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Abstract 

 This study examines how residential electricity consumption (KWHC) reacts to changes in 

the price of electricity, the price of natural gas, real income per capita, heating degree days, and 

cooling degree days.  Annual frequency data analyzed are for Las Cruces, the second largest 

metropolitan economy in New Mexico.  The sample period is 1977 to 2016.  An Autoregressive-

Distributed Lag model (ARDL) is employed to obtain long-run and short-run elasticities.  In the 

long-run, residential consumption responds in a statistically reliable manner only to real per capita 

income.  In the short-run, residential consumption responds reliably to all of the variables except 

heating degree days.  Somewhat surprisingly, the short-run results also include an own-price 

elasticity that is slightly positive, implying that residential electricity has an upward sloping demand 

curve in Las Cruces. 
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Chapter 1: Introduction 

 Recent empirical studies have attempted to model residential electricity consumption in 

different service areas.  Such studies use data from different metropolitan economies to analyze 

regional residential electricity consumption behavior.  Further research for different regions in 

the United States can help provide a better picture on how changes in income and other variables 

affect residential electricity sales.   

 In this study, residential electricity sales are examined for the Las Cruces, New Mexico 

metropolitan economy.  Las Cruces is part of Dona Ana County and has an approximate 

population of 216,804 with an estimated nominal per capita income of $34,016 (Fullerton and 

Walke, 2015).  Las Cruces is close in distance to another metropolitan economy El Paso, Texas 

where residential electricity consumption has previously been analyzed (Fullerton et al., 2016).   

 El Paso Electric (EPE)  services Las Cruces, New Mexico.  EPE is a regional electric 

utility that provides electricity to 400,000 retail and wholesale customers within a 10,000 square 

mile area.  EPE provides services to territories ranging from Hatch, New Mexico to Van Horn, 

Texas and has a peak generating capacity of 2,010 MW (EPEC, 2016).  

 To examine Las Cruces residential electricity consumption, an autoregressive distributed 

lag (ARDL) bounds testing approach is used.  The ARDL approach allows analyzing long-run 

and short-run consumption relationships.  Annual data from 1977-2016 from EPE are collected 

for the Las Cruces service area. In depth analysis of Las Cruces kilowatt hour (KWH) 

consumption has not previously been undertaken. 

 Subsequent sections of the study are as follows.  A partial review of related literature is 

provided next.  An overview of the theoretical model and methodology is included in the third 
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section.  Empirical results and policy implications are then reviewed.  A summary of principal 

outcomes comprises the final section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 3 

Chapter 2: Literature Review 

 Early studies analyze residential electricity consumption by estimating the elasticities of 

residential electricity demand using variables such as price, income, and heating and cooling 

degree-days.  Cooling and heating degree-days are usually calculated using the difference 

between average temperatures and a base of 65 degrees Fahrenheit.  Using structural demand and 

price equations, Halvorsen (1975) finds that the own price elasticity of demand ranges from -1.0 

to -1.21, suggesting unity in the long run.   

 A recurring question is whether electricity demand functions should employ marginal 

prices or average prices.  Taylor (1975) finds that both average and marginal price should be 

included in demand equations in order to accurately model residential electricity.  That can be 

problematic because data constraints for marginal electricity prices may cause average prices to 

be the best information available (Halvorsen, 1975).  Additional research uses Ramsey 

specification error tests to determine that average revenue price is an adequate measure to 

determine residential electricity demand (Cicchetti and Smith, 1975).  Wilder and Willenborg 

(1975) provide evidence that consumers react to monthly bills and do not fully know the 

marginal price of electricity thus making average price variables appropriate to use.  Shin (1985) 

examines the information problem by focusing on consumer’s perception of prices and multi-

step block rate schedules.  Results, in this and other studies, indicate that consumers respond to 

the average prices of their electricity bills (Ito, 2014).   

Research also examines the effects of income and other variables on household electricity 

usage (Hultman and Ramsey, 1977).  Results find that electricity price, the price of natural gas, 

and income are some of the biggest determinants of residential demand for electricity.  Many 

studies report income elasticities with positive coefficients (Wilder and Willenborg, 1975), but 
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some do not.  In a metropolitan study that includes both average and marginal price variables 

(Roth, 1981), the results imply that a decrease in real income would increase electricity demand 

suggesting that electricity is an “inferior good”.  A separate study using national data also 

presents similar evidence (Contreras et al., 2009).  Results in that effort further indicate that 

weather influences on electricity are asymmetric.   

 A number of empirical studies simultaneously estimate long-run and short-run 

elasticities.  Chang (1991) employs a generalized functional form method to estimate time-

varying elasticities.  Coefficient estimates are statistically significant and exhibit the 

hypothesized signs.  Silk and Joutz (1997) use co-integration techniques to construct an error 

correction model for U.S. residential electricity demand.  A subsequent U.S. study uses an 

autoregressive distributed lag (ARDL) approach.  The ARDL cointegration technique is 

appropriate and attractive for models with variables of mixed order of integration (Dergiades and 

Tsolfides, 2008).  Findings from that ARDL approach report long-run and short-run elasticities 

that are similar in magnitude to those reported in prior studies. 

 Epsey and Epsey (2004) conduct a meta-analysis of previous studies and determine 

factors that may affect estimated elasticities.  Evidence gathered indicates that there are subtle 

differences among elasticities and it cannot be assumed that every region will have similar 

estimates.  Further empirical efforts for residential electricity demand in different countries also 

uses results to indicate regional policy implications based on specific demand characteristics 

(Halicioglu, 2007; Hondroyiannis, 2004; Narayan and Smyth, 2005). 

 A recent effort on U.S. residential electricity demand focuses price and income 

elasticities as important elements for designing regional policies (Alberini et. al., 2011).  Results 

include a high own-price elasticity of demand and low-income elasticity.  Such findings suggest 
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that price increases will cause households to choose less energy-intensive appliances.  The low-

income elasticity suggests that households will tend to invest in less energy-intensive appliances.   

  Recent regional studies also employ out-of-sample model simulation as additional tool 

for confirming model reliability.  One study for Seattle reports a negative long-run income 

elasticity (Fullerton et. al., 2012).  A three-year forecast is used to help evaluate the model 

developed.  A similar study for residential electricity demand in Iran reports temperature as the 

biggest determinant of electricity demand (Cooray and Pourazarm, 2013).  It includes a seven-

year dynamic forecast.  Recent research on residential electricity demand in El Paso uses an 

ARDL procedure (Fullerton et al., 2016).  The long-run income elasticity coefficient is negative 

and a three-year out of sample forecast is conducted to evaluate expected demand growth.   

In this effort, residential electricity consumption is examined for Las Cruces, New 

Mexico.  Las Cruces is only forty miles from El Paso, but has a different economic base and 

somewhat different weather patterns (Fullerton and Walke, 2015).  There is no guarantee, 

therefore, that residential electricity consumption patterns in this smaller metropolitan economy 

will match what has been documented for the larger, nearby urban economy.  
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Chapter 3:  Data 

 Annual frequency data are collected from 1977 to 2016.  Residential consumption in Las 

Cruces is measured in kilowatt-hours (KWH), using New Mexico billed sales data provided by 

El Paso Electric (EPE).  At least one recent study indicates that consumers respond to average 

prices (Ito, 2014).  For this effort, average revenue per KWH is used as the own price variable.  

Revenue, KWH sales, and customer data are collected from EPE and EPE Form 1 filings with 

Federal Energy Regulatory Commission (FERC, 2017). 

 Real per capita income variable is used to account for income effects on residential 

electricity consumption.  Real per capita income is calculated in constant 2009 dollars using the 

personal consumption expenditures (PCE) deflator (BEA, 2018b).  The price variables are also 

deflated to constant 2009 dollars using the PCE deflator.  Per capita income data for Las Cruces 

and the personal consumption expenditures deflator are collected from the Bureau of Economic 

Analysis (BEA, 2018a).  Table 1 lists all of the data and units of measure. 
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Table 1: Variable Definitions and Sources 

Variable Definition Source 

KWHC 
Las Cruces electricity consumption per customer, 

measured in KWH sales per residential customer 
El Paso Electric 

KWH 
Las Cruces electricity consumption, measured in 

KWH sales 
El Paso Electric 

PE 
Real Electricity Price, measured in average $ 

revenue per KWH sold, base year 2009 

El Paso Electric FERC Form-

1 Filings 

PNG 
Las Cruces Real Natural Gas Price, measured in 

average $ price per CCF, base year 2009 

Las Cruces Utilities, Energy 

Information Association 

YCAP 
Las Cruces Real Per Capita Income, measured in 

thousands of dollars, base year 2009 

U.S. Bureau of Economic 

Analysis  

HDD 
Heating Degree Days, Sum of Average Daily 

Temperatures under 65° Base 

National Oceanic and 

Atmospheric Administration  

Northeast Regional Climate 

Center 

CDD 
Cooling Degree Days, Sum of Average Daily 

Temperatures over 65° Base 

National Oceanic and 

Atmospheric Administration  

Northeast Regional Climate 

Center 

CUST 
Average Number of Residential Customers, 

thousands 

El Paso Electric FERC Form-

1 Filings 

POP Las Cruces Population, thousands 
U.S. Bureau of Economic 

Analysis  

 

 In Las Cruces, natural gas is a substitute for electricity.  Accordingly, a natural gas price 

per 100 cubic feet (CCF) variable is also included in the sample.  The existing historical data are 

collected from Las Cruces Utilities and cover 1996-2016.  To approximate missing data, natural 

gas price data for New Mexico are collected from the Energy Information Administration (EIA, 

2017).  Equation 1 specifies the Las Cruces natural gas price as a function of the state gas price 

and is used to provide estimates for the missing values between 1977 and 1995 (Friedman, 

1962).  Table 2 displays the estimated regression results.  The natural gas price for New Mexico 
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coefficient is statistically significant at the 5-percent level. A chi-squared autocorrelation test 

confirms that the residuals for Equation 1 are not serially correlated.  

 

L C P N Gt  b0  b1N M P N Gt  ut                (1) 

Table 2: Natural Gas Price Regression 

Dependent Variable: LCNGP       

Method: Least Squares         

Sample (adjusted): 1996 2016       

Included observations: 21 after adjustments     

          

Variable Coefficient Std. Error t-Statistic Prob.   

C -0.316 0.071 -4.463 0.0003 

NMNGP 0.857 0.077 11.169 0.000 

          

R-squared 0.8678     Mean dependent var   0.4535 

Adjusted R-squared 0.8609     S.D. dependent var   0.1979 

S.E. of regression 0.0738     Akaike info criterion   -2.284 

Sum squared resid 0.1035     Schwarz criterion   -2.185 

Log likelihood 25.982     Hannan-Quinn criter.   -2.262 

F-statistic 124.744     Durbin-Watson stat   1.500 

Prob(F-statistic) 0.000       

Note: Sample period is 1996-2016 

 

Prior studies indicate that weather influences residential electricity consumption in 

statistically significant manners (Contreras et al., 2009; Cooray and Pourazarm, 2013).  To 

account for weather in the demand equation for electricity demand, data for heating degree days 

(HDD) and cooling degree days (CDD) are collected by the New Mexico State University 

(NMSU) weather station and downloaded from the National Oceanic and Atmospheric 

Administration Northeast Regional Climate Center (NOAA, 2018).  HDD measures the number 

of degrees that each daily average temperature is below 65 degrees Fahrenheit.  CDD measures 

the number of degrees that each daily average temperature is above 65 degrees Fahrenheit.   
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Table 3: Data Summary Statistics 

  KWHC PE PNG YCAP 

Mean 7188.9 0.142 0.425 22.377 

Standard Deviation 664.3 0.026 0.168 4.595 

Coef. of Variation 0.092 0.186 0.395 0.205 

Median 7113.1 0.131 0.380 20.568 

Maximum 8430.3 0.193 0.824 29.654 

Minimum 5879.2 0.107 0.215 16.246 

Range 2551.1 0.087 0.609 13.408 

Skewness 0.265 0.677 1.078 0.287 

Kurtosis 2.083 2.055 3.179 1.513 

 

  HDD CDD CUST POP KWH 

Mean 2699.5 1928.6 56538.0 159.364 414,811,402  

Standard Deviation 275.5 220.53 18522.0 41.431 167,491,391  

Coef. of Variation 0.102 0.114 0.328 0.260 0.404 

Median 2683 1858.5 56485 167.350 383,196,054  

Maximum 3346 2362 84673 214.428 689,174,035  

Minimum 2196 1502 25152 88.302 190,947,495  

Range 1150 860 59521 126.126 498,226,540  

Skewness 0.110 0.188 -0.026 -0.221 0.334 

Kurtosis 2.300 1.870 1.749 1.748 1.716 

Note: Sample Period is 1977-2016 

 

The summary statistics presented in Table 3 show that the average electricity 

consumption per customer in Las Cruces is 7,189 KWH per year, the standard deviation is 664 

KWH per customer, with a median of 7,113 KWH.  The minimum electricity consumption per 

customer for this sample period is 5,879 KWH and the maximum is 8,430 KWH, a range of 

2,551 KWH.  The skewness coefficient is 0.26, indicating a slightly right skewed distribution 
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that is roughly symmetric.  The kurtosis is 2.08, indicating the data are fairly platykurtic relative 

to a Gaussian distribution, but the coefficient of variation is still only 0.09.    

The average real price of electricity is estimated to be $0.14 per KWH, the standard 

deviation is $0.03 per KWH, with a median of $0.13.  The minimum average real price of 

electricity is $0.11 per KWH and the maximum is $0.19 per KWH, a range of $0.09 per KWH.  

The skewness is 0.68, indicating that the real price of electricity is slightly right skewed.  The 

kurtosis is 2.06 indicating the data are platykurtic and the coefficient of variation is 0.18.  

 The average price of natural gas in Las Cruces is $0.43 per CCF, the standard deviation 

is 0.17, with a median of $0.38 per CCF.  The minimum price of natural gas in Las Cruces 

during the sample period is $0.22 per CCF and the maximum is $0.82 per CCF giving a range of 

$0.60 per CCF.   The skewness of the price of natural gas in Las Cruces is 1.08, indicating that 

the distribution of the data is right skewed.  The kurtosis is 3.18 and the coefficient of variation is 

0.40.   

The average Las Cruces real income per capita is found to be close to $22,377.  The 

standard deviation is $4,595 with a median of $20,568.  The minimum per capita income is 

$16,246 and the maximum is $29,654 giving a range of $13,408.  The skewness of Las Cruces 

income per capita is 0.29, reflecting overall symmetry.  The kurtosis is found to be 1.51 

indicating the data are fairly platykurtic, but the coefficient of variation is still only 0.21.   

The average number of heating degree days in Las Cruces is 2,699 per year.  The 

standard deviation is 275 days with a median of 2,683 days. The minimum number of heating 

degree days is 2,196 days with a maximum of 3,346 days, a range of 1,150 days.  The skewness 

of HDD is 0.11, largely symmetric.  The kurtosis is 2.30 making the distribution platykurtic, but 

the coefficient of variation is only 0.10.   
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The average number of cooling degree days in Las Cruces is 1,929 per year. The standard 

deviation is 221 days with a median of 1,859. The minimum number of cooling degree days is 

1,502 with a maximum of 2,362, a range of 860 days.  The CDD skewness is 0.19, substantially 

symmetric.  The kurtosis is 1.87, indicating relatively thick distribution tails, but the coefficient 

of variation is a fairly small 0.11.  

 The average number of residential customers in Las Cruces during the 1977-2016 

sample period is 56,538.  The standard deviation is 18,522 with a median of 56,485 customers.  

The minimum amount of customers is 25,152 and the maximum number is 84,673, a range of 

59,521. The skewness is found to be -0.03, indicating near perfect symmetry.  The coefficient of 

variation is 0.33.  The average population in Las Cruces in the sample period is 159,364 people.  

The standard deviation is 41,431 with a median of 167,350 people.  The minimum population is 

88,302 people and the maximum population is 214,428, a range of 126,126 people.  

 Average total residential electricity consumption in Las Cruces is 414,811,402 kilowatt 

hours (KWH).  The standard deviation is 167,491,391 KWH with a median of 383,196,054 

KWH.  The sample minimum consumption is 190,947,495 KWH and the maximum is 

689,174,035 KWH.  At 0.404, the coefficient of variation for KWH is relatively larger than those 

of the other variables in the sample.   

 A demand function is specified using the variables listed in Table 1.  As noted above, 

electricity consumption functions generally use economic and weather variables to analyze long-

run and short-run electricity demand.  Because non-zero amount data are utilized, the variables 

are transformed using natural logarithms prior to estimation (Tukey, 1977).  In the following 

section, a theoretical model is developed using an ARDL specification that has been successfully 

applied to the southern portion of the EPE service area (Fullerton et al., 2016). 
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Chapter 4:  Theoretical Framework 

 A demand function for Las Cruces residential electricity consumption is specified using 

economic and weather variables.  Natural logarithms are used to transform the data prior to 

estimation.  Expected coefficient signs are listed below Equation (2). 



lnKWHCt  a0 a1 ln PEt a2 ln PNGt a3 lnYCAPt a4 ln HDDt a5 lnCDDt ut  (2) 

      (-)               (+)                  (+)                 (+)                 (+)  

 An autoregressive distributed lag model (ARDL) estimation approach is employed 

similar to that utilized for the nearby El Paso region (Fullerton et. al, 2016).  The ARDL model 

employs a bounds testing procedure is applied that allows for cointegration regardless of the 

variables being stationary with  I(0) or I(1) orders of integration (Dergiades and Tsolfides, 2008).  

The null hypothesis for no cointegration,  , is examined using an F-test.  

That null is rejected because the computed F-statistic is larger than the upper bound (Pesaran et. 

al, 2001).  

 

 Equation (3) shows the general ARDL specification (Pesaran et. al, 2001).  In Equation 

(3), q represents the optimal number of dependent variable lags and p  is used for the optimal 

number of explanatory variable lags.  The error term is represented by v with t as the time 

subscript. 
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

lnKWHCt 0   i ln KWHCti i0

q

 1i ln PEti i0

p1

 2i ln PNGti i0

p2

 3i lnYCAPtii0

p3



 4 i ln HDDti i0

p4

 5i lnCDDt1  vti0

p5


      (3) 

 

Equation (4) shows how the long-run coefficients for Equation (2) are calculated from the 

parameters in Equation (3).  In Equation (4), j represents an index for the independent variables.  

The long-run coefficients are later used to calculate the residuals that will be part of the short-run 

error correction model if cointegration is present.  



a j   ji /
i0

p j

 (1  i)i1

q

                 (4) 

 

The variables in Equation (2) are tested for cointegration by employing a bounds test 

(Pesaran et al., 2001).  Equation (5) is computed with 



  representing the first-difference 

operator and w the error term.  Narayan (2005) presents a set of bounds test critical values that 

are used for both I(0) and I(1) cases when samples contain between 30 and 80 observations.  The 

calculated F-statistic must be larger than the upper bound to reject the null hypothesis of no 

cointegration 



Ho b6 b7 b8 b9 b10 b11 0 .  When the F-statistic is between the upper and 

lower bounds, the test is inconclusive.  An F-statistic below the lower bound will fail to reject the 

null hypothesis.   
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

 ln KWHCt  b0  di ln KWHCt i i0

q1

 b1i ln PEt i i0

p1 1

 b2i ln PNGt i i0

p 21



b3i lnYCAPt ii0

p31

  b4 i ln HDDt i i0

p4 1

 b5i ln CDDt i i0

p5 1

 b6 ln KWHCt1 

b7 ln PEt1  b8 ln PNGt1  b9 lnYCAPt1  b10 ln HDDt1  b11 ln CDDt1 wt

    (5) 

 

If a cointegrating relationship exists, a short-run error correction model is estimated.  The 

residuals from Equation (2) are lagged and included as the error correction term represented by 

.  The hypothesized coefficient sign for the error correction term is negative.  When that 

condition is met, 



  is the rate at which a short-run departure from the long-run equilibrium will 

dissipate.  Equation (6) shows the specification for the short-run error correction model. 

 



 lnKWHCt  0  i lnKWHCti i0

q1

 1i ln PEti i0

p1 1

 2i ln PNGti i0

p21



3i lnYCAPtii0

p31

  4 i ln HDDti i0

p4 1

 5i lnCDDti ut1  ti0

p5 1


        (6) 
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Chapter 5: Empirical Results 

 

 Phillips-Perron unit root tests indicate the variables are integrated of an order of I(0) or 

I(1), allowing suitable analysis within the framework of an ARDL model.  A maximum of 3 lags 

for each variable was selected using the Akaike Information Criterion.  The result is an ARDL 

(2,3,3,3,0,2) model for residential electricity consumption in the Las Cruces region. 

 The Breusch-Godfrey serial correlation LM test is conducted with a null hypothesis of no 

serial correlation.  The computed Chi-Squared statistic for up to five years indicates no serial 

correlation.  The F-statistic for 



Ho b6 b7 b8 b9 b10 b11 0 , is 3.64.  In the bounds test 

context, this value is higher than the 10-percent upper bound critical value indicating 

cointegration.  Furthermore, the CUSUM and CUSUMSQ tests in Figure 1 and Figure 2 show 

stability with no statistics surpassing the 5-percent bounds. 

 

 

Figure 1: CUSUM Results for Resdential Electricity Consumption 
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Figure 2: CUSUMSQ Results for Resdential Electricity Consumption 

 

The long-run coefficients for the estimated ARDL model are listed in Table 4.  Estimates 

indicate that only real per capita income is statistically significant at a 5-percent level with the 

hypothesized positive sign.  The income elasticity parameter indicates an inelastic response as a 

1-percent increase in real per capita income for the Las Cruces region would increase residential 

electricity demand by 0.69 percent in the long-run.  This would suggest that electricity is treated 

as a normal good in Las Cruces in the long-run. 
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Table 4: ARDL Analysis of Residential Electricity Consumption 

Long-run coefficients for ARDL(2, 3, 3, 3, 0, 2) model:   

Variable Coefficient Std. Error t-Statistic Prob.    

LOG(PE) 0.1953 0.1732 1.1279 0.2742 

LOG(PNG) -0.0669 0.0575 -1.1638 0.2597 

LOG(YCAP) 0.6879 0.2125 3.2363 0.0046 

LOG(HDD) 0.1394 0.0942 1.4803 0.1561 

LOG(CDD) 0.0013 0.1866 0.0068 0.9946 

     

     

Diagnostic statistics for the underlying ARDL model:     

R-squared 0.9671     Mean dependent var 8.8722  

Adjusted R-squared 0.9341     S.D. dependent var 0.0938  

S.E. of regression 0.0241     Akaike info criterion -4.3086  

Sum squared resid 0.0104     Schwarz criterion -3.4813  

Log likelihood 98.7083     Hannan-Quinn criter. -4.0169  

F-statistic 29.3692     Durbin-Watson stat 1.5529  

Prob(F-statistic) 0.0000       

     

     

Bounds test results:         

F-statistic 3.635551 Lower Bound (0) 2.26  

Significance 10% Upper Bound (1) 3.35   

 

The long-run parameters for other variables are not statistically significant but do exhibit 

some hypothesized signs.  The own-price elasticity coefficient is 0.20 indicating a 1 percent 

increase in the price of electricity will increase residential electricity demand by 0.20 percent.  

This would suggest an upward electricity demand curve slope in the long-run for the Las Cruces 

region.  Similar results are reported in other residential electricity studies (Fullerton et. al, 2015).  

Among other things, upward sloping electricity demand curves for normal goods can occur when 

the income effect exceeds the substitution effect. 
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The long-run parameter for the price of natural gas is -0.07 indicating an inelastic 

response.  The parameter signifies that a 1 percent increase in the price of natural gas will 

decrease residential electricity demand by 0.07 percent.  The results indicate that natural gas and 

electricity are treated as complement goods in the long-run in the Las Cruces region.  

Both explanatory variables for the weather, heating degree days and cooling degree days, 

exhibit the hypothesized parameter signs with coefficients of 0.14 and 0.0001 respectively. The 

heating degree days parameter indicates an inelastic response as a 1 percent increase in annual 

heating degree days will increase residential electricity demand by 0.14 percent. The cooling 

degree days parameter indicates an inelastic response as a 1 percent increase in annual cooling 

degree days will increase residential electricity demand by 0.001 percent in the long-run. The 

small magnitude effect of cooling degree days on electricity consumption suggest that cooling 

appliances are not important for long-run electricity use in the Las Cruces region.  The results 

indicate that while consumers will adjust home heating and cooling appliances during inclement 

weather there will be a small positively correlated impact on long-run residential electricity 

consumption in the Las Cruces region. 
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Table 5: ARDL Analysis of Error Correction Model Results 

Error Correction Model:    

Variable Coefficient Std. Error t-Statistic Prob.    

C 4.8472 0.9214 5.2609 0.0001 

DLOG(KWHC(-1)) -0.3394 0.0915 -3.7069 0.0016 

DLOG(PE) 0.0071 0.1209 0.0583 0.9541 

DLOG(PE(-1)) 0.2748 0.0696 3.9491 0.0009 

DLOG(PE(-2)) -0.1902 0.0736 -2.5833 0.0187 

DLOG(PNG) -0.0019 0.0219 -0.0861 0.9324 

DLOG(PNG(-1)) -0.0230 0.0222 -1.0381 0.3130 

DLOG(PNG(-2)) 0.0468 0.0232 2.0146 0.0591 

DLOG(YCAP) 0.1350 0.1907 0.7077 0.4882 

DLOG(YCAP(-1)) -0.4122 0.1968 -2.0944 0.0506 

DLOG(YCAP(-2)) 0.4022 0.1865 2.1572 0.0448 

DLOG(CDD) 0.1235 0.0410 3.0133 0.0075 

DLOG(CDD(-1)) 0.1259 0.0409 3.0826 0.0064 

 



ut1 -0.8139 0.1542 -5.2794 0.0001 

     

Diagnostic statistics for the underlying ARDL model:     

R-squared 0.9232     Mean dependent var  0.0035 

Adjusted R-squared 0.8799     S.D. dependent var  0.0615 

S.E. of regression 0.0213     Akaike info criterion  -4.5788 

Sum squared resid 0.0104     Schwarz criterion  -3.9693 

Log likelihood 98.7083     Hannan-Quinn criter.  -4.3639 

F-statistic 21.2795     Durbin-Watson stat  1.5529 

Prob(F-statistic) 0.0000       

 

Estimated results for the short-run error correction model are listed in Table 5.  The own-

price coefficients sum to 0.09 and do not exhibit the hypothesized negative sign.  While greater 

than zero, the own-price parameter indicates that the relation is highly inelastic.  Similar to what 

is reported for the long-run results in Table 4, the own-price elasticity coefficients collectively 

imply that residential electricity has an upward sloping curve in Las Cruces.  Similar results have 

been reported in other residential electricity studies (Fullerton et. al, 2015).  Although this may 
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reflect the impact of greater energy efficiency in home appliances, more testing is warranted 

before reaching any firm conclusions.  

The natural gas price coefficients sum to 0.02 and exhibit the hypothesized positive sign.  

The highly inelastic parameter estimate indicates that natural gas price fluctuations do not affect 

electricity usage very noticeably.  Collectively, the results indicate that electricity and natural gas 

are treated as weak substitutes in the short-run in the Mesilla Valley.  

The real per capita income coefficients sum to 0.13 and exhibit the hypothesized positive 

sign.  The inelastic parameter estimate indicates that a 1 percent increase in real per capita 

income will increase residential electricity demand by 0.13 percent.  Although the estimate 

indicates that the relationship is not overly strong, electricity is found to be treated as a normal 

good in the short-run by Las Cruces households.  

The explanatory variables used to account for weather effects on residential electricity 

demand are heating degree days and cooling degree days.  In the short-run, only cooling degree 

days are found to reliably impact residential electricity consumption with coefficients that sum to 

0.25 and positive as hypothesized.  Not surprisingly, that indicates that residential consumers 

will increase the use of cooling appliances during hot weather spells in this desert economy. 

 The error correction parameter is negative as hypothesized.  The magnitude of the error 

correction coefficient indicates that 81 percent of any deviation from the long-run equilibrium 

will dissipate within a year.  As a result, approximately 1.2 years are necessary for any 

departures from equilibrium to fully dissipate.  That is a much shorter amount of time than what 

has been documented for the nearby metropolitan economy of El Paso (Fullerton et al., 2016). 
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Chapter 6:  Conclusion 

 Residential electricity usage continues to be the focus of substantial research effort.  

Given the importance of electric energy in modern economies, that is to be expected.  Advances 

in econometric methods and data availability also encourage more effort in this branch of the 

discipline. 

Historically, one of the gaps in this literature has been empirical analysis of residential 

electricity demand in small and medium metropolitan economies.  That has probably occurred 

due to data coverage in these areas.  Las Cruces, New Mexico is one of those urban economies 

about which comparatively little energy consumption research has been conducted. 

 The results obtained vary in several notable ways from what has been documented for 

much larger El Paso, Texas which is located a mere 40 miles away from the Mesilla Valley.  

Those outcomes highlight the importance of examining more smaller urban economies 

individually rather than assuming that regional energy demand always follows the same usage 

patterns.  Additional studies of electricity consumption in Las Cruces region are warranted.  An 

obvious candidate is small commercial and industrial usage, as well as public and non-profit 

usage.  Important demand differences for those customer categories cannot be ruled out at this 

juncture. 
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Appendix A: Data 

Table 6: Annual Data 

Year KWHC PE PNG YCAP HDD CDD 

1977 7,537.50 0.123 0.215 16.246 2987 1755 

1978 7,887.04 0.141 0.272 16.714 3029 1795 

1979 7,139.32 0.124 0.274 16.530 3346 1502 

1980 6,085.53 0.158 0.332 16.307 3100 1762 

1981 7,214.34 0.181 0.376 16.901 2717 1742 

1982 5,879.24 0.183 0.523 17.126 3024 1685 

1983 6,739.17 0.193 0.580 17.847 3069 1723 

1984 6,619.95 0.193 0.610 18.082 3029 1806 

1985 6,782.23 0.187 0.606 18.478 3008 1649 

1986 6,450.10 0.184 0.533 18.888 2683 1765 

1987 6,555.52 0.178 0.400 18.874 3046 1662 

1988 6,652.86 0.177 0.408 18.387 2825 1715 

1989 6,627.82 0.170 0.444 19.119 2606 2072 

1990 6,531.52 0.166 0.405 19.192 2788 1943 

1991 6,572.14 0.163 0.349 19.263 2862 1616 

1992 6,752.98 0.152 0.254 19.812 2952 1786 

1993 6,655.92 0.149 0.323 19.796 2670 1876 

1994 6,796.17 0.142 0.327 19.610 2513 2200 

1995 6,594.22 0.141 0.250 20.491 2298 1839 
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1996 6,757.35 0.131 0.271 20.393 2254 1841 

1997 6,810.04 0.132 0.324 20.646 2314 1979 

1998 6,836.74 0.134 0.316 21.582 2464 1813 

1999 6,743.44 0.124 0.313 21.632 2196 1727 

2000 7,092.48 0.120 0.303 22.163 2444 2231 

2001 7,133.73 0.126 0.297 24.256 2606 2181 

2002 7,321.17 0.123 0.316 24.951 2683 2185 

2003 7,477.78 0.125 0.574 25.596 2458 2275 

2004 7,393.69 0.122 0.652 26.379 2755 1826 

2005 7,587.76 0.127 0.818 27.393 2634 2068 

2006 7,548.59 0.129 0.824 27.344 2479 1954 

2007 7,847.10 0.126 0.733 27.840 2629 2021 

2008 7,609.74 0.130 0.819 27.855 2683 1737 

2009 7,904.30 0.121 0.421 28.575 2622 2090 

2010 8,293.19 0.119 0.452 28.845 2834 2081 

2011 8,430.32 0.116 0.406 28.694 2854 2362 

2012 8,390.02 0.111 0.283 28.690 2420 2209 

2013 8,200.32 0.114 0.384 27.304 2876 2134 

2014 7,866.91 0.118 0.441 28.052 2350 2075 

2015 8,096.35 0.110 0.298 29.586 2571 2227 

2016 8,139.24 0.107 0.277 29.654 2301 2234 
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Year CUST POP KWH PCE 

1977 25,333 88.30 190,947,495 0.341 

1978 25,152 92.19 198,374,947 0.365 

1979 29,069 93.74 207,532,884 0.397 

1980 35,358 97.01 215,172,027 0.440 

1981 29,730 99.62 214,482,216 0.478 

1982 37,478 103.45 220,342,299 0.505 

1983 33,951 107.63 228,801,449 0.526 

1984 35,949 112.47 237,980,754 0.546 

1985 37,714 116.32 255,784,886 0.566 

1986 39,472 120.47 254,598,483 0.578 

1987 41,221 125.03 270,224,895 0.596 

1988 42,985 130.02 285,973,059 0.620 

1989 44,515 132.96 295,037,547 0.646 

1990 45,837 136.59 299,385,489 0.674 

1991 47,270 141.23 310,665,224 0.697 

1992 48,912 147.00 330,301,610 0.715 

1993 50,616 153.05 336,895,928 0.733 

1994 52,431 157.53 356,329,852 0.748 

1995 54,150 161.01 357,076,759 0.764 

1996 55,769 165.62 376,850,884 0.780 
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1997 57,201 169.08 389,541,224 0.793 

1998 58,588 172.06 400,551,097 0.799 

1999 60,409 173.89 407,364,168 0.811 

2000 61,889 175.10 438,946,495 0.831 

2001 62,856 176.50 448,398,005 0.847 

2002 64,294 178.46 470,707,370 0.859 

2003 65,879 182.05 492,628,734 0.876 

2004 68,255 184.94 504,656,261 0.897 

2005 71,120 189.20 539,641,286 0.923 

2006 73,062 193.70 551,514,903 0.947 

2007 75,664 197.85 593,743,154 0.971 

2008 77,283 200.86 588,103,907 1.001 

2009 78,529 205.40 620,716,793 1.000 

2010 79,601 210.20 660,146,425 1.017 

2011 80,169 212.98 675,850,676 1.041 

2012 80,694 214.43 677,024,526 1.061 

2013 81,992 214.05 672,360,615 1.075 

2014 82,817 214.06 651,513,800 1.092 

2015 83,632 214.30 677,113,937 1.095 

2016 84,673 214.21 689,174,035 1.108 

 



 

 29 

Appendix B: Alternative Specification and Estimation Results 

Table 7: Alternative Long-Run ARDL Specification 1: ARDL(4,3,2,0,3,1) using AIC 

  

   

Variable Coefficient Std. Error 

t-

Statistic Prob.    

LOG(PE) -1.144731 1.019284 
-

1.123073 0.277 

LOG(PNG) 0.375527 0.363636 1.032701 0.3162 

LOG(YCAP) -0.932161 1.273172 
-

0.732156 0.474 

LOG(HDD) 0.492191 0.36551 1.346589 0.1958 

LOG(CDD) 1.090716 1.010914 1.07894 0.2957 

     

     

Diagnostic statistics for the underlying ARDL model:     

R-squared 0.970834     Mean dependent var 8.876626  

Adjusted R-squared 0.939952     S.D. dependent var 0.091195  

S.E. of regression 0.022347     Akaike info criterion 

-
4.458982  

Sum squared resid 0.00849     Schwarz criterion 

-
3.623236  

Log likelihood 99.26167     Hannan-Quinn criter. 

-
4.167284  

F-statistic 31.43683     Durbin-Watson stat 1.370076  

Prob(F-statistic) 0       
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Table 8: ARDL Bounds Test for ARDL(4,3,2,0,3,1) 

Bounds test results:     I(0) I(1) 

F-statistic 3.317468 10% 2.26 3.35 

k 5 5% 2.62 3.79 

  2.50% 2.96 4.18 

    1% 3.41 4.68 

 

 

 

 

 

Figure 3: CUSUM for ARDL(4,3,2,0,3,1) (AIC) 
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Figure 4: CUSUMSQ for ARDL(4,3,2,0,3,1) (AIC) 
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Table 9: Error Correction Model for ARDL(4,3,2,0,3,1) using AIC 

Variable Coefficient Std. Error 

t-

Statistic Prob.    

C -0.735414 0.147921 
-

4.971683 0.0001 

DLOG(KWHC(-1)) -0.890298 0.099179 
-

8.976676 0 

DLOG(KWHC(-2)) -0.484465 0.137588 
-

3.521117 0.0026 

DLOG(KWHC(-3)) -0.225691 0.095941 -2.3524 0.031 

DLOG(PE) -0.350332 0.164315 
-

2.132078 0.0479 

DLOG(PE(-1)) -0.148728 0.111192 
-

1.337572 0.1987 

DLOG(PE(-2)) -0.129384 0.066509 
-

1.945364 0.0685 

DLOG(PNG) 0.035885 0.020631 1.739403 0.1 

DLOG(PNG(-1)) -0.078802 0.021221 
-

3.713362 0.0017 

DLOG(HDD) 0.140892 0.047757 2.950155 0.009 

DLOG(HDD(-1)) 0.215041 0.055419 3.880278 0.0012 

DLOG(HDD(-2)) 0.192454 0.058584 3.285092 0.0044 

DLOG(CDD) 0.199927 0.046098 4.336976 0.0004 

CointEq(-1)* -0.328788 0.064781 
-

5.075348 0.0001 

     

Diagnostic statistics for the underlying ARDL model:     

R-squared 0.921796     Mean dependent var  0.008077 

Adjusted R-squared 0.875585     S.D. dependent var  0.055693 

S.E. of regression 0.019644 
    Akaike info 

criterion  -4.73676 

Sum squared resid 0.00849     Schwarz criterion  

-
4.120947 

Log likelihood 99.26167 
    Hannan-Quinn 

criter.  

-
4.521824 

F-statistic 19.94736     Durbin-Watson stat  1.370076 

Prob(F-statistic) 0       
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Table 10: Alternative Long-Run ARDL Specification 2: ARDL(3,0,2,0,3,1) using HQ 

Variable Coefficient Std. Error t-Statistic Prob.    

LOG(PE) 0.119126 0.202033 0.589636 0.5614 

LOG(PNG) -0.01527 0.047889 -0.318868 0.7528 

LOG(YCAP) 0.530896 0.190899 2.781025 0.0109 

LOG(HDD) 0.136165 0.169072 0.805365 0.4292 

LOG(CDD) 0.194344 0.159953 1.215002 0.2372 

     

     

Diagnostic statistics for the underlying ARDL model:     

R-squared 0.935845     Mean dependent var 8.872221  

Adjusted R-squared 0.89502     S.D. dependent var 0.093826  

S.E. of regression 0.0304 
    Akaike info 

criterion -3.857804  

Sum squared resid 0.020332     Schwarz criterion -3.20473  

Log likelihood 86.36938 
    Hannan-Quinn 

criter. -3.627565  

F-statistic 22.92299     Durbin-Watson stat 1.632327  

Prob(F-statistic) 0       
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Table 11: ARDL Bounds Test for ARDL(3,0,2,0,3,1)  

Bounds test results:     I(0) I(1) 

F-statistic 11.34322 10% 2.26 3.35 

k 5 5% 2.62 3.79 

  2.50% 2.96 4.18 

    1% 3.41 4.68 

 

 

 

 

Figure 5: CUSUM for ARDL(3,0,2,0,3,1) (HQ) 
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Figure 6: CUSUMSQ for ARDL(3,0,2,0,3,1) (HQ) 
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Table 12: Error Correction Model for ARDL(3,0,2,0,3,1) using HQ 

Variable Coefficient Std. Error t-Statistic Prob.    

C 4.80865 0.525464 9.151253 0 

DLOG(KWHC(-1)) -0.438934 0.094571 -4.641337 0.0001 

DLOG(KWHC(-2)) -0.18027 0.092936 -1.939713 0.0653 

DLOG(PNG) -0.005509 0.020651 -0.266774 0.7921 

DLOG(PNG(-1)) -0.037541 0.020714 -1.81232 0.0836 

DLOG(HDD) 0.023121 0.062335 0.370908 0.7143 

DLOG(HDD(-1)) -0.046833 0.071372 -0.656191 0.5185 

DLOG(HDD(-2)) 0.048406 0.063913 0.757372 0.4569 

DLOG(CDD) 0.114898 0.047397 2.424138 0.024 

CointEq(-1)* -0.981938 0.107441 -9.139331 0 

     

Diagnostic statistics for the underlying ARDL model:     

R-squared 0.850446     Mean dependent var  0.003543 

Adjusted R-squared 0.800595     S.D. dependent var  0.061452 

S.E. of regression 0.027441 
    Akaike info 

criterion  -4.128075 

Sum squared resid 0.020332     Schwarz criterion  -3.692691 

Log likelihood 86.36938 
    Hannan-Quinn 

criter.  -3.974582 

F-statistic 17.05966     Durbin-Watson stat  1.632327 

Prob(F-statistic) 0       
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Table 13: Alternative Long-Run ARDL Specification 3: ARDL(3,0,0,0,1,0) using SIC 

Variable Coefficient Std. Error t-Statistic Prob.    

LOG(PE) 0.160681 0.145193 1.106671 0.2782 

LOG(PNG) -0.031049 0.024428 -1.271043 0.2146 

LOG(YCAP) 0.592513 0.115492 5.130316 0 

LOG(HDD) 0.11276 0.114568 0.984225 0.3337 

LOG(CDD) 0.140267 0.081364 1.723957 0.0961 

     

     

Diagnostic statistics for the underlying ARDL model:     

R-squared 0.923654     Mean dependent var 8.872221  

Adjusted R-squared 0.898206     S.D. dependent var 0.093826  

S.E. of regression 0.029935 
    Akaike info 

criterion -3.9541  

Sum squared resid 0.024195     Schwarz criterion -3.518717  

Log likelihood 83.15085 
    Hannan-Quinn 

criter. -3.800607  

F-statistic 36.29503     Durbin-Watson stat 1.78893  

Prob(F-statistic) 0       

 

 

Table 14: ARDL Bounds Test for ARDL(3,0,0,0,1,0) 

 

Bounds test results:     I(0) I(1) 

F-statistic 12.27169 10% 2.26 3.35 

k 5 5% 2.62 3.79 

  2.50% 2.96 4.18 

    1% 3.41 4.68 
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Figure 7: CUSUM for ARDL(3,0,0,0,1,0) (SIC) 

 

 

Figure 8: CUSUMSQ for ARDL(3,0,0,0,1,0) (SIC) 
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Table 12: Error Correction Model for ARDL(3,0,0,0,1,0) using SIC 

Variable Coefficient Std. Error t-Statistic Prob.    

C 4.99769 0.534528 9.349731 0 

DLOG(KWHC(-1)) -0.420963 0.09194 -4.578665 0.0001 

DLOG(KWHC(-2)) -0.195518 0.089815 -2.176892 0.0384 

DLOG(HDD) 0.045741 0.051867 0.881896 0.3856 

CointEq(-1)* -0.931269 0.099691 -9.341593 0 

     

Diagnostic statistics for the underlying ARDL model:     

R-squared 0.822027     Mean dependent var  0.003543 

Adjusted R-squared 0.79978     S.D. dependent var  0.061452 

S.E. of regression 0.027497 
    Akaike info 

criterion  -4.22437 

Sum squared resid 0.024195     Schwarz criterion  -4.006679 

Log likelihood 83.15085 
    Hannan-Quinn 

criter.  -4.147624 

F-statistic 36.95067     Durbin-Watson stat  1.78893 

Prob(F-statistic) 0       
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