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Abstract

Copulas are widely used to model the dependency structure among components of multi-

variate data sets. Elliptical copulas, such as Gaussian copula, are most popular copulas

being used since many data sets follow elliptical distributions or meta-elliptical distribu-

tions (Fang et al. (2002)). However, today’s approaches and software packages require us

to assume the specific category, such as Gaussian or Student’s T, of the elliptical cop-

ula before estimating it. In this thesis, we will propose a Bayesian method using Markov

chain Monte Carlo (MCMC) methods to estimate the density function of elliptical copulas

without specifying it is the copula of Gaussian, Student’s T or Logistic, etc.
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Chapter 1

Introduction

1.1 Introduction to Copulas

Assume that we are asked to compare the two bivariate data sets in Figure 1.1 in terms

of the dependence structure between the underlying two variables. These two data sets

look very different in their scatter plots. The X = (X1, X2) are more concentrated on the

center while the Y = (Y1, Y2) has higher density on the bottom left corner. The similarity

between their dependence structure can hardly be told by just looking at their scatter plots.

Figure 1.1: Scatter plots of n = 1000 independent observations of (X1, X2) and of
(Y1, Y2) with the identical dependence structure

By looking at the estimated marginal kernel densities of (X1, X2) and (Y1, Y2) in Figure 1.2,

it seems they have very different marginal distributions. The marginal distribution of X
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Figure 1.2: Kernel density estimates of (X1, X2) and of (Y1, Y2)

looks like a normal distribution and the one for Y is more like exponential distribution. The

difference in marginal distributions increases the difficulty of the comparison in dependence

structures of these two bivariate distributions. If we can use a transformation to transform

X and Y , making their marginal distributions identical, then the comparison of their

dependence structures will be much easier.

For univariate cases, the Probability Integral Transformation (PIT) can achieve this goal.

The PIT can standardize any continuous distribution into a standard uniform distribution.

Lemma 1 (Probability Integral Transformation) Let F be the cumulative distribu-

tion function (CDF) of a continuous random variable X, that is, X ∼ F . Then U = F (X)

follows a uniform distribution, that is, U ∼ U(0, 1). The transformation U = F (X) is

called the probability integral transformation.

The PIT can be generalized to the bivariate or multivariate cases.

Theorem 1 (Copula Transformation) Let X1 ∼ F1, . . . , Xd ∼ Fd, where F1, . . . , Fd

are continuous. Then

U1 = F1(X1) ∼ U(0, 1), . . . , Xd = Fd(Xd) ∼ U(0, 1).

2



Hence for all u1, . . . , ud ∈ [0, 1],

Pr(U1 ≤ u1, . . . , Ud ≤ ud) = C(u1, . . . , ud, )

where C is a copula, i.e., a CDF with standard uniform marginals.

The copula transformation converts the margins of a multivariate data into the standard

uniform distribution, making the dependence structure more explicit.

Figure 1.3 is the scatter plots after the copula transformation on X and Y . We can easily

tell that the dependence structures between their two variables are actually the same.

Figure 1.3: The Dependence Structure

In the example above, we can see any multivariate distribution has a underlying copula,

which captures the dependence structure among its underlying variables. The copula can

be obtained though the copula transformation. Although X and Y have different margins,

but their copulas (dependence) are the same.

According to Sklar (1959), a multivariate distribution with continuous marginals can be

unique defined by its copula and it marginal distributions. Hence, to estimate a multivariate

distribution, we can estimate its copula and its marginal distributions.

3



Theorem 2 (Sklar’s theorem) For any CDFs F1, . . . , Fd and any copula C

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (1.1.1)

is a valid joint CDF with margins F1, . . . , Fd. If F1, . . . , Fd are continuous, then C is

unique.

A copula itself is a joint distribution of a random vector U = (U1, . . . , U2) with uniformly

distributed margins. It follows from the probability integral transformation that Ui =

Fi(Yi).

The joint density function of Y is obtained by differentiation on the CDF above through

chain rule:

h(y1, . . . , yn) =
∂nH(y1, . . . , yn)

∂y1 · · · ∂yn

=
∂nH(y1, . . . , yn)

∂F1(y1) · · · ∂F1(yn)
×

n∏
i=1

∂Fi(yi)

∂yi

= c
(
(F1(y1), . . . , Fn(yn)

)
· f1(y1) · · · · · · fn(yn),

where c is the density of the copula and fi, i = 1, . . . , n, are the marginal PDFs of Yi.

1.2 The Inversion Method

A simple way to construct a copula is by the inversion method.

Given a multivariate distribution H and continuous margins Fi, i = 1, . . . , p,

C(u1, . . . , up) = H
(
(F−1

1 (u1), . . . , F−1
p (up)

)
.

The C can be obtained by

C(u1, . . . , up) = C(F1(x1), . . . , Fp(xp))

= H(F−1
1 (u1) . . . F−1

p (up)).

4



The inversion method is for getting the CDF of the underlying copula of a known multi-

variate distribution H with margins Fi, . . . , p. However, if the H ’s model is unknown, it

is impossible to get its copula through this way.

By differentiation on C, the pdf of the copula can be obtained :

c(u1, . . . , up) =
h(F−1

1 (u1) . . . F−1
p (up))

f1(F−1
1 (u1)) . . . fp(F

−1
1 (up))

(1.2.1)

The term 1
f1(x1)...fp(xp)

is actually the Jacobian of the copula transformation from X to U .

1.3 Elliptical Distributions

A continuous random vector X = (X1, ..., Xp) has an elliptical distribution εp(µ,Ω, g) with

location vector µ, covariance matrix Ω and generator function g, if its density function is

f(x;µ,Ω, g) = cp|Ω|−1/2g((x− µ)′Ω−1(x− µ)), (1.3.1)

where

1. cp = Γ(p/2)π−p/2/
∫∞

0
tp/2−1g(t)dt.

2. µ ∈ Rp.

3. Ω is a p× p positive definite matrix.

4. g is a non-negative function on [0,∞) such that
∫∞

0
tp/2−1g(t)dt <∞.

If X ∼ εp(µ,Ω, g), then X ∼ εp(µ
∗,Ω∗, g∗) if and only there are two positive numbers

a and b such that µ∗ = µ, Σ∗ = aΣ and g∗(t) = bg(at), for all t ∈ R (see Gómez et al.

(2003)).

5



1.4 Stochastic Form

A p-variate vector X from εp(µ,Ω, g) can also be expressed in the following stochastic

representation (see Fang et al. (2002) and Fang et al. (2005))

X = µ+RAU , (1.4.1)

where

1. A is the Cholesky factor of Ω (Ω = AA′).

2. U is a random vector uniformly distributed on the p-dimensional unit sphere of Rp.

3. R is a continuous nonnegative random variable, independent of U , whose density

function is

h(r) =
2∫∞

0
tp/2−1g(t)dt

rp−1g(r2)1[0,∞](r). (1.4.2)

Let Y = Ω−1/2(X − µ), then Y ′Y = (X − µ)′Ω−1(X − µ). By using the stochastic

representation (1.4.1) of X, it follows that Y ′Y = RU ′A′Ω−1AUR = RU ′UR = R2.

Also, from (1.4.2), it follows that the density function (1.3.1) can be expressed as

f(r;A) =
Γ(p/2)

2πp/2
|A|−1r1−ph(r). (1.4.3)

In (1.4.3), the Cholesky factor A and the univariate density function h(r) are unknown.

We propose to estimate A parametrically and h(r) nonparametrically.

1.5 Elliptical Copulas

By the inversion method mentioned in 1.2, a copula can be constructed from a multivariate

distribution H with its margins.

For example, a well known copula, Gaussian copula, is obtained by the CDF of a multi-

variate Gaussian distribution and the CDF of the standard normal distribution

Φn

(
(Φ−1(u1), . . . ,Φ−1(un)

)
.

6



The Gaussian distribution belongs to the elliptical family. The copula of other distributions

in elliptical family, such as the copula of multivariate Student-t distribution, can also be

used to be obtained with the inversion method. This type of copulas are called copulas of

elliptical distributions or elliptical copulas.

1.6 Meta-elliptical Distributions

In Sklar’s theorem, we know the joint distribution can be expressed in terms of its univariate

margins and a copula. If the copula of a distribution is an elliptical copula, this distribution

is called a meta-elliptical distribution. See Fang et al. (2002).

The Y in Figure 1.1 is a sample from a meta-elliptical distribution, which is constructed

with a Gaussian copula and exponential margins.

Unlike elliptical distributions, meta-elliptical distributions do not require identical margins,

so it serves a more general tool to model data sets.

1.7 Naming Convention of Copulas

Copulas are usually named after the distribution used to induce the dependence between

the variables.

For example, if a copula capturing the dependence of variables in a Gaussian distribution is

called a Gaussian copula. By this naming convention, the underlying copula of an elliptical

distribution should be called an elliptical copula.

However, some articles, such as Genest et al. (2007), refer to elliptical copulas as meta-

elliptical copulas. This also follows the naming convention, because the name meta-elliptical

copula literally means copula describing the dependence of variables in a meta-elliptical

distribution, which is an elliptical copula according to Fang et al. (2002).

In other words, an elliptical copula and a meta-elliptical copula mean the same thing. In

this thesis, we will use the name elliptical copula.

7



Chapter 2

Dirichlet Process

2.1 Introduction

The Dirichlet process (DP) was originally defined in Ferguson (1973), as follows.

Definition 1 Let γ be a non-null finite measure (nonnegative and finitely additive) on

measurable space (X ,A ). We say P is a Dirichlet process with parameters γ if for ev-

ery k = 1, 2, . . . , and measurable partition (B1, · · · , Bk) of X , the distribution of

(P (B1), · · · , P (Bk)) is Dirichlet, D(γ(B1), · · · , γ(Bk)).

2.2 Metaphors

2.2.1 Stick-breaking Process

Sethuraman (1994) gave a constructive definition of the Dirichlet process. The stick-

breaking process consists of defining an infinite sequence of mixing proportions by

w1 = β1, wk = βk

k−1∏
j=1

(1− βj), k = 2, 3, . . . ,

where β1, β2 . . .
iid∼ Beta(1, γ). Sethuraman (1994) showed that the DP is actually an infinite

sum of the form P =
∑∞

k=1 wkδφk that obeys the definition of the stick-breaking process.

Proof of The Equivalence of The Stick-breaking Process and The DP

Three lemmas will be used to prove that the stick-breaking process is a DP.

8



Lemma 2 Let γ = (γ1, γ2, . . . , γk) and δ = (δ1, δ2, . . . , δk) be k-dimensional vectors. Let

U , V be independent k-dimensional random vectors with Dirichlet distribution Dir(γ) and

Dir(δ), respectively. Let W be independent of (U ,V ) having a Beta distribution

Beta(
∑
γj,
∑
δj). Then the distribution of WU + (1−W )V is the Dirichlet distribution

Dir(γ + δ).

Lemma 3 Let γ = (γ1, γ2, . . . , γk), and let βj = γj/
∑
γj. Then∑

βjDir(γ + ej) = Dir(γ),

where ej is a unit basis vector with the jth element equal to 1 and the other elements equal

to 0. The left-hand side can also be written as E[Dir(γ+X)], where X is a random vector

that takes the value ej with probability βj.

Lemma 4 Let W ,U be a pair of random variables where W takes values in [−1, 1] and U

takes values in a linear space. Suppose that V is a random variable taking values in the

same linear space as U and which is independent of (W,U) and satisfies the distributional

equation

V
st
= U +WV.

Suppose that P (|W | = 1) 6= 1. Then there is only one distribution for V that satisfies

Lemma 4. “
st
=” means having the same distribution.

Assume G is a Dirichlet process by Ferguson’s definition with concentration parameter α0

and base distribution G0, and denote it by DP (α0, G0). We generate an infinite list

(φ1, φ2, . . . , φk, . . .) ∼ G0 and form G′ =
∑∞

k=1 πkδk, where π1 = β1, πk = βk
∏k−1

j=1(1 −

βj), k = 2, 3, . . . , and β1, β2 . . .
iid∼ Beta(1, α0). Our goal is to show that G′ = G in

distribution. The strategy is to show that for all partitions (A1, A2, . . . , Ak) of the sample

space of G0, G′ has the finite Dirichlet marginals

(G′(A1), G′(A2), . . . , G′(Ak)) ∼ Dir(α0G0(A1), α0G0(A2), . . . , α0G0(Ak)).

9



Let f be a deterministic function that transforms the random variables φks and correspond-

ing βks into the sum of infinite terms

G′ = f(φ,β) =
∞∑
k=1

πkδk.

The function f can be interpreted as the function used to construct a stick-breaking process.

Let β∗ denote (β2, β3, . . .), with the first element of the infinite sequence removed. Now,

G′ = π1δφ1 + (1− π)f(β∗,φ∗) = π1δφk + (1− π1)G′′,

where G′
d
= G′′ (“

d
=” means equality in distribution).

Then, we have

G′
st
= π1δφk + (1− π1)G′.

If we have a partition (A1, A2, . . . , Ak) of Φ, the sample space of G0 in Ferguson’s definition,

then 
G′(A1)

...

G′(Ak)

 st
= π1


δφ1(A1)

...

δφ1(Ak)

+ (1− π1)


G′(A1)

...

G′(Ak)

 . (2.2.1)

Note that

δφ1(Ak) =

1 φ1 ∈ A1

0 otherwise.

By Lemma 4, if there is a distribution of (G′(A1), . . . , G′(Ak) that satisfies (2.2.1), then it

must be unique. If we can prove the Dir(α0G0(A1), α0G0(A2), . . . , α0G0(Ak)) satisfies the

Equation (2.2.1), then it must be the unique distribution of (G′(A1), . . . , G′(Ak)),

(G′(A1), . . . , G′(Ak) ∼ Dir(α0G0(A1), α0G0(A2), . . . , α0G0(Ak)).

This is a proof that G′ = DP (α0, G0).

Let Z ∼ Dir(α0G0(A1), α0G0(A2), . . . , α0G0(Ak)) and X = (δφ1(A1), . . . , δφ1(Ak)), then

X ∼ Multinomial(G0(A1), G0(A2), . . . , G0(Ak)). So P (δφ1(Ak) = 1) = G0(Ak). We want

10



to show the distribution of π1X+(1−π1)Z is still Dir(α0G0(A1), α0G0(A2), . . . , α0G0(Ak)).

In other words, (2.2.1) is satisfied by Dir(α0G0(A1), α0G0(A2), . . . , α0G0(Ak)).

Conditioning on X = ej

(π1X + (1− π1)Z|X = ej)
d
= π1Dir(ej) + (1− π1)Z.

Since, Z ∼ Dir(α0G0(A1), α0G0(A2), . . . , α0G0(Ak)), denoted as Dir(α),

where α = (α0G0(A1), α0G0(A2), . . . , α0G0(Ak)) by Lemma 2,

(π1X + (1− π1)Z|X = ej)
d
= Dir(ej +α).

P (X = ej) = G0(Aj) = αj/
∑
αj, where αj is the jth element of α and is equal to

α0G0(Aj). To obtain the distribution of (π1X + (1− π1)Z), we sum over all the values of

X,
K∑
j=1

αj∑
αj
Dir(ej +α) = Dir(α), by Lemma 3.

Thus, π1X + (1 − π1)Z ∼ Dir(α). The distribution Dir(α) satisfies (2.2.1) and it is the

distribution of (G′(A1), . . . , G′(Ak). Hence, G′
d
= G.

2.2.2 The Chinese Restaurant Process

Imagine a restaurant with countably infinitely many tables. Customers walk in and sit

down at some table. The tables are chosen according to the following random process:

1. The first customer always chooses an unoccupied table.

2. The nth customer chooses an unoccupied table with probability α
n−1+α

, and an oc-

cupied table with probability c
n−1+α

where c is the number of people sitting at the

table.

After infinitely many customers have entered the restaurant, the stochastic process under-

lying the CRP is a Dirichlet process.
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2.2.3 The Pólya Urn Scheme

Another way to visualize the Dirichlet process is called the modified Pólya urn scheme. We

start with an empty urn. Then we proceed as follows:

1. Generate a random number from U(0, 1). If it is less than α
α+n

, where n is the number

of balls in the urn, then add a ball with new color into the urn.

2. Otherwise, pick out a ball from the urn and add it back with a new ball of the same

color.

After infinitely many balls have been put into the urn, the distribution over infinitely many

colors is the same with the distribution over tables in the Chinese restaurant process.

2.3 Mixture of Dirichlet Process

The model

f(x) =
K∑
j=1

wjfj(x | φj) (2.3.1)

is a mixture with K components, where fj is the pdf of a distribution with parameters φj.

Augmenting the data with random variables Zi, Zi ∈ {1, . . . , K}, indicating which compo-

nent gives rise to Xi, we can write (2.3.1) in a hierarchical form as follows:

(Xi | Zi,Φ) ∼ f(xi | φzi)

Zi | w ∼ Discrete(w1, . . . , wK),

where Φ = (φ1, . . . ,φK) and w = (w1, . . . , wK).

The priors on Φ and w are

φj ∼ G0

w ∼ Dir(γ/K, . . . , γ/K).

We show that this is a mixture of Dirichlet process (MDP) when K →∞.
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P (z1, . . . , zn | w) =
K∏
j=1

w
nj
j ,

where nj is the number of observations assigned to component j.

P (Z) =

∫
P (z1, . . . , zn | w)× P (w)dw

=

∫ K∏
j=1

w
nj
j ×

Γ(γ)

[Γ( γ
K

)]K
w

γ
K
−1

1 · · ·w
γ
K
−1

K dw

=
Γ(γ)

Γ(n+ γ)

K∏
j+1

Γ(nj + γ
K

)

Γ( γ
K

)

P (w | Z) =
P (Z | w)× P (w)

P (Z)
= Dir(γ/K + ni1, . . . , γ/K + nik),

where nik is the number of observations previously (before the ith) assigned to component

k.

P (zi = k | z1, . . . , zi−1) =

∫
P (zi = k | w)× P (w | z1, . . . , zi−1)dw

=

∏K
j=1 Γ(γ/K + nij)

Γ(γ + i)
× Γ(γ + i− 1)∏K

j=1 Γ(γ/K + n(i−1)j)
×

∫
Γ(γ + i)∏K

j=1 Γ(γ/K + nij)

K∏
j=1

w
γ/K+nij−1
j dw

=
nik + γ/K

i− 1 + γ
.

By taking the limit K →∞, for components with nik > 0,

P (zi = k | z1, . . . , zi−1) =
nik

i− 1 + γ
,

which is identical to the probability of the ith customer sitting at an occupied table in the

Chinese restaurant with nik customers already sitting at this table.

The probability of any particular unoccupied cluster approaches zero as K →∞. However,
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the total probability assigned to all unoccupied clusters is still positive:

P (zi 6= zj ∀ j < i | z1, . . . , zi−1) = 1−
∑

k:nik>0

P (zi = k | z1, . . . , zi−1)

= 1−
∑

k:nik>0

nik
i− 1 + γ

=
γ

i− 1 + γ
.

Applying this result, the conditional probability of (θi | θ1, . . . ,θi−1) where θi = φzi

becomes

P (θi | θ1, . . . ,θi−1) =


1

i−1+γ

∑i−1
j=1 δ(θj = θi), if ∃ θj = θi for j = 1, . . . , i− 1

γ
i−1+γ

G0(θi), otherwise,

(2.3.2)

where δ(θj = θi) = 1 when θj = θi and zero otherwise.

The parameters θ1, . . . ,θi−1 may not be unique since θi = φzi . Since the observations are

assumed to be exchangeable, we can regard any observation i as the last one and write the

conditional probability of θi given other θj for j 6= i as in (2.3.2).
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Chapter 3

Modeling Dependence Structure via

Elliptical Copulas

3.1 Statistical Modeling Using an Elliptical Copula

Figure 3.1: Examples of Elliptical Copulas: Logistic copula (left) and Student’s t
copula (right)

From Section 1.3, we know the PDF of an elliptical distribution is

fE(x; Ω, g) = cp|Ω|−1/2g((x)′Ω−1(x)).

By using the inversion method of Section 1.2, the density of an elliptical copula can be
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written as

cE(u1, . . . , up) =
fE(Q−1(u1) . . . Q−1(up))

q(Q−1(u1)) . . . q(Q−1(up))
, (3.1.1)

where

• fE is the joint pdf of the elliptical distribution;

• Q is the marginal cdf of the elliptical distribution;

• q is the marginal pdf of the elliptical distribution.

Note that elliptical distributions have identical margins. The copula in Figure 1.3 of Chap-

ter 1 is a Gaussian copula, which is the most common elliptical copula. Figure 3.1 shows

two samples from other elliptical copulas.

3.2 Modeling Q and q

The PDF cE of Equation (3.1) contains fE, Q and q. From Section 1.4, the fE can be

expressed based on the stochastic form (1.4.1)

f(r;A) =
Γ(p/2)

2πp/2
|A|−1r1−ph(r),

where r =
√

x′Ω−1x and A is the Cholesky factor of the correlation matrix.

We propose the following infinite gamma mixture to express h(r),

h(r) =
∞∑
j=1

wjfg(r | αj, βj), (3.2.1)

where fg(r | αj, βj) is the pdf of a gamma distribution with shape and rate parameters

αj, βj respectively and wj are mixing weights satisfying
∑∞

j=1wj = 1 and 0 ≤ wj ≤ 1.

According to Gómez et al. (2003), the relationship between the generator function of an

elliptical distribution and the PDF h(r) is

g(t) =
Γ(p/2)

2πp/2
t(1−p)/2h(t1/2). (3.2.2)
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According to Genest et al. (2007), the marginal PDF and CDF can be derived from the

generator g as follows.

Q(z) = 1/2 +
π(p−1)/2

Γ((p− 1)/2)

∫ z

0

∫ ∞
u2

(y − u2)(p−1)/2−1g(y)dydu,

q(z) =
π(p−1)/2

Γ(p−1
2

)

∫ ∞
z2

(y − z2)(p−1)/2−1g(y)dy.

3.3 The Case p = 3

When p = 3, the function Q is much simpler, since (y− u2)(p−1)/2−1 is equal to 1. Then we

have

Q(z) = 1/2 +

∫ z

0

∫ ∞
u2

g(y)dydu,

q(z) = π

∫ ∞
z2

g(y)dy.

∫∞
u2
g(y)dy can be expanded as∫ ∞

u2
g(y)dy =

Γ(3/2)

2π3/2

∫ ∞
u2

y−1h(y1/2)dy

=
Γ(3/2)

2π3/2

∫ ∞
u2

y−1
∑

wjfg(y
1/2 | αj, βj)dy

=
Γ(3/2)

2π3/2

∑
wj

∫ ∞
u2

y−1fg(y
1/2 | αj, βj)dy

=
Γ(3/2)

2π3/2

∑
wj

∫ ∞
u2

y−1
β
αj
j

Γ(αj)
y(αj−1)/2e−βjy

1/2

dy

=
Γ(3/2)

2π3/2

∑
wj

β
αj
j

Γ(αj)

∫ ∞
u2

y(αj−3)/2e−βjy
1/2

dy

(3.3.1)

In (3.3), y(αj−3)/2e−βjy
1/2

looks like the kernel of a Gamma distribution with respect to y1/2.

Making the substitution t = y1/2,
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∫ ∞
u2

g(y)dy =
Γ(3/2)

2π3/2

∑
wj

β
αj
j

Γ(αj)

∫ ∞
u2

y(αj−3)/2e−βjy
1/2

dy

=
Γ(3/2)

2π3/2

∑
wj

β
αj
j

Γ(αj)

∫ ∞
|u|

t(αj−3)e−βjt2tdt

=
Γ(3/2)

π3/2

∑
wj

β
αj
j

Γ(αj)

∫ ∞
|u|

t(αj−2)e−βjtdt

=
Γ(3/2)

π3/2

∑
wj

β
αj
j

Γ(αj)

αj − 1)

β
αj−1
j∫ ∞

|u|

β
αj−1
j

Γ(αj − 1)
t(αj−2e−βjtdt

=
Γ(3/2)

π3/2

∑
wj

βj
αj − 1

∫ ∞
|u|

β
αj−1
j

Γ(αj − 1)
t(αj−1−1)e−βjtdt

=
Γ(3/2)

π3/2

∑
wj

βj
αj − 1

[1− F (|u|)]

where F is the CDF of Gamma(αj − 1, βj).

Therefore, when p = 3, Qand q can be reduced to

Q(z) = 1/2 + π−1/2Γ(3/2)

∫ z

0

∑
wj

βj
αj − 1

[1− F (|u|)]du

q(z) = π−1/2Γ(3/2)
∑

wj
βj

αj − 1
[1− F (|u|)]

The CDF Q can be further simplified by using the incomplete gamma function.

3.4 Incomplete Gamma Function

The Gamma function is defined as

Γ(s) =

∫ ∞
0

ts−1e−tdt.
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The upper incomplete Gamma function is defined as

Γ(s, x) =

∫ ∞
x

ts−1e−tdt.

The lower incomplete Gamma function is defined as

γ(s, x) =

∫ x

0

ts−1e−tdt.

The CDF of a Gamma distribution with shape α and rate β is 1
Γ(α)

γ(α, βx). when z > 0,∫ z

0

F (|u|)du =

∫ z

0

F (u)du

=

∫ z

0

1

Γ(αj)
γ(αj, βju)du

=
1

Γ(αj)

∫ z

0

[Γ(αj)− Γ(αj, βju)]du

= z − 1

Γ(αj)

∫ z

0

[Γ(αj, βju)du

= z − 1

Γ(αj)

[
Γ(1 + αj) + βjzΓ(αj, βjz)− Γ(1 + αj, βjz)

βj

]
when z < 0, according to Mathematica,∫ z

0

F (|u|)du =

∫ z

0

F (−u)du

=

∫ z

0

1

Γ(αj)
γ(αj,−βju)du

=
1

Γ(αj)

∫ z

0

[Γ(αj)− Γ(αj,−βju)]du

= z − 1

Γ(αj)

∫ z

0

[Γ(αj,−βju)du

= z − 1

Γ(αj)

[
−Γ(1 + αj) + βjzΓ(αj,−βjz) + Γ(1 + αj,−βjz)

βj

]
They can be combined as∫ z

0

F (|u|)du = z − 1

Γ(αj)

[
z/|z| ∗ Γ(1 + αj) + βjzΓ(αj, βj|z|)− z/|z| ∗ Γ(1 + αj, βj|z|)

βj

]
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Q can be written as

Q(z) = 1/2 + π−1/2Γ(3/2)

∫ z

0

∑
wj

βj
αj − 1

[
1− F (|u|)

]
du

= 1/2 + π−1/2Γ(3/2)

∫ z

0

[∑
wj

βj
αj − 1

−
∑

wj
βj

αj − 1
F (|u|)

]
du

= 1/2 + π−1/2Γ(3/2)

[ ∫ z

0

∑
wj

βj
αj − 1

du−
∫ z

0

∑
wj

βj
αj − 1

F (|u|)du
]

= 1/2 + π−1/2Γ(3/2)

[∑
wj

βjz

αj − 1
−
∑[

wj
βj

αj − 1

∫ z

0

F (|u|)du
]]

= 1/2+

π−1/2Γ(3/2)
∑ wjβj

(αj − 1)Γ(αj − 1)

[
z/|z| ∗ Γ(αj) + βjzΓ(αj − 1, βj|z|)− z/|z| ∗ Γ(αj, βj|z|)

βj

]]
= 1/2+

π−1/2Γ(3/2)
∑ wj

(αj − 1)Γ(αj − 1)

[
z/|z| ∗ Γ(αj) + βjzΓ(αj − 1, βj|z|)− z/|z| ∗ Γ(αj, βj|z|)

]]

3.5 Elliptical Copula When p = 3

An elliptical copula can be modeled as

cE(u1, . . . , up) =
fE(Q−1(u1) . . . Q−1(up))

q(Q−1(u1)) . . . q(Q−1(up))
, (3.5.1)

where

fE(x; Ω, g) = cp|Ω|−1/2g((x)′Ω−1(x)),

Q = 1/2 + π−1/2Γ(3/2)
∑ wj

(αj − 1)Γ(αj − 1)[
z/|z| ∗ Γ(αj) + βjzΓ(αj − 1, βj|z|)− z/|z| ∗ Γ(αj, βj|z|)

]]
,

q(z) = π−1/2Γ(3/2)
∑

wj
βj

αj − 1
[1− F (|u|)].
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Chapter 4

Methodology

Assume we are given a p-dimensional data set of size n as follows


x11, x12, . . . , x1p

x21, x22, . . . , x2p

......

xn1, xn2, . . . , xnp

 (4.0.1)

which is drawn from an unknown meta-elliptical distribution.

To estimate the underlying meta-elliptical distribution, we need to estimate its marginal

distributions and its copula. Marginal distributions are easy to estimate since they are

univariate. They can be estimated with a normal mixture, which has done extensively

in the literature (Behboodian (1970)). Therefore, we focus on the estimation of elliptical

copulas. Our goal is to estimate an elliptical copula without assuming a specific type, such

as Gaussian, Student’s t, logistic, etc.

To obtain a sample from an elliptical copula, we apply the probability integral transform

to the sample (4.0.1), resulting in 
u11, u12, . . . , u1p

u21, u22, . . . , u2p

......

un1, un2, . . . , unp

 . (4.0.2)

According to the elliptical copula model in Equation (3.1), the likelihood of (4.0.2) can be

21



written as

L(α,β,w, A; U) =
n∏
i=1

c(ui1, ui2, . . . , uip)

= |A|−n
n∏
i=1

(r2
i )

(1−p)/2h((r2
i )

1/2)∏p
k=1 q(Q

−1(uip))

= |A|−n
n∏
i=1

ri
1−ph(ri)∏p

k=1 q(Q
−1(uip))

= |A|−n
n∏
i=1

ri
1−p∑J

j=1(wjf(ri|αj, βj))∏p
k=1 q(Q

−1(uip))
,

(4.0.3)

where

r2
i = x′Ω−1x,

and

x = (Q−1(ui1), Q−1(ui2), . . . , Q−1(uip)).

We augment the data with latent indicators zij, such that

zij =

1 if ri is from component j

0 otherwise.

The augmented likelihood

L(α,β,w, A; U, Z) = |A|−n
n∏
i=1

ri
(1−p)∏J

j=1(wjf(ri|αj, βj)zij)∏p
k=1 q(Q

−1(uip))
. (4.0.4)

4.1 The Case p = 3

Now, we focus on the three-dimensional case, since the evaluation of Q and q is easier when

p = 3, according to Section 3.3.

4.1.1 Prior distributions

The following priors refer to the mixture model (3.2.1).
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1. α1, α2, · · ·
iid∼ Pareto(1, c), where c is fixed, with pdf

c

αc+1
j

, αj > 1.

2. β1, β2, · · ·
iid∼ Gamma(a, b), where a (shape) and b (rate) are fixed.

3. To model the infinite mixture, we use the stick-breaking representation of the Dirichlet

process (Sethuraman (1994)), which means that the wj satisfy

w1 = v1, wj = vj

j−1∏
l=1

(1− vl), j = 2, 3, . . . , (4.1.1)

where v1, v2 . . .
iid∼ Beta(1, γ). In practice, we truncate the number of components and

set it to k, so vk is set to 1, such that
∑k

j=1wj = 1. Another possibility would be to

use the slice sampler (Kalli et al. (2011)).

4. γ ∼ Gamma(η1, η2), where η1 and η2 are fixed hyperparameters.

5. When p = 2, only one correlation parameter has to be estimated, and we place the

U(−1, 1) prior on it. But we are dealing with case p = 3. When p > 2 the positive

definiteness of Ω makes it difficult to work directly with its individual entries. We

discuss the prior of Ω in Subsection 4.1.2.

4.1.2 The Prior for Ω

To maintain the positive definiteness of Ω, we parameterize the Cholesky factor of Ω using

hyperspherical coordinates (Rapisarda et al. (2007)), described also in Pourahmadi and

Wang (2015). The Cholesky factor is expressed as:

A =


1 c12 c13

0 s12 c23s13

0 0 s23s13

 ,
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where cij = cos(θij), sij = sin(θij), and the θij’s are some angles. The matrix A is unique

if its diagonal entries are positive, or equivalently if the θij’s are in the interval (0, π).

Therefore, we assume a priori that θij
iid∼ U(0, π).

4.1.3 Posterior Distribution

Let α = (α1, . . . , αk)
′, β = (β1, . . . , βk)

′, v = (v1, . . . , vk)
′, θ = (θ12, θ13, θ23)′, then the joint

posterior distribution is

P (α,β,V , γ, ρ|X, Z) ∝ |A|−n
n∏
i=1

ri
(−2)

∏J
j=1(wjf(ri|αj, βj)zij)

q(Q−1(ui1))q(Q−1(ui2))q(Q−1(ui3))

×
k∏
j=1

c

αc+1
j

×
k∏
j=1

ba

Γ(a)
βa−1
j e−bβj

×
k−1∏
j=1

γ(1− vj)γ−1

× γη1−1e−η2γ

×
p∏
i=2

i−1∏
j=1

1(0≤θij≤π)

×
∣∣∣∣∂ρ∂θ

∣∣∣∣

. (4.1.2)

where ρ = (ρ12, ρ13, ρ23)′ and

∣∣∣∣∂ρ∂θ ∣∣∣∣ is the Jacobian of the transformation from ρ to θ

(Pourahmadi and Wang (2015)). The Jacobian is given by

∣∣∣∣∂ρ∂θ
∣∣∣∣ =

3∏
i=2

i−1∏
j=1

∂ρij
∂θij

= −
2∏
j=1

( 3∏
i=j+1

sij

)3−j

. (4.1.3)

4.1.4 Conditional Posterior Distributions

In the likelihood (4.0.3), Q and q are functions of the parameters α, β, as well as the

weights w, according to Equation (3.2.1). Therefore, the formulas for conditional posterior
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distributions all depend on these parameters and are not standard distribution that are

easy to sample from.

The conditional posterior distributions are as follows.

P (αj|βj, ρ, r, zj) ∝ |A|−n
n∏
i=1

ri
(1−p)∏J

j=1(wjf(ri|αj, βj)zij)∏p
k=1 q(Q

−1(uip))
× 1

αc+1
j

. (4.1.4)

P (βj|αj, ρ, r, zj) ∝ |A|−n
n∏
i=1

ri
(1−p)∏J

j=1(wjf(ri|αj, βj)zij)∏p
k=1 q(Q

−1(uip))
× ba

Γ(a)
βa−1
j e−bβj . (4.1.5)

P (vj|Z) ∝ |A|−n
n∏
i=1

ri
(1−p)∏J

j=1(wjf(ri|αj, βj)zij)∏p
k=1 q(Q

−1(uip))
× (1− vj)γ−1. (4.1.6)

P (γ|v) ∼ Gamma(k + η1 − 1, η2 −
k−1∑
j=1

log(1− vj)). (4.1.7)

P (θ|α,β, r, Z, A) ∝ |A|−n
n∏
i=1

ri
(1−p)∏J

j=1(wjf(ri|αj, βj)zij)∏p
k=1 q(Q

−1(uip))

∣∣∣∣∂ρ∂θ
∣∣∣∣. (4.1.8)

4.1.5 Sampling Scheme

1. Calculate xi = (Q−1(ui1), Q−1(ui2), Q−1(ui3)) and r2
i = x′iΩ

−1xi using the current

estimates.

2. The conditional distribution of αj (Equation (4.1.4)) is not a standard distribution,

so we use a Metropolis step to sample from it. The proposal distribution is nor-

mal with mean α
(c)
j and variance δ1, where δ1 is a fixed tuning parameter and α

(c)
j

is the current value of αj. The proposed value α
(p)
j is accepted with probability

min

{
1,

p(α
(p)
j |β

(c)
j ,Ω(c),r(c),z

(c)
j )

p(α
(c)
j |β

(c)
j ,Ω(c),r(c),z

(c)
j )

}
, provided α

(p)
j > 1. Update x and r for all i.

3. Use a Metropolis step to sample β from (4.1.5). The proposal distribution is nor-
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mal with mean β
(c)
j and variance δ1, where δ1 is a fixed tuning parameter and β

(c)
j

is the current value of βj. The proposed value β
(p)
j is accepted with probability

min

{
1,

p(β
(p)
j |α

(c)
j ,Ω(c),r(c),z

(c)
j )

p(β
(c)
j |α

(c)
j ,Ω(c),r(c),z

(c)
j )

}
, provided β

(p)
j > 0. Update x and r for all i.

4. Use a Metropolis step to sample vj from (4.1.6), j = 1, . . . , k − 1, and calculate wj’s

from the vj’s, according to Equation (4.1.1). Update x and r.

5. Sample γ from Gamma(k + η1 − 1, η2 −
∑k−1

j=1 log(1− vj)). Update x and r for all i.

6. Since the pdf (4.1.8) is not standard, we sample the θij via independent Metropolis

steps. The proposal distribution for θij is U(θ
(c)
ij −δ3, θ

(c)
ij +δ3), where θ

(c)
ij is the current

value of θij. The proposed value θ
(p)
ij is accepted with probability min

{
1,

p(θ
(p)
ij |α

(c),β(c),r(c),Z,A)

p(θ
(c)
ij |α(c),β(c),r(c),Z,A)

}
,

where p(θij|α(c),β(c), r(c), Z, A) is given in Equation (4.1.8). Update x and r for all

i.

4.1.6 Latent Variables

The conditional distribution of the latent variables

P (zij = 1|α,β,w,U ) =
P (ri|zij = 1)P (zij = 1)

P (ri)

=
f(ri|αj, βj)wj∑J

j=1(f(ri|αj, βj)wj)
,
, (4.1.9)

for i = 1, . . . , n and j = 1, . . . , J .

Recompute latent variables at each sweep of MCMC, for i = 1, . . . , n and j = 1, . . . , K.
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Chapter 5

Results Based on Simulated Data

5.1 Simulating a Sample from Copulas

As is shown in the motivating example, a sample from a copula can be obtained by two

steps. Assume we need to get a sample from the underlying copula C of a p dimensional

multivariate distribution H with margins denoted by Fi, i = 1, . . . , p.

Algorithm 1:

• Draw a sample X = (X1, . . . , Xp) from H;

• Apply PIT (Probability Integral Transformation)

Ui = Fi(Xi), i = 1, . . . , p

.

Then U = (U1, . . . , Up) is a sample from the copula C.

Figure 5.1: A Sample from a Gaussian Copula (left) and a Student’s t Copula (right)
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Now, assume we have a multivariate Gaussian with µ = 0 and the correlation matrix

Σ =


1 0.5 0.6

0.5 1 0.7

0.6 0.7 1

 . (5.1.1)

We draw a sample from its copula, which is a Gaussian copula. According to Algorithm

1, we draw a sample Z = (Z1, . . . , Zp) from N(µ,Σ) first and then transform it into U by

applying the formula Ui = Φ(Zi), i = 1, . . . , p, where Φ is the standard normal CDF. Figure

5.1 is the scatter plot of simulated data from the Gaussian copula and from the copula of

Student’s t with degree of freedom equal to 3.

5.2 Results

Figure 5.2: Estimated and theoretical h(r) corresponding to a trivariate Gaussian
copula. Y1 is the estimated one and Y2 is the theoretical one..
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Figure 5.3: Estimated α’s (First Six) corresponding to a trivariate Gaussian copula.

Figure 5.4: Estimated β’s (First Six) corresponding to a trivariate Gaussian copula.
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Figure 5.5: Estimated and theoretical h(r) corresponding to a trivariate Student’s
T copula. Y1 is the estimated one and Y2 is the theoretical one.

Figure 5.6: Estimated α’s (First Six) corresponding to a trivariate Student’s T copula.
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Figure 5.7: Estimated β’s (First Six) corresponding to a trivariate Student’s T copula.
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Chapter 6

Conclusion and Future work

6.1 Conclusion

By using the Inversion Method, and MCMC approach, we developed a copula approach,

which could estimate all 3-dimensional elliptical copulas without assuming it is a Gaussian

copula, t copula, etc.

6.2 Future Aims

1. As is seen in the Figure (5.2) and (5.5) of Chapter 5, the estimated h’s are not close

enough to the theoretical ones. There might be hidden problems with the sampling

scheme. One of future goals is to improve accuracy.

2. The whole MCMC process takes more than two weeks to finish since the evaluation

of quantile function Q−1 involves numerical root finding and it is time-consuming.

Another future goal is to increase efficiency.

3. The current posterior distributions and sampling schemes are only for 3-dimensional

case. After solving the problem in the evaluation the quantile function, our final goal

is to generalize this method to higher dimensional case to make it more useful in

practice.
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6.3 Potential Solution

Since the main problem is caused by the evaluation of Q−1, perhaps it should be modeled

differently instead of deriving Q from the generator and finding inverse function.

6.3.1 Linear Combination of Basis Functions

Klein and Smith (2018) introduced a model called copula smoother, allowing nonparametric

regression smoothing through the use of a copula.

Let Y = (Y1, . . . , Yn)′ be n observations on a continuous response, with covariate vector x,

satisfying two conditions:

1. Yi|xi has the same distribution function FY and density function pY for i = 1, . . . , n ;

2. The dependence structure of the distribution of Y is modeled using a copula which

can be expressed with a mixture of Gaussian copulas.

According to Sklar’s Theorem, the joint density of Y |x can be written as

p(Y |x) = c†(FY (y1), . . . , FY (yn)|x)
n∏
i=1

pY (yi), (6.3.1)

where c† is the unknown copula of the distribution of Y .

Klein and Smith (2018) used the Inversion Method to model the copula c†,

Cπ(u|x) = FZ(F−1
z1

(u1|x), . . . , F−1
zn (un|x)|x), (6.3.2)

which is itself a function of x. Z is the vector of unobserved latent variables.

The model for the copula of Y is derived from a Bayesian regularized regression model.

For simplicity, Klein and Smith (2018) assumed a single covariate .

Consider the regression model

Z̃i = m̃(xi) + εi, for i = 1, . . . , n (6.3.3)
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for a pseudo-response Z̃i, where m̃ is an unknown univariate function, xi is a covariate

value, and the εi
iid∼ N(0, σ2).

In Klein and Smith (2018), the function m̃ is modeled as a linear combination of p basis

functions b1, . . . , bp with coefficients β1, . . . , βp, so that m̃(x) =
∑p

j=1 βjbj(x). (6.3.3) then

can be written as

Z̃ = Bβ + ε, (6.3.4)

expanded as 
Z̃1

Z̃2

...

Z̃n

 =


b1(x1) b2(x1) . . . bp(x1)

b1(x2) b2(x2) . . . bp(x2)

. . . . . . . . . . . .

b1(xn) b2(xn) . . . bp(xn)




β1

β2

...

βn

+


ε1

ε2

...

εn

 . (6.3.5)

By using Equation (6.3.4), the evaluation of the quantile functions zi = F−1
Zi

(ui|x) is

avoided, which can significantly improve the speed of computing. Besides, this remodel-

ing of the quantile function can also make it easier to generalize this approach to higher

dimensional cases.

6.3.2 Mixture of Experts

Beside of modeling the quantile function zi = F−1
zi

(ui) with a linear combination of basis

functions, we can also use a mixture of experts,

p(zi|xi,pi, β,σ) =
K∑
j=1

pij
1

σj
φ

(
zi − β′jxi

σj

)
, (6.3.6)

where

• φ is the standard normal pdf,

• xi = (1, xi),

• pi = (pi1, . . . , piK),
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• β = (β1, . . . ,βK),

• σ2 = (σ1, . . . , σK),

• pij is the mixing proportion

pij =
exp(δ′jxi)∑K
j=1 exp(δ′jxi)

,

6.4 Time Schedule of Future Research

Table 6.1: Time Schedule

Tasks to complete project Approximate time period

Deriving the combination of basis functions January - March 2020

Coding the combination of basis functions April 2020

Deriving the mixture of experts May - August 2020

Coding the mixture of experts September 2020

Generalize to higher dimensional copulas October 2020 - January 2021

Coding the generalized method February - May 2021

Thesis writing: Literature review June 2021

Thesis writing: Methodology July 2021

Thesis writing: Experiment August

Thesis writing: Results (Generating plot) September 2021

Thesis writing: First draft October 2021

Thesis writing: Revising October 2021

Defense November 2021

Submission and publication December 2021
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Appendix A

Julia Code for Estimating Elliptical

Copulas

us ing Cubature

us ing Roots

us ing D i s t r i b u t i o n s

us ing IncGammaBeta

us ing Optim

us ing LinearAlgebra

us ing DynamicHMC

using ContinuousTransformations

us ing Parameters

us ing MCMCDiagnostics

us ing DiffWrappers

us ing Spec ia lFunct i ons

us ing Random

us ing MATLAB

###########################################

n=500#Sample s i z e

dimention=3
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#s e t up c o r r e l a t i o n matrix

rho12 =.5

rho13 =.6

rho23 =.7

omega=[1 rho12 rho13 ; rho12 1 rho23 ; rho13 rho23 1 ]

Random . seed ! ( 1 2 3 4 )

Z=transpose ( rand (MvNormal ( [ 0 , 0 , 0 ] , omega ) , 500))

#Get samples from the Gaussian copula

U=cdf . ( Normal ( 0 , 1 ) , Z)

#For es t imate the copula o f Student ’ s T d i s t r i b u t i o n ,

#r e p l a c e the data with samples from copula f o r Student ’ s T

#U=readdlm (” U meta T3 . txt ”)

U=round . (U; d i g i t s =2)

#To avoid 1 and 0 in p r o b a b i l i t y

U[ (U. >0 .99 ) ] .=0 .99

U[U. <0 .01 ] .=0 .01

#s e t up gamma mixture

k=30 # I n d i c a t i n g i n f i n i t e number o f components

# eta1=1

# eta2=1

# hgamma=rand (Gamma( eta1 ,1/ eta2 ) )

# betaDi s t s=Beta (1 ,hgamma)

# v=Matrix{Float64 } (1 , k )
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# f o r j in 1 : ( k−1)

# v [ : , j ]=rand ( betaDists , 1 )

# end

# v [ : , k]=1

#I n i t i a l i z e d mixing propor t ion

pEst=Matrix{Float64 }( undef , k , 1 )

pEst [ : , 1 ] = repeat (1/k :1/ k , inne r=k )

#i n i t i a l i z e d a lphas and lamdas f o r gamma k e r n e l s

alphaEst=Matrix{Float64 }( undef , k , 1 )

alphaEst [ : , 1 ] = repeat ( 1 . 1 : 1 . 1 , inne r=k )

lamdaEst=Matrix{Float64 }( undef , k , 1 )

lamdaEst [ : , 1 ] = repeat ( 1 : 1 , inner=k )

#Hyperparameters f o r the p r i o r o f lamda , which i s gamma d i s t

a lphaNul l=1

lamdaNull=1

# Marginal CDF of e l l i p t i c a l d i s t r i b u t i o n

z=2

func t i on Q( z )

i f z !=0

s i g n z=s ign ( z )

abs z=abs ( z )

1/2+ pi ˆ(−1/2)∗gamma( 3 / 2 ) .∗
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sum( pEst . / ( ( alphaEst .−1).∗

gamma . ( alphaEst .−1)) .∗

( s i g n z .∗gamma . ( alphaEst)+

z .∗ lamdaEst .∗ inc gamma upper . ( alphaEst .−1 , lamdaEst .∗ abs z )−

s i g n z .∗ inc gamma upper . ( alphaEst , lamdaEst .∗ abs z )

)

)

e l s e

1/2

end

end

#Quant i le f unc t i on

func t i on Qinv (p)

i f p==0.5

0

e l s e

f ( x)=abs (Q( x)−p)

op=opt imize ( f , −10 ,10)

# opt im er ro r=opt im er ro r +(op . converged==f a l s e )

op . minimizer

end

end

#Quant i le f unc t i on o f e l l i p t i c a l d i s t r i b u t i o n−−−−”Trans la tor ”

func t i on Qinv (p)

q u a n t i l e . ( Normal ( 0 , 1 ) , p )

end
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################################################3

n I t e r a t i o n= 2000

pRecord=Matrix{Float64 }( undef , k , n I t e r a t i o n )

alphaRecord=Matrix{Float64 }( undef , k , n I t e r a t i o n )

lamdaRecord=Matrix{Float64 }( undef , k , n I t e r a t i o n )

eRecord=Matrix{Float64 }( undef , k , n I t e r a t i o n )

#m i s lower t r i a n g u l a r matrix with 0 s in diangonal ,

#t h i s i s a matrix used in c a l c u l a t i o n o f parameter

m=LowerTriangular ( ones (k−1,k−1))+Diagonal ( r epeat (−1:−1 , inne r=k−1))

d e n s i t y I n d i v i d u a l=Matrix{Float64 }( undef , k , n )

zn=Matrix{ Int64 }( undef , k ,n )

v=Matrix{Float64 }( undef , 1 , k )

alphaEstPropose=Matrix{Float64 }( undef , k , 1 )

lamdaEstPropose=Matrix{Float64 }( undef , k , 1 )

#I n i t i a l i z e d ” t r a n s l a t i o n ” in to e l l i p t i c a l data

X=Qinv . (U)

#By so far , c o r r e l a t i o n matrix i s not being i n f e r e n c e d

omegaEst=omega

omegaEstInv=inv ( omegaEst )

RSqr=diag (X∗omegaEstInv∗ t ranspose (X) )

REst=s q r t . ( RSqr )

#r e p l a c e 0 in REst with a random value from nonzero e lements

#otherwi s e the dens i tyMixture w i l l be zero and in denominator

REst [ REst .==0].=0.001

#i=1
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@time begin

f o r i in 1 : n I t e r a t i o n

#f ( x | mu i , p h i i ) k x n matrix

f o r j in 1 : k

d e n s i t y I n d i v i d u a l [ j , : ] = pdf . (Gamma( alphaEst [ j ] , 1 / lamdaEst [ j ] ) , REst )

end

#whole mixture pdf f ( x)=p1∗ f ( x |mu1, phi1 ) + p2∗ f ( x |mu2, phi2 )

dens i tyMixture=transpose ( pEst )∗ d e n s i t y I n d i v i d u a l

#p r o b a b i l i t y vec to r o f Zi vec to r

prob=d e n s i t y I n d i v i d u a l .∗ pEst . / dens i tyMixture

f o r j in 1 : n

zn [ : , j ]=rand ( Multinomial (1 , prob [ : , j ] ) , 1)

end

########################

r=sum( zn , dims=2)

# hgamma=rand (Gamma( k+eta1 −1 ,1/( eta2−sum( log .(1−v [ 1 : k−1 ] ) ) ) ) , 1 )

#+hgamma

betaDi s t s=Beta . ( 1 .+ r [ 1 : k−1] , ( t ranspose ( ( t ranspose ( r [ 1 : k−1]))∗m .+1)) )

# v=Matrix{Float64 } (1 , k )

f o r j in 1 : ( k−1)

v [ : , j ]=rand ( betaDi s t s [ j ] , 1 )

end

v [ : , k ] .=1

summ=0 #do not d e f i n e v a r i a b l e with a name ”sum”

f o r j in 1 : k

pEst [ j ]=(1−summ)∗v [ j ]

summ=summ+pEst [ j ]
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end

pRecord [ : , i ]=pEst

X=Qinv . (U)

RSqr=diag (X∗omegaEstInv∗ t ranspose (X) )

REst=s q r t . ( RSqr )

REst [ REst .==0].=0.001

#draw alphas and lamdas from NUTS

mat”””

logpd f = @( Parameters ) l o g p o s t e r i o r ( Parameters , double ( $zn ) ,

$REst , 1 , 1 , 3 ,500 ) ;

samples= NUTS wrapper ( l ogpd f , repelem ( 1 . 1 , 6 0 ) . ’ , 3 , 1 ) ;

$alphaEst=1+exp ( samples ( 1 : 3 0 ) ) ;

$alphaEst ( $alphaEst ==1)=1.001;

$lamdaEst=exp ( samples ( 3 1 : 6 0 ) ) ;

$lamdaEst ( $lamdaEst ==0)=0.001;

”””

alphaRecord [ : , i ]= alphaEst ;

lamdaRecord [ : , i ]= lamdaEst ;

X=Qinv . (U)

RSqr=diag (X∗omegaEstInv∗ t ranspose (X) )

REst=s q r t . ( RSqr )

REst [ REst .==0].=0.001

end

####################################

end
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