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Abstract

Several authors have over the years studied the art of modeling data from accelerated life

testing and making inferences from such data. In this study, we consider a continuously

varying stress accelerated life testing procedure which is the limiting case of the multiple

stress-level discussed by Doksum and Hóyland [1]. We derive the likelihood function for

the life distribution of the continuously increasing stress accelerated life testing model and

consequently the Fisher’s Information Matrix. We propose a Bayesian analysis for this

distribution using the Gibbs Sampling Procedure. We conduct simulation studies and real

data analysis to demonstrate the efficiency of the proposed Bayesian approach to parameter

estimation over that of maximum likelihood estimation procedure.
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Chapter 1

Introduction

In this chapter, we provide a brief introduction on this study. Accelerated Life Testing

(ALT) is widely used in the field of engineering and this study applies Bayesian analysis to

make inference on the data collected on these life testing procedures. We will present some

basic concepts related to Accelerated Life Testing (ALT) methods in this chapter. We will

also present the objectives of this study and finally provide the outline of the entire thesis.

1.1 Background of Study

Reliability Life Data Analysis involves the study and modeling of observed product lives.

For some products such as car tire, airplane parts, and telephone cables, obtaining

times-to-failure data may be very difficult. This difficulty stems from the fact that, these

products have median life of 15 years or more. With this, it is generally very expensive and

impractical to complete reliability testing under normal conditions. Reliability practitioners

have over the years devised methods and strategies to coerce these products to fail faster

than they would under normal use conditions. In other words, they have accelerated the

failure times of these products.

1.2 Accelerated Life Testing

Accelerated life testing is a process to shorten the testing period by subjecting the products

to more severe conditions. These accelerated life testing conditions—which are mostly

referred to as the ”Stress variable”—include higher than usual temperature, voltage,
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pressure, humidity, vibration or any other stress that directly affects the life of the

product(Dorp and Mazzuchi [13]). A model is then used to extrapolate the data obtained

at these accelerated conditions to the normal use conditions to obtain an estimate of the life

distribution under normal conditions. See Bhattacharyya(1987) [11] for an overview of the

methodological approaches to ALT analysis. There are mainly three types of accelerated life

testing designs. We have the constant stress accelerated life testing, step-stress accelerated

life testing, and Progressive stress accelerated life testing.

If the stress is time-independent, the test units are often put under a constant stress.

With this, the test units are run to failure at same stress level throughout the whole

experiment. A model for the relationship between the life of the units and the constant

stress is then fitted to the data. Then the relationship is extrapolated to estimate the life

distribution under normal stress. The constant stress is illustrated in figure 1.1.

Step stress accelerated life testing(SSALT) may be used to reduce the times to failure

still further, when constant-stress testing is considered too lengthy. With this, test units

are initially subjected to a specified stress level. The remaining units that do not fail in

a specified time continues to test at a higher stress level for another specified time. The

stress is repeatedly increased and held this way until the end of the experiment. This is

illustrated in figure 1.2

1.3 Objectives of Study

• Modeling variable stress using Bayesian inference.

• We compare the Bayesian approach to parameter estimation to that of MLE.

1.4 Outline of Thesis

The organization of the remaining parts of the thesis is as follows: Chapter two provides

a literature review on some works already done on accelerated life tests. Chapter three

2



Figure 1.1: Constant stress accelerated life testing

Figure 1.2: Step stress accelerated life testing
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gives the methodology which comprises accelerated life test procedures, Frequentist and

Bayesian methods of parameter estimation. Chapter four outlines the simulation studies

and the results from the estimates of parameters using both Frequentist and Bayesian

methods of parameter estimation.
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Chapter 2

Literature Review

2.0 Introduction

Many authors have studied the art of modeling data from accelerated life testing and

making inferences from such data. Tyoskin and Krivolapov [2] outlined a nonparameteric

approach for making inferences for a step-stress accelerated life testing data. Bhattacharyya

and Soejoeti (1989) [12]considered a two-step or simple SSALT where units are

simultaneously put to a stress setting x1. The experimenter records the failure times of

units that fail in the specified time interval [0, t]. Starting at time t, the surviving units are

subjected to a different (typically higher) stress setting x2 and observed until they all fail.

The existing literature on analysis of SSALT centers around three types of models: The

tampered random variable(TRV) model due to DeGroot and Goel(1979) [14], the

cumulative exposure(CE) model due to Nelson(1980) [3] and the tampered failure rate(TFR)

model due to Bhattacharyya and Soejoeti(1989) [12]. Nelson [3, 4, 5], Miller and Nelson [6],

and Yin and Sheng [7] used the cumulative exposure model to model data from Step-stress

accelerated life testing, SSALT. Miller and Nelson[6] introduced a simple step-stress

accelerated life test plan in an exponential cumulative exposure model. Xiong and Milliken

[8] considered the lifetime distribution for a Step-stress accelerated life testing, SSALT

when the stress is changed according to some distribution. Thus, instead of increasing the

stress at a pre-specified time, the stress is increased immediately after a certain number of

test units fail. They studied an exponential cumulative exposure model with a threshold

parameter in the simple step-stress accelerated life test. Khamis and Higgins [9] introduced

the optimum three-step step-stress accelerated life test plan using quadratic stress-life

5



relationship assuming that the failure time follows an exponential distribution.
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Chapter 3

Methodology

3.0 Introduction

This chapter gives the details of the methodology used in analysis of this study. Here,

we discuss the Wiener Process and the Inverse Gaussian Distribution, derive the likelihood

function for the continuously increasing stress accelerated life testing and consequently the

Fisher’s Information Matrix. We also outline prior and posterior distribution and the Gibbs

Sampling Procedure.

3.1 Variable Stress Accelerated Life Testing

Variable-stress accelerated life testing(VALT) trials are experiments in which each of the

units in a random sample of units of a product is run under increasingly severe conditions

to get information quickly on its life distribution.

Starting at t0, test all products at stress level x0 until t1. At t1, the remaining products

continue to test at a more severe condition x1 until t1, and so on. See figure 1.2. Doksum

and Hóyland [1] modeled time to failure in terms of accumulated decay reaching a critical

level, ω. They considered a model in which accumulated decay is governed by a

continuous Gaussian process W (y) whose distribution depends on the stress s(y) assigned

to the experimental unit at each time point y.

7



3.2 The Wiener Process and the Inverse Gaussian

Distribution

The basic idea is to model the accumulated decay in material subject to constant stress

as a Wiener process {W0(y); y ≥ 0} with drift η > 0 and diffusion constant δ2 > 0. The

Wiener process W0(y) is defined to be an independent increment Gaussian process with

W0(0) = 0 and mean E(W0(y)) = ηy. Failure occurs when the decay process W0(y) crosses

a critical boundary ω.

Given the first stress level, let fatigue failure time, Y be the first time the decay process

W0(y) crosses the critical boundary ω, and let µ = ω
η
and λ = ω2

δ2
; Then Y has has the

inverse Gaussian distribution IG(y|µ, λ). See history and proof in the book by Chhikara

and Folks(1989) [10]. The pdf of Y is given by

f0(y) =
√

λ
2πy3

exp

{
−λ(y−µ)2

2µ2y

}
, y, µ, λ > 0

3.3 Multiple Step Stress

For k + 1 stress levels x0, x1, .., xk over the k + 1 intervals [0, t1), [t1, t2), ..., [tk,∞). (see

figure 1.2)

Accumulated decay is modeled as the Gaussian process

W (y) = W0(y), y ∈ [0, t1)

= Wi(y), y ∈ [ti, ti+1), i = 1, ..., k
(3.1)

Where Wi(y) = Wi−1(ti + αi[y − ti]), y ∈ [ti, ti+1), i = 1, ..., k.

Here,

τ(y) = y, y ∈ [0, t1)

= ti + αi(y − ti), y ∈ [ti, ti+1), i = 1, ..., k
(3.2)

τ(y) is a time transformation that converts the accelerated time to a non-accelerated or

normal condition stress level time. Thus, W (y) is a continuous Gaussian process with decay

8



rate changing by the multiplicative factor αi as y crosses the stress change point ti. αi is

the decay effect of the increasing stress level from xi−1 to xi as time y crosses the stress

change point ti. Let βi also be the cumulative effect of increasing the stress from x0 to x1

and so on to xi as time y crosses the stress change points t1, t2, ..., ti. To re-express W (y)

in terms of W0(y), Doksum and Hóyland [1] introduced the notation

βi =
i∏

j=1

αr, where α0 = 1,

β(y) = βi, y ∈ [ti, ti+1), i = 0, ..., k

τ(y) = y, 0 ≤ y < t

=
i−1∑
r=0

βr(tr+1 − tr) + βi(y − ti),

y ∈ [ti, ti+1), i = 0, ..., k.

(3.3)

Just like in many applications, we assume αi = 1 + θ(xi − xi−1), as the effect of the

increasing stress level from xi−1 to xi. With this βi =
∏i

j=1 αj.

Thus,

βm =
m∏
j=1

[1 + θ(xj − xj−1)]

= 1 +
∑
i

θ(xi − xi−1) +
∑
i,j

θ2(xi − xi−1)(xj − xj−1) + . . .

+ θm(x1 − x0)(x2 − x1)(x3 − x2)(x4 − x3)...(xm − xm−1)

(3.4)

Doksum and Hóyland [1] proposed that, for k+ 1- stress -levels case, the distribution of

the failure time Y is F (y) = F0(τ(y)|µ, λ), where F0 is the cdf of IG(µ, λ) life distribution

at xo.

Thus, in the continuous case, as the difference (ti − ti−1) → 0 =⇒ (xi − xi−1) → 0,

βi ≈ 1 + θ(xi − x0). This is illustrated in figure 3.1

9



Figure 3.1: Continuously varying stress accelerated life testing

Suppose the experimenter imposes the known stress x(y) at the time y. Then a reasonable

model for the decay rate ηβ(y) of the decay process W (y) at time y would have

β(y) = 1 + θ(x(y)− x(0)) where x(0) = x0

It follows that

τ(y) =

∫ y

0

[1 + θ(x(s)− x(0))]ds (3.5)

Nilsson and Uvell (1985) [15], assumed x(y) to be linear, say x(y) = x0 + cy where c is

a known constant set by the experimenter.

Now,

β(y) = 1 + θ(x0 + cy − x0) = 1 + θy (3.6)

where the constant c has been absorbed into θ .

Now equation (3.5) becomes

τ(y) =

∫ y

0

(1 + θs)ds = y +
1

2
θy2 (3.7)

10



3.4 Likelihood Function

Doksum and Hóyland [1] defined the distribution of the failure time Y as F (y) = F0(τ(y)|µ, λ),

for some non-negative increasing continuous function τ(y) with the property that τ(0) = 0.

Suppose τ(y) is differentiable, we have τ ′(y) = β(y). Thus f(y) = β(y)f0(τ(y)). The

likelihood and log-likelihood functions (for y, µ, λ > 0) are given by:

L(µ, λ, θ) =
n∏
i=1

β(yi)f0(τ(yi)) =
n∏
i=1

(1 + θyi)

√
λ

2π[τθ(yi)]3
exp

{
−λ[τθ(yi)− µ]2

2µ2τθ(yi)

}
(3.8)

`(µ, λ, θ) =
n∑
i=1

log(1+θyi)+
n

2
log λ− n

2
log 2π− 3

2

n∑
i=1

log τθ(yi)−
n∑
i=1

λ[τθ(yi)− µ]2

2µ2τθ(yi)
(3.9)

The partial derivatives with respect to the parameters are as follows:

∂`

∂µ
=

n∑
i=1

λ[τθ(yi)− µ]

µ3
,

∂2`

∂µ2
= −

n∑
i=1

λ

µ4
[3τθ(yi)− 2µ] (3.10)

∂`

∂λ
=

n

2λ
−

n∑
i=1

[τθ(yi)− µ]2

2µ2τθ(yi)
,

∂2`

∂λ2
= − n

2λ2
(3.11)

∂2`

∂µ∂λ
=

n∑
i=1

1

µ3
[τθ(yi)− µ] ,

∂2`

∂λ∂θ
= −

n∑
i=1

y2i [τ
2
θ (yi)− µ2]

4µ2τ 2θ (yi)
,

∂2`

∂µ∂θ
=

λ

2µ3

n∑
i=1

y2i (3.12)

From (3.7), τθ(y) = y + 1
2
θy2 , ∂τθ(y)

∂θ
= 1

2
y2 , ∂2τθ(y)

∂θ2
= 0 , and thus

∂`

∂θ
=

n∑
i=1

yi
1 + θyi

− 3

4

n∑
i=1

y2i
τθ(yi)

− λ

4µ2

n∑
i=1

y2i [τ
2
θ (yi)− µ2]

τ 2θ (yi)
(3.13)

∂2`

∂θ2
= −

n∑
i=1

y2i
(1 + θyi)2

+
3

8

n∑
i=1

y4i
τ 2θ (yi)

− λ

4

n∑
i=1

y4i
τ 3θ (yi)

(3.14)

E

(
∂2`

∂µ2

)
= − λ

µ3
n , E

(
∂2`

∂λ2

)
= − 1

2λ2
n , E

(
∂2`

∂µ∂λ

)
= 0 (3.15)
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3.5 Fisher’s Information Matrix

Let the Fisher’s Information matrix be given by:

I(µ, λ, θ) =


wµµ wµλ wµθ

wλµ wλλ wλθ

wθµ wθλ wθθ

 (3.16)

Where wµµ = −E
(
∂2`
∂µ2

)
, wλλ = −E

(
∂2`
∂λ2

)
, etc.

The determinant of I(µ, λ, θ) is given by:

det(I) = wµµ(wλλwθθ − w2
λθ)− w2

µθwλλ , since wλµ = wµλ = −E
(

∂2`
∂µ∂λ

)
= 0

Thus,

I−1(µ, λ, θ) =
1

c


(wλλwθθ − w2

λθ) wµθwθλ −wµθwλλ
wµθwθλ (wµµwθθ − w2

µθ) −wµµwλθ
−wµθwλλ −wµµwλθ wµµwλλ

 (3.17)

where c = det(I) = wµµ(wλλwθθ − w2
λθ)− w2

µθwλλ

3.6 Confidence Intervals

From the asymptotic normality of MLEs, θ̂ ∼ N(θ, var(θ̂)) We use log transformation to

obtain approximate confidence intervals, CIs, and the average length(AL) of these intervals

for the parameters. For example, parameter θ and its MLE θ̂ will have the approximate

normal distribution log(θ̂) ∼ N(log(θ), var(log(θ̂))). We approximate the variance using the

delta method as
̂

var(log(θ̂)) =
̂

var(θ̂)

θ̂2
, where

̂
var(θ̂) is the corresponding diagonal element

of the inverse Fisher’s Information matrix, evaluated at MLEs µ̂, λ̂, θ̂.

With this, a (1− γ)100% CI for θ is given by:

[
θ̂ × exp

{
−
zγ/2

√
var(θ̂)

θ̂

}
, θ̂ × exp

{
zγ/2

√
var(θ̂)

θ̂

}]
(3.18)

12



where zγ/2 is the upper 100× γ/2th percentile of the standard normal distribution.

3.7 Bayesian Inference

3.7.1 Prior Distribution

Doksum(1992) [1] proposed that, if we let Y be the first time the process W0(τ(y)) crosses

the critical boundary ω, and let µ = ω
η
and λ = ω2

δ2
; Then Y has distribution

F (y) = F0(τ(y)|µ, λ), where η is the drift and δ2 is the diffusion constant of the wiener

process. With this, we see that

λ =
(ηµ)2

δ2
=⇒ λ ∝ µ2 (3.19)

Therefore, we propose a joint prior

π(µ, λ, θ) = π(µ)π(λ|µ)π(θ) (3.20)

From the functional form of likelihood in (3.8), it can be deduced that for λ, a conjugate

prior for the conditional likelihood L(λ|µ, θ, Y ) is a gamma distribution. With this, we

choose (λ|µ) ∼ Gamma( b0
2
, b1
2µ2

), which gives us the prior density of (λ|µ) as:

π(λ|µ) ∝ λ
b0
2
−1e
− b1

2µ2
λ

(3.21)

Thus, E(λ|µ) = b0
b1
µ2. From the likelihood in (3.8), we see that µ and θ have no conjugate

priors. We consider prior distributions that updated certain portions of their conditional

likelihoods. Here, we choose

µ ∼ Inverse Gamma(a0, a1) and θ ∼ Gamma(c0, c1)

Thus, π(µ) ∝ µ−(a0+1)e−
a1
µ and π(θ) ∝ θc0−1e−c1θ

13



3.7.2 Hyperparameter Settings

To determine the hyperparameters, we use the MLEs µ̂, λ̂ and θ̂ as estimates for the

expectations of their respective prior distributions.

3.7.3 Posterior Distribution

Given a sample data Y , the joint posterior distribution of parameters (µ, λ, θ) is given by:

π(µ, λ, θ|Y ) ∝ L(µ, λ, θ|Y )π(µ)π(λ|µ)π(θ) (3.22)

It follows that the full conditional posteriors are:

π(λ|µ, θ, Y ) ∝ L(λ|µ, θ, Y )π(λ|µ)

∝ λ
n
2 exp

{
− λ

2µ2

[ n∑
i=1

τθ(yi)− 2nµ+ µ2

n∑
i=1

τ−1θ (yi)
]}
× λ

b0
2
−1 exp{− b1

2µ2
λ}

∝ λ
n+b0

2
−1 exp

{
− λ

2µ2

[ n∑
i=1

τθ(yi)− 2nµ+ µ2

n∑
i=1

τ−1θ (yi) + b1
]}

(3.23)

Thus,

(λ|µ, θ, Y ) ∼ Gamma

(
η0
2
,
η1

2µ2

)
(3.24)

Where η0 = n+ b0 and η1 =
∑n

i=1 τθ(yi)− 2nµ+ µ2
∑n

i=1 τ
−1
θ (yi) + b1

π(µ|λ, θ, Y ) ∝ L(µ|λ, θ, Y )π(µ)π(λ|µ)

∝ exp

{
− λ

2µ2

[ n∑
i=1

τθ(yi)− 2nµ+ µ2

n∑
i=1

τ−1θ (yi)
]}
× µ−(a0+1) exp{−a1

µ
}

×
( b1
2µ2

)(
b0
2
)

Γ( b0
2

)
λ
b0
2
−1 exp{− b1

2µ2
λ}

∝ µ−(a0+b0+1) exp

{
− λ

2µ2

[ n∑
i=1

τθ(yi)− 2nµ+ b1
]
− a1
µ

}
(3.25)
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π(θ|λ, µ, Y ) ∝ L(θ|λ, µ, Y )π(θ)

∝
n∏
i=1

(1 + θyi)

√
1

τ 3θ (yi)
exp

{
−λ[τθ(yi)− µ]2

2µ2τθ(yi)

}
× θc0−1 exp{−c1θ}

∝
n∏
i=1

[
(1 + θyi)τ

− 3
2

θ (yi)

]
θc0−1 exp

{
− λ

2µ2

[ n∑
i=1

τθ(yi) + µ2

n∑
i=1

τ−1θ (yi)
]
− c1θ

}
(3.26)

3.7.4 Gibbs Sampling Procedure

To make posterior inference on the parameters µ, λ, and θ, we take posterior samples from

their full conditional distributions.To do this, we implement the Gibbs sampling procedure

as follows:

1. Sample µt+1 from π(µ|λt, θt, Y ) using the Metropolis-Hastings algorithm. Here, our

target density is π(µ|λ, θ, Y ). Let µt be a current value, and q(µ|µt) be a proposal

distribution. Thus

• Sample µ∗ ∼ q(µ|µt). Where q(µ|µt) is Inverse Gamma(αµ, µt(αµ − 1))

• We calculate the acceptance probability as

α(µt, µ
∗) = min

{
1,
π(µ∗|λt, θt, Y )

π(µt|λt, θt, Y )

q(µt|µ∗)
q(µ∗|µt)

}
Where q(µt|µ∗) is Inverse Gamma(αµ, µ

∗(αµ − 1)) and q(µ∗|µt)

is Inverse Gamma(αµ, µt(αµ − 1))

• We set µt+1 = µ∗ with probability α(µt, µ
∗), otherwise, we set µt+1 = µt

2. Sample λt+1|µt+1, θt ∼ Gamma

(
η0
2
, η1
2µ2t+1

)
3. Sample θt+1 from π(θ|µt+1, λt+1, Y ) using the Metropolis-Hastings algorithm. We let

π(θ|µ, λ, Y ) be our target density, θt be a current value, and q(θ|θt) be a proposal

distribution. Thus

15



• Sample θ∗ ∼ q(θ|θt). Where q(θ|θt) is Gamma(θtβθ, βθ)

• Calculate the acceptance probability as

α(θt, θ
∗) = min

{
1,
π(θ∗|µt+1, λt+1, Y )

π(θt|µt+1, λt+1, Y )

q(θt|θ∗)
q(θ∗|θt)

}
Where q(θt|θ∗) is Gamma(θ∗βθ, βθ) and q(θ∗|θt) is Gamma(θtβθ, βθ)

• Set θt+1 = θ∗ with probability α(θt, θ
∗), otherwise, we set θt+1 = θt
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Chapter 4

Simulation and Real Data

Application

4.1 Simulation Study

To compare the performance of parameter estimation by ML and Bayesian methods, we

conduct a simulation study. We take four settings of the parameters as

(µ, λ, θ) = (1, 1, 1), (0.5, 0.5, 1), (1, 0.5, 1.5), (3, 0.2, 1.5). We then generate 1000 datasets for

each of these parameter settings with three sample sizes n = 20, 30, 50. For the Bayesian

analysis, we run the gibbs sampling procedure with a burn-in of 2000 followed by 8000

iterations. The remaining 8000 samples are used to compute the parameter estimates, Mean

square error(MSE), and average lengths(AL) of the 95% credible intervals(CI). We also

compute maximum likelihood estimates, Mean square error(MSE), and average lengths(AL)

of the 95% confidence intervals(CI) using frequentist approach. Table 4.1 and 4.2 display

the results from the simulation study.

4.1.1 Remarks from simulation study.

• Just as expected, the estimates get closer to their true parameters as the sample size

increases for both ML and Bayesian method.

• The MSE and AL decrease as sample sizes increase. This is also seen for both ML

and Bayesian method.

• The estimation of all parameters from the Bayesian method is much better than from

17



Table 4.1: Results from Simulation Study -(µ, λ, θ) = (1, 1, 1), (0.5, 0.5, 1)

ML Method Bayesian

n Para Estimate MSE AL Estimate MSE AL

True parameters: µ = 1, λ = 1, θ = 1

µ 1.1444 0.3216 5.7743 1.0555 0.0677 0.6364

20 λ 1.1589 0.2167 1.3831 1.0521 0.1018 0.9923

θ 1.5138 2.9922 38.7825 1.1761 0.4780 0.0494

µ 1.0599 0.0985 4.3224 1.0244 0.0537 0.5286

30 λ 1.1019 0.0956 1.1458 1.0377 0.0608 0.8239

θ 1.2182 0.9518 28.9571 1.0583 0.3642 0.0465

µ 1.0369 0.0620 3.2827 1.0165 0.0466 0.4294

50 λ 1.0634 0.0446 0.8681 1.0234 0.0320 0.6504

θ 1.1492 0.5054 19.5924 1.0574 0.3400 0.0466

True parameters: µ = 0.5, λ = 0.5, θ = 1

µ 0.6271 0.0677 3.1111 0.5927 0.0291 0.3541

20 λ 0.5592 0.0444 0.6607 0.5101 0.0221 0.4727

θ 2.2627 6.2246 63.748 1.8657 1.7917 0.0621

µ 0.5899 0.0290 2.4069 0.5767 0.0228 0.298

30 λ 0.5327 0.0191 0.55 0.5038 0.0131 0.3936

θ 1.8230 2.0337 48.8791 1.6740 1.4230 0.0582

µ 0.5817 0.0240 1.8452 0.5723 0.0202 0.2458

50 λ 0.5176 0.0095 0.4189 0.4984 0.0071 0.3123

θ 1.7788 1.6956 33.6579 1.6692 1.3601 0.0584

the ML method in terms of Esimates, MSE and AL.
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Table 4.2: Results from Simulation Study- for (µ, λ, θ) = (1, 0.5, 1.5), (3, 0.2, 1.5)

ML Method Bayesian

n Para Estimate MSE AL Estimate MSE AL

True parameters: µ = 1, λ = 0.5, θ = 1.5

µ 0.9616 0.2594 4.6081 0.8873 0.0713 0.6317

20 λ 0.5745 0.0475 0.6696 0.5240 0.0223 0.5051

θ 1.4460 1.7627 34.0673 1.2119 0.5059 0.0504

µ 0.9067 0.0818 3.8279 0.8846 0.0579 0.5575

30 λ 0.5469 0.0219 0.5422 0.5160 0.0140 0.4177

θ 1.2352 0.6092 26.6716 1.1319 0.4747 0.0487

µ 0.8455 0.0595 2.5778 0.8409 0.0587 0.4332

50 λ 0.5281 0.0098 0.419 0.5091 0.0071 0.3272

θ 1.0324 0.5506 18.4684 0.9862 0.5732 0.0451

True parameters: µ = 3, λ = 0.2, θ = 1.5

µ 2.2063 8.7398 10.2402 1.6871 3.0275 1.8883

20 λ 0.2288 0.0065 0.2629 0.2130 0.0037 0.2138

θ 1.1114 2.8959 17.6742 0.7809 1.0681 0.0386

µ 2.3001 5.9732 9.1405 1.9489 3.2603 2.1346

30 λ 0.2201 0.0036 0.2133 0.2095 0.0024 0.175

θ 1.1135 1.9362 13.5553 0.8734 1.1449 0.0406

µ 2.3205 4.8716 7.4968 2.0419 2.9737 2.0715

50 λ 0.2136 0.0018 0.1644 0.2065 0.0013 0.1358

θ 1.0723 1.5913 9.2299 0.8719 1.1001 0.0405

4.1.2 Trace Plots of Parameters from Simulated Data

The trace plots of our four settings of the parameters, (µ, λ, θ) = (1, 1, 1), (0.5, 0.5, 1),

(1, 0.5, 1.5), (3, 0.2, 1.5), from the posterior distribution of simulated data are shown in
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figures 4.1, 4.2, 4.3 and 4.5.

4.2 Real Data Analysis

In this study, we apply our analysis to a real data(Insulating fluid data), given by

Nelson(2004) [16], to illustrate the usefulness of our method even further. This dataset is

about the Oil breakdown time(seconds) in an accelerated test employed in an insulating

oil. This data consists of 60 measured breakdown times(seconds).

4.2.1 Description of data

The data used in this study is the times to oil breakdown under high test voltages. Dataset

is presented in Table 4.3. The higher than normal use voltages is to yield breakdown data

quickly. At design voltages, time to breakdown runs thousands of years. The test to obtain

this data employed a pair of parallel disk electrodes immersed in an insulating oil. The

electrical stress is given as a voltage, since the electrode geometry was constant. Voltage,

V across the pair was increased linearly with time, t at a specified rate R and breakdown

time was recorded at a one square inch electrode. See Nelson(2004)[16].

Table 4.3: Insulating fluid data

3.4 3.4 3.4 3.5 3.5 3.5 3.6 3.8 3.8 3.8 3.8 3.9 3.9 3.9 4.0

4.0 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.3

4.3 4.3 4.3 4.3 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.5 4.5 4.6 4.6

4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.7 4.8 4.9 4.9 4.9 5.0 5.1 5.2

Just like our simulation study, we run the gibbs sampling procedure with a burn-in of

2000 followed by 8000 iterations. The remaining 8000 samples are used to compute the

parameter estimates, and average lengths(AL) of the 95% credible intervals(CI). We also
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Figure 4.1: Trace plots for true parameters mu=1, lambda=1 and theta=1
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Figure 4.2: Trace plots for true parameters mu=0.5, lambda=0.5 and theta=1
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Figure 4.3: Trace plots for true parameters mu=1, lambda=0.5 and theta=1.5
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Figure 4.4: Trace plots for true parameters mu=3, lambda=0.2 and theta=1.5
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compute maximum likelihood estimates, and average lengths(AL) of the 95% confidence

intervals(CI) using frequentist approach. The results are given in table 4.4.

Table 4.4: Results from Real Data Analysis

ML Method Bayesian

Para Estimate AL Estimate AL

µ 7.3767 142.8145 7.3654 0.5448

λ 332.5389 461.9926 328.7759 162.6450

θ 0.3408 378.0696 0.3400 0.0279

4.2.2 Trace Plots of Parameters from Insulating fluid Data

The trace plots of the parameters from the posterior distribution of Insulating fluid data

are shown in figures 4.1.

4.2.3 Remarks from Real Data Analysis.

• The point estimates obtained in both ML and Bayesian methods are close to each

other due to the relatively large sample size, n = 60 .

• The ALs obtained under the Bayesian approach are however smaller than the ones

of the ML approach.

25



Figure 4.5: Trace plots of true parameters from Insulating fluid data
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Chapter 5

Conclusion

In this study, a Bayesian inference approach to parameter estimation in

continuously varying stress accelerated life testing which is the limiting case of the multiple

stress-level discussed by Doksum and Hóyland [1] is presented. We derived the likelihood

function of life testing model and studied it’s Fisher’s information used in the

likelihood-based inference method. We calculated the MLEs of the parameters and also

implemented the Gibbs sampling procedure to estimate the parameters from their full

conditional posteriors. Our simulation study demonstrated the efficiency of our proposed

Bayesian approach to parameter estimation over that of the likelihood-based inference

method. With the application to a real dataset, we have illustrated that our Bayesian

method can be readily applied for efficient, reliable, and precise inference.
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