 

as an event. Based on the cusum definition, the beginning of each event will the previous point in 

the sequence where the cusum had a local minimum.  For ease of visual verification of events 

found through cusum computation, its values can be plotted as 𝑆𝑆′𝑘𝑘 =  𝑆𝑆𝑘𝑘 − 𝜃𝜃ℎ in order to quickly 

identify all positive cusum values as values over the detection threshold.  

http://mathworld.wolfram.com/PartialSum.html
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To further simplify computations, we will use the implementation of cusum available in 

MATLAB. A cumulative sum as used in MATLAB shows the cumulative sum of the elements of 

an array.  The elements that are plotted will be shown in ranges and will spot the element that will 

have drifted more than one standard deviation away from the norm.  

 

 
Figure 2.3: Cusum Chart showing increasing standard errors 
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Chapter 3: Methodology 

Given that the gold standard for HFO detection is the result of expert visual classification, different 

algorithms have different underlying assumptions about EEG data and have been tested with 

different datasets, and neither the definition of HFO nor detection performance criteria are the 

same across all studies, no automatic detector has been proven infallible. Thus, the approach 

followed in this work is to add a cusum detector to the set of available detectors, given it is not a 

simple energy threshold detector, with an aim to diversify detection approaches and to identify a 

set of the detectors to use for increased robustness with respect to results from any single detector. 

This section starts by describing the database used for seizure detection testing.  Next Ripplelab is 

discussed to understand the other classifiers used here and how they work.  Finally, we will 

describe a consensus function to leverage results from the different classifiers in order to produce 

the best HFO detection performance achievable with them. Classification will be based on results 

obtained with Ripplelab and the MATLAB cusum function.   

 

3. 2 Cumulative sum implementation 

The Page-Hinkley algorithm (PHA) uses the cumulative sum to detect changes in the mean of a 

sequence. According to [19] this method in combination with the Gabor transformation of EEG 

signals is more accurate than previously used HFO detectors.  PHA uses a cumulative sum to 

compute a signal moving average to detect HFOs as hypotheses testing on a piecewise stationary 

sequence energy.  Where ε(Tot)(t)  is the piecewise stationary energy sequence, and  u(t)  is the 

mean of the piecewise stationary sequence energy at time t and ϕ(Tot)(t) is a sequence of mutually 

independent random variables with zero mean. Thus, we obtain the following:  
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Figure 2.4: Page Hinkley Equations 
 

 

 

where m(0) = 0.  

 

3. 3 Ripplelab 

HFO detection algorithms are based on computationally intense, somewhat intricate procedures to 

correctly detect events and classify them as HFOs when meeting followed criteria.  A research 

group of Colombia developed the Ripplelab MATLAB application to simplify use of HFO 

detection algorithms. Ripplelab provides implementations of the four detectors analyzed in [3] 

EEG signal plotting, and support for manual visual detection of HFOs. Included detectors are the 

short-time energy algorithm (STE), the short line length algorithm (SLL), the Hilbert transform 

algorithm (HIL), and the Montreal Neurological Institute detector (MNI).  From these detectors, 

the MNI and STE detectors will be used for research purposes.  The STE detector consists in band-

passing an EEG signal within a high frequency range and using Root Mean Squared (RMS) to 

compute the signal energy.  A selectable number of standard deviations are defined in order to 

detect potential HOF events. Depending on whether RMS energy or wavelet entropy is used, the 

MNI detector can detect events either using an energy baseline or using activity from channels 

with continuous high-frequency activity.   
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Figure 3.2: STE detector flow 

 

 

 

Staba’s Short Time Energy Detector 
1. Band-pass Filter EEG. 
2. If Filtered EEG Rectified (FRec), go to 10. 
3. Compute RMS Energy. 
4. Epoch Selection (Ep) 
5. Select current Epoch (Epk). 
6. Compute current Threshold(Thk). 
7. Select Event of Interes (EOI) where 

Energy(Epk) > Thk. 
8. Combine EOI less than TD apart. 
9. Select EOI with duration > TW. 
10. Select EOI with minimum 6 peaks and >ThB 

in FRec. 
11. Save Selected HFO 
12. If all Epk evaluated, end detection. 
13. Go to 5. 
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           Figure 3.3: MNI Wavelet Energy Detector and Baseline 

 

 

 

 

 

 

 

MNI Wavelet Energy Detector 
1 Band-pass Filter EEG. 
2 If  RMS Energy, go to 7. 
3 Autocorrelation. 
4 Wavelet Entropy (WEn). 
5 Baseline Detection, WEn > ThWE. 
6 If Baseline > TB, go Detect Events with 

Baseline. 
else go to 9. Detect Events with Cont. 
HF Activity. 

7 Compute RMS Energy. 
8 If Baseline, go Detect Events with 

Baseline. 
9 Epoch Selection (ECC) 
10 Select current Epoch (ECCk). SCCk = ECCk  
11 Compute current Threshold (ThCCk). 
12 Select EOI. Energy(SCCk) > (ThCCk). 
13 If New EOI Detected,  

13a. Remove EOI Segments  
13b. Update SCCk. 

13c. go to 11. 
Else  
13d. Select EOI. Energy(SCCk) > (ThCCk).   
13e. Combine EOI less than TD apart. 
13f. Select EOI with duration > TW. 

14 Save Selected HFO 
15 If all ECCk evaluated, End detection. 
16 Go to 10. 

 

MNI Detect Events with Baseline 
1. Epoch Selection (ECB) 
2. Select current Epoch (ECBk).   
3. Compute current Threshold (ThCBk). 
4. Select EOI. Energy(SCBk) > (ThCBk). 
5. Combine EOI less than TD apart. 
6. Select EOI with duration > TW. 
7. Save Selected HFO 
8. If all ECBk evaluated, End detection. 
9. Go to 2. 
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Chapter 4: Experiments 

Two experimental studies are included in this work.  The first one is a continuation from work 

done by Bryan Kern [8] and Deeksha Seetharama-Bhat [9].  The second one processes patient data 

with a cusum detector for comparison against Ripplelab outputs.  

 

Study 1 – Using the detectors from Ripplelab for detection in 20-minute intervals   

Work by B. Kern had located the SOZ of the patient under a small subset of grid electrodes that 

were subsequently used for the rest of his work, Deeksha Seetharama-Bhat’s, and the present work.  

D. Seetharama-Bhat’s research was based on automatic HFO classification with Ripplelab’s MNI 

and the STE detectors. Using 2500Hz Epilepsiae EEG data, she found that the total with both 

detectors included more events with more true HFOs than by using any of these detectors alone. 

Events found were compared by time stamp and raw signal shape to determine whether they had 

been detected by only one detector or by both. In some instances, the MNI detector outperformed 

the STE detector, but combining results from both detectors was an improvement in general.   

 

Study 2- Applying the Cusum detector.   

D. Seetharama-Bhat used the MNI and the STE detectors implemented in Ripplelab. Likewise, for 

this study we incorporated the same detectors to compare event detection results after processing 

through those detectors against results obtained through the cusum detector being evaluated in this 

work. B. Kern [8] and D. Seetharama-Bhat [9] chose five electrodes located on the SOZ. The same 

electrodes are being used to evaluate the cusum detector for identification of events and true HFOs.  

Preictal detection periods used by Kern and Seetharama were 20 minutes and 40 minutes, 

respectively. In this work we chose a 15 min. preictal period. After testing results with 40 min. and 

20 min. detection periods, Seetharama-Bhat did not find a significant difference for detecting the 
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preictal period and did the rest of her work with a 20 min. period. After all, the main goal of her 

work was to compare detector performance independently and in combination, not to determine 

the possibility of seizure prediction through detection of a preictal period, which was Kern’s goal. 

With our dataset, Seetharama-Bhat found that the MNI algorithm detects more events than the 

STE algorithm, yet it also misses some events detected by the latter. For this research we aim to 

evaluate the detection performance of the cusum detector and its potential for supporting research 

based on HFO detection. The EEG dataset created by Seetharama-Bhat was used as the basis for 

this research to accomplish a meaningful comparison of detector performance against her results. 

The cumulative sum detector was implemented using the vector cusum function in MATLAB as 

a building block.  

For the second study we first converted data into a “.mat” file to simplify computations 

with MATLAB software.  A total of eight recordings from the dataset that were used. Recordings 

were all separated into individual channels to compute their cumulative sum. Next, a cumulative 

sum with 5 standard deviations was calculated.  Each channel signal was individually processed 

in 1 min. segments. We used the cumulative function to detect changes in the mean RMS energy 

of the signal by plotting the cusum results and to inspect the graph looking for these changes.  

Positive slopes in the plot would mean a change in the mean that could indicate a potential HFO 

event.  

Since filtering may introduce artifacts and false events in a signal [9, 10] this approach allows 

artifact identification and prevents false detections as well.  One of the first channels processed 

with the cumulative sum detector is shown in Figure XX. In the first 1000 iterations there is a part 

between 200 and 300 where the output shows a steep positive slope that indicates an event, i.e., a 

potential HFO.  
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4.1 HFO Detection 

The MNI detector uses two different thresholding techniques for event detection.  The first 

one detects a signal baseline based on wavelet entropy over a threshold. The second one is for 

signals that contain no baseline.  The MNI detector defaults to a threshold of 99.9999% for a 

detected baseline, and to 95% for signals without a baseline.  However, the user can change the 

parameters for the thresholds of each type of signal. Seetharama-Bhat found that using a 98% 

threshold with a baseline of 95% worked best for our dataset to detect events with a relatively low 

impact from signal noise.  For this reason, we will use the same detection parameters for this 

research. The STE detector has an RMS window of 3 seconds with a 6ms epoch time, a minimum 

of 6 peaks, and 5 standard deviations above the background RMS energy for event detection. 

Ripplelab also allows users to set filter parameters.  

 

4.2 Event Analysis for HFO detection 

Using the given parameters, each detector can find events automatically.  Each detected 

event is considered as a candidate event to be visually inspected for rejection or HFO identification.  

Considering detector differences in algorithms, parameters, and assumptions about the probability 

density functions of EGG signals, coincidence of event detection by multiple detectors is expected 

to ultimately achieve enough robustness to obviate the need for expert visual confirmation – the 

main difficulty for a true automatic detection of HFOs for research and clinical application. For 

the purpose of this work, detector outputs will be tested to determine their degree of agreement on 

event detection. Visual inspection will still be used to reject or confirm events and HFOs from the 

different detectors.  Having all the detectors coincide on events with a low false detection rate will 

lead to possible automatic detection requiring a minimal if not null visual inspection. 
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For consistency with previous work by Kern and Seetharama-Bhat, detected events will be classified as 

HFO if they have at least 4 oscillations clearly visible above the background [3, 7, 9] with a duration of at 

least 25 ms [3,7]. 
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         Figure 4.1: Accepted and Rejected events (Top two Accepted, Middle two rejected, last two 
accepted and rejected respectively) 
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Chapter 5: Results 

In study 1 we noticed that the MNI detector was able to detect more candidate events and HFOs than 

the STE detector.  In agreement with the Ripplelab detectors, the cusum detector found changes of 

mean RMS energy for several events.  Variations in results, as in previous work, were introduced by 

variations in dataset signals, detection algorithms, and processing parameters. Detection results are 

shown in the following table.  In study 2, the cusum detector identified more events than the other 

detectors in channel B7 as shown in the following table. However, the MNI detector sets an upper 

bound on the number of events over which all detectors agree.  The time for seizure one to be 

processed by the MNI detector was 16 minutes with 12 seconds with the threshold moved to 150-500 

Hz.  The STE detector took 33 seconds with the same frequency limits.  For Seizure 2 the MNI 

detector took 21 minutes and 47 seconds at the same threshold while the STE detector took only 34 

seconds.  For seizure 3 the MNI detector took 41 minutes to be processed.  Many of the processes 

varied between these times, while the cusum was almost always less than a minute to output.  

However, the cusum method implemented did need to be visually identified in order to distinguish 

actual events and to be able to compare with the MNI and STE detectors.  The detectors are from 

Ripplelab which shows the event with the time stamp.  For the cusum since it’s a method being used 

outside of Rippleab has to have visual identification and correlation of samples with Ripplelab time.  

The algorithm was not so complex in order to let computations run smoothly and fast. 
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Table 5.1: Average Findings Through Detectors in study 1 
  

Av.MNI Av.STE Av. cumsum Av.Common in all 

B6   22               15.2             30                   22.4 

B7               22.4               21.2           39.2                   27.6 

B8                 16                 21             29                     22 

D7                 32               16.4            32.2                    26.9 

F2                47.4               60.2             65                    57.5 

 
   
 

Table 5.2: MNI and STE comparison in study 2 

 
Seizure 1 MNI STE Common in both 

B6 55 32 3 

B7 83 30 1 

B8 28 15 1 

D7 88 34 2 

F2 116 88 3 
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                   Table 5.3: Cusum and MNI comparison in study 2   
   

Seizure 1 MNI Cusum Common in bpth 

B6 55 18 6 

B7 83 49 13 

B8 28 46 10 

D7 88 28 17 

F2 116 72 42 

 

  
        Table 5.4: Cusum and STE comparison in study 2   
     

Seizure 1 Cusum STE Common in both 

B6 18 32 5 

B7 49 30 1 

B8 46 15 1 

D7 28 34 15 

F2 72 88 31 
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Conclusion and future work 

The cusum detector, which is based on the detection of changes in the RMS energy mean, was used 

to detect events and HFOs in a dataset with 2500Hz EEG signals of an epileptic patient. The cusum 

detector performance was evaluated against performance previously obtained with the same dataset 

using the MNI and STE detectors in Ripplelab. Event detection agreement between detectors was 

based on comparison of raw signal shape and event time stamp. Output from the cusum detector was 

plotted for verification through visual inspection. Few events were shared by all three detectors, 

which indicates that a combination of results from the three detectors may be better than any single 

detector [9], but stating this as a general conclusion will require additional testing and data from more 

epileptic patients.  MNI and STE had even fewer common events making the cusum a better 

alternative to use with the other two detectors.  The MNI was the detector that was able to detect the 

most events while also having 50% or more wrongly classified events [8] making the use of a 

combination of these detectors more crucial.  The contribution to this research is that while other 

works were able to introduce an energy thresholding technique [19], this one deals with the average 

change in a signal.  Future work will include further exploration of the cusum detector with additional 

data and algorithmic modifications with the goal of achieving truly automatic HFO detection through 

agreement of a number of detectors for true HFO identification and rejection of false HFOs.  The 

implementation of the cusum in this research was kept simple with an aim to implement it for portable 

devices while maintaining its fast and robust detection.    
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