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Abstract 

A microphone array integrated with a neural network framework is proposed to enhance 

and optimize speech signals derived from environments prone to noise and room reflections that 

cause reverberation. Microphone arrays provide a way to capture spatial acoustic information for 

extracting voice input from ambient noise. In this study, we utilize and analyze established signal 

processing methods combined with different neural network architectures to achieve denoised and 

dereverberated speech signal results that are comparable with their clean, anechoic versions. The 

first stage of the proposed system involves using datasets containing anechoic speech recordings 

of speech utterances and convolving them with a collection of different room impulse responses 

to simulate reverberation. Noisy speech signals are also added to the clean speech to simulate noisy 

environments. These datasets are used for training and testing speech enhancement methods of our 

combined system.  The goal of this work is to develop an approach to process and remove 

reverberation present in voice signals to achieve adaptability and optimal signal-to-noise ratio for 

any stationary and non-stationary interference including white noise, impulse noise, and 

reverberations. CNN and FCNN neural network architectures are structured to optimize learning 

or improve other performance metrics based on attributes such as layer connections, types of 

layers, number of neurons in each layer, activation functions, and cost functions. While preserving 

signal integrity, this work aims to enhance the quality and intelligibility of the extracted speech. 

Our experimental results show that, while more computationally intensive, the CNN outperformed 

the FCNN in training and audible quality.  
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Chapter 1: Introduction 

As deep space crewed endeavors become more venturous, the complexity of spacecraft 

systems will need to evolve to minimize the dependency on Earth-based mission control centers 

with their convenient, low-latency voice-based technical support while transitioning into fully 

stand-alone, self-sufficient systems. Communications from within a spacecraft or spacesuit, both 

for intra- and extravehicular activities, are essential for carrying out missions as well as 

maintaining the overall wellbeing of astronauts. Speech signals in space environments may present 

some unique processing problems due to environmental noise. For instance, environmental 

parameters, such as reflective surface types and geometries, can degrade speech signals. While 

methods for denoising speech signals such as linear filtering, adaptive filtering, frequency-domain 

noise cancellation, and smoothing algorithms have been developed, dealing with reverberations 

has proven more difficult. One method of reducing reverberation from voice signals is to use 

beamforming with a microphone array, which can capture signals with different angles of 

reflection in a room, to clean out a signal from ambient noise or any other interference. However, 

this may not lend itself to dynamic changes in the environment such as significant variations of 

speaker position, amount and type of reflective surfaces, and geometry. Recent approaches for 

reducing reverberation effects rely on advanced signal processing techniques and machine learning 

– especially, deep-learning techniques to accommodate a large variety of dynamic changes in the 

environment – including back- and front-end techniques such as feature enhancement using 

mapping-based and masking-based methods. Therefore, is it possible to develop an adaptable 

system to deliver intelligible speech in reverberant environments? 
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1.1 PROBLEM STATEMENT  

The goal of this work is to develop an approach to process and remove reverberations that 

are present in voice signals from a microphone array that can achieve adaptability and optimal 

signal-to-noise ratio (SNR) for any stationary and non-stationary interference including white 

noise, impulse noise, and reverberations. A microphone array consists of multiple 

omnidirectional/directional microphones that capture and transmit speech signals from different 

directions. These signals can then be processed through signal processing techniques such as 

filtering and masking or transformed as when using STFT to get magnitude and phase 

representations of important speech features. Subsequently, these features can be vectorized to 

train neural networks to produce clean signals from noisy or reverberant signals. There is currently 

a wide variety of effective noise removal methods in use and so the focus of this research will 

solely be on the removal of reverb which presents a range of challenges. Neural network 

architectures can be structured to optimize learning or improve other performance metrics based 

on attributes such as layer connections, types of layers, number of neurons in each layer, activation 

functions, and cost functions. While it is important to keep the integrity of the signal intact, 

enhancing the quality and intelligibility of the extracted speech are the main focus of this work. 

The main types of interference that can degrade a speech signal are reverberation and background 

noise. Both types of interference can cause inaccuracies in speech processing due to echoes and 

variance in coloration introduced into the source signals [2]. 

1.2 PROCESSING APPROACH  

The presented approach uses neural networks to process microphone array output to 

improve system scalability and adaptability for source distance and variations of environmental 

noise levels. Additionally, signal processing techniques are implemented to capture dominant 
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feature representations for training and validating the selected neural networks. MATLAB [7] is 

used for signal processing and deep learning experiments with the Audio System Toolbox, the 

Signal Processing Toolbox, and the Deep Learning Toolbox. Networks were trained using a dataset 

containing thousands of recordings of short sentences spoken with different accents by different 

age groups of male and female voices. The dataset is derived from the Mozilla Common Voice 

dataset [8], which is a collection of 48 kHz recordings, downsampled to 8kHz to reduce the 

computational load. As shown in Figure [1], the target and predictor signals input to the neural 

network represent the magnitude spectra of the noisy and clean speech signals. These signals are 

generated by applying a Short-Time Fourier transform (STFT) with a window length of 256 

samples, which are reduced to 129 by removing samples corresponding to negative frequencies. 

The predictor input has 8 STFT vectors and the target input contains a single vector to enable 

computing the STFT output estimate based on the current noisy STFT and the overlap of 7 previous 

noisy STFT vectors. A tall array is used to speed up transformations for extracting features for all 

the speech files in the datastore. A fully connected neural network and a convolutional neural 

network are used to process these tall arrays as 129 x 8 x 1 input images for training with 1% 

reserved for validation to prevent overfitting. The output of the networks is the magnitude 

spectrum of the denoised voice signal. 

 

 

 

 

 

 



4 

 

 

 

Figure 1.1: Representation of clean and reverberated STFTs as inputs to FCNN/CNN and 

dereverberated vector output. 

 

 

1.3 RELATED WORK  

Ever since communication systems and technologies have been in existence, many 

advancements have been made to continuously improve speech recognition and intelligibility. 

Some areas of research involve utilizing different signal processing techniques and machine 

learning to address challenges posed by environments that may degrade the intelligibility of speech 

and impact reconstruction quality. The following articles are representative of recent work where 

neural networks are at the core of different methods of extracting speech from noisy signals, 

specifically those distorted by reverberant components. The first article uses a deep neural network 

(DNN) based on a spectral mapping and trained using inputs with optimal frame shift and varying 

acoustic context window sizes. This DNN has linear activation functions in the output layer. The 

Input 
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second article focuses in on feature mapping techniques. The third article talks about using 

estimation of a complex ideal ratio mask in real and imaginary domains to enhance reverberant 

speech. Finally, the fourth article presents an overview of recent work on environmentally robust 

speech recognition systems. 

 1.3.1 A Reverberation-Time-Aware Approach to Speech Dereverberation Based on Deep 

Neural Networks,” IEEE/ACM Trans. (B. Wu, K. Li, M. Yang, and C.-H. Lee) 

Wu et al. investigate the use of a frame shift and context window aware approach to observe 

their effects on DNNs recovery of anechoic speech from reverberant environments. The authors 

argue that training DNNs using STFT to generate spectrograms from anechoic and noisy speech 

signals for feature extraction will only generate results for a fixed temporal resolution and will not 

generalize to different types of reverberant reflections. Instead, they suggest training DNNs with 

one type of frame shift and expansion at a time, as they claim that both affect the quality of the 

results. They used the perceptual evaluation of speech quality (PESQ) scores to determine which 

frame shift, denoted as (R), and frame expansion, denoted as (N), or acoustic context to use for 

RT60s. 

The authors trained a DNN with anechoic and reverberant speech to dereverberate speech 

by extracting the phase of the reverberant speech and reconstructing from an estimated spectral 

magnitude. Their DNN uses sigmoid activation and min-max normalization. Instead of using 

spectral mapping learning to predict the log spectral magnitude of a dereverberated signal, they 

attempt to improve this method by using a linear output in the output layer and globally normalized 

target features while also including optimal frame shift and context window sizing parameters. 

They select their optimal frame shifts and context windowing parameters using a as reference a 

nonlinear DNN based regression model. Their DNN improves the estimated restoration of 
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anechoic spectrogram by using a reverberation time aware DNN (RTA-DNN) to capture the frame-

wise effects of temporal correlation in different reverberant environments and the acoustic context 

window size for speech continuity enhancement. The TIMIT dataset, which has 4620 training 

utterances, was used to train the network. Testing parameters were a 6x3 meter room, loudspeaker 

position (2, 3, 1.5 meters), microphone position (4, 1, 2 meters), and 10 RIRs with improved image 

source method in the 0.1–1.0s RT60 range. For this research, the Edinburg dataset of anechoic 

speech will be used to train the networks along with creating reverberant versions by convolving 

them with impulse responses.  

 

1.3.2 Learning Spectral Mapping for Speech Dereverberation and Denoising IEE (Woods). 

Han et al. point out that simply using an inverse filter is not sufficient for dereverberation. 

The inverse filter itself must be estimated which does not tend to be replicated successfully in 

realistic applications. Instead of doing a direct inverse STFT to reconstruct the signal in the time 

domain, which can result in obtaining a different magnitude spectrum than intended, they use an 

algorithm that iterates through the STFT by replacing the phase of the noisy phase with its inverse 

STFT to find the closest match to the provided magnitude spectrum. They use a DNN that produces 

estimates of clean speech log spectrum magnitudes. Their network implementation is based on 

feature extraction, model training, and post-processing.  Feature extraction uses a STFT window 

of 20ms with a frame shift of 10ms and 320 points with 161 frequency bins. They use neighboring 

frames of spectral features to account for temporal optimization. The output of the network is 

intended to be the spectrogram of anechoic speech at current frame. This frame is represented by 

a 161-feature vector with log magnitudes of each frequency. Their neural network is trained using 

the 161x11 units of the log magnitude spectrum of noisy signals and mean squared error for 

optimization. The network has three hidden layers with 1600 neurons each. Inputs are normalized 

to zero mean and unit variance and outputs are normalized to values between 0 and 1. Rectified 
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linear unit (RELU) is the activation function for the hidden layers and sigmoid functions for the 

output layer. Weights do not have a standardized initial value; rather, they are randomized. 

Backpropagation handles 512 samples per mini batch with stochastic gradient descent. They use 

several methods to test the intelligibility of their results including frequency-weighted segmental 

speech to-noise ratio (SNRfw), the short-time   intelligibility measure (STOI), and finally the 

perceptual evaluation of speech quality (PESQ) with a (-05 to 4.5) scoring range. They experiment 

with the number of hidden layers and frame window sizes, which affect the DNN’s performance. 

Their simulated room parameters for measuring dereverberation performance are 10m x 7m x 3m 

with T60 conditions of 0.3s, 0.6s, and 0.9s tested with two different simulated room impulse 

responses (RIRs). Their training set consists of 1200 utterances from 200 anechoic versions 

provided by a single female speaker convolved with the two RIRs and each of the reverberation 

times. The test is a set of 60 reverberant utterances with 20 utterances each convolved with one 

RIR and three T60s. For cross-validation, another set of 10 utterances combined with all three 

T60s and RIRs was developed. Their method was tested against three other dereverberation 

methods which employ a binary masking method, estimated inverse filters, spectral subtraction, 

and finally an ideal binary masking method as a baseline for binary masking systems. Their results 

show that their proposed method had an average improvement in the SNR and STOI scores as well 

as PESQ scores when it came to long reverberation times. They did some more testing to observe 

the proposed DNNs ability to generalize by changing up the T60s of the RIRs, evaluating with the 

TIMIT corpus, and using real recorded RIRs. 

 

 

1.3.3 Training Deep Neural Networks for Reverberation Robust Speech Recognition (M. 

Ritter et al., M. Müller, S. Stüker, F. Metze, A. Waibel) 

Authors train DNNs to deal with multiple reverberating environments by using multiple 

RIRs in combination with clean speech and various noise sources. The run their experiments for 
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dealing with reverb utilizing the Janus recognition toolkit and IBIS decoder. Their DNNs are 

implemented using the Theano python tool library. The dataset used for training was from the 

TED-LIUM corpus combined with 10 hours of noise. Also, they used 658 RIRs derived from 

different sources along with RIRs generated with “Room Impulse Response Generator” tool by E. 

Habets. The evaluation set consisted of TED talks recorded during the International Workshop on 

Spoken Language Translation (IWSLT) 2013. Their proposed DNN had five pre-trained hidden 

layers with 1200 neurons, each with the sigmoid activation function, followed by a softmax output 

layer. For this research the proposed DNN consists of an image input layer with two hidden layers 

with 1024 neurons each followed by a batch normalization and RELU layer and an output fully 

connected layer followed by a regression layer.  

 

1.3.4 Time Frequency Masking in the Complex Domain for Speech Dereverberation and 

Denoising. 

A complex ideal ratio mask (cIRM) is used for learning spectral mapping from reverberant 

speech signals.  For every time frame, features are extracted using different methods such as 

amplitude modulation spectrogram (AMS), relative spectral transform and perceptual linear 

prediction (RASTA-PLP), mel-frequency cepstral coefficients (MFCC), and gammatone 

filterbank energies. Neighboring frames are incorporated to account for temporal information. The 

proposed cIRM acts as an inverse filter equal to the ratio of the real and imaginary components of 

the target anechoic speech and the reverberant speech, which enhances both the magnitude and the 

phase of reverberant speech. A hyperbolic tangent function is used to compress the real and 

imaginary values for supervised learning. DNN inputs are normalized to zero mean and unit 

variance. Input features from the feature vector are filtered using the auto-regressive moving 

average (ARMA). The activation function for the hidden layers is the rectified linear unit function 
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(ReLU). There are two output layers that handle the real and imaginary components using linear 

activation functions.  
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Chapter 2: Theoretical Background 

2.1 Sound, Acoustics, and Noise 

Reverberation is the accumulation of sound reflections from surfaces in a closed 

environment. A listener in such an 

environment would hear a combination of 

sound traveling directly from a source and 

reverberation, i.e., the sum of all 

reflections off reflective surfaces. An 

important parameter to characterize reverberation is reverberation time (RT), which is how long it 

takes for reverberant sound energy to decrease 60 dB from its original level after its driving sound 

signal ends.  Reverberation is in large part shaped by the geometry of an enclosure and the 

reflective properties of the surfaces it contains. There can be many reflections consisting of 

decaying attenuated copies of the source at a time.  

In this study we will use convolution reverberation, which means taking an anechoic 

speech file and convolving it with the impulse response of different types of rooms. There are 

different variables to consider when using a type of reverberation. Typical variables include depth 

(room size), as bigger rooms have longer lasting reflection; decay (RT60), which measures the 

amount of time it takes for the reflected signal to die down; predelay, which is the time from initial 

source emission to the point earliest reflections are heard; diffusion, which describes the 

complexity of the environment in terms of its number of different surfaces and the different 

reflections they can produce; and the wet or dry mix, where reverb signals are the wet mix and the 

dry signal is the anechoic speech. 

 

Figure 2.1: Reverberation effects from environment 
 

Direct Sound Path 
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The impulse response is the frequency response of a given environment. A convolution of 

an impulse response and an anechoic speech signal replicates the reverberation effects the room 

would have when exposed to such a signal. The impulse response is an observation of a system 

reaction to an impulse input. Noise can take many forms that can be the cause of any unwanted 

disturbances in a particular signal. Noise can be uniform and non-uniform (impulse) 

 

 

 

2.2 Deep Learning 

Neural network architectures considered for this research are a fully connected neural 

network (FCNN) and a convolutional neural network (CNN). Both are supervised regression 

models that converge as close to the target as possible. The FCNN typically has different layers, 

each containing an interconnected network of neurons which represent a node holding a certain 

value. The inputs to the FCNN are normalized to speed up learning and getting passed along the 

two hidden networks consisting of FCNNs.  

Neurons in an FCNN have connections between them with weighted values that are 

multiplied by the neuron value while adding a bias value when present. Each hidden layer is 

followed by a batch normalization layer which takes care of normalizing each output from each 

Input Layer Hidden Layers Output Layer 

Figure 2.2: Fully connected neural network architecture 
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hidden network and a ReLU layer that performs regression. If the output does not match the 

targeted value then the network performs backpropagation to calculate the error gradient (loss). 

The error itself is calculated using the RMSE that will used by the ADAM optimizer. This process 

is repeated until we get values that are the same as or closely match the targeted values.  

Perceptrons are represented as neurons. Architectures tested in this research are as follows: fully 

connected layer input, batch normalization layer, then a ReLU layer. 

 

 

 

 

 

 

 

Convolutional neural networks used for this work have an architecture with an input layer that 

performs normalization on the dataset. The rest of the neural network consists of purely 2D 

convolutional layers. Each of these layers applies a horizontally and vertically sliding filter that 

performs convolutions on the inputs. The purpose of these filters is to compute the dot product of 

the weights and the input and adding the bias term. Convolutional neural networks can vary in 

their architecture and typically contain max-pooling layers and up-sampling. In a similar fashion 

Figure 2.3: Convolutional neural network architecture 
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to its fully connected counterpart, each convolutional layer is also followed by a batch 

normalization layer and a ReLU layer.  
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Chapter 3: Methodology 

3.1 Approach 

The approach followed for this work combines signal processing methods with different 

neural network architectures to achieve denoised and de-reverberated speech that is then compared 

to its anechoic version to assess benefits of processing. The first stage of the approach uses datasets 

containing clean, i.e., anechoic speech recordings of speech utterances and convolves them with a 

collection of different room impulse responses (RIR) to simulate reverb. Noise speech signals are 

also added to the clean speech to simulate noisy environments. These datasets are used for training 

and testing speech enhancement methods being evaluated. MATLAB Version 2019b [7] apps and 

toolboxes were used for various signal processing computations such as generating speech 

spectrograms for neural network inputs. This version was necessary to take advantage of tools for 

handling deep neural networks.  

Utilized building blocks include code for denoising speech from the Mozilla dataset, which 

is a public dataset created with contributions from people who donate a recording of their voices 

dictating sentences. Although this dataset is extensive, it was not completely adequate to train a 

network with clean signals and simulated reverberant signals, as a great amount of recordings in 

the dataset already contain a variety of audibly reverberant surroundings. While many research 

articles use the TIMIT dataset [9] for training neural networks to suppress reverberation, access to 

this dataset requires a membership costing $200. To accomplish the same goal without incurring 

on that cost, the Edinburgh dataset [10] with anechoic recordings of people dictating sentences 

was utilized for this work. To create a dataset with reverberant versions of the Edinburgh dataset, 

the AIR dataset [11], which contains a collection of impulse responses of different environments 

ranging from classrooms to stair wells and concert halls was utilized. Creating the reverberation 



15 

dataset consisted in convolving the anechoic signals with different impulse response signals. Other 

ways to simulate reverberation include using the reverb function provided in MATLAB [7], but 

the choice of impulse response to use provided more control over the simulation. First, a set of 

clean and reverberant signals were used to train a neural network without adding noise to observe 

dereverberation performance with an architecture meant for denoising. Two neural networks were 

used: one with fully connected layers only and another one with a mix of convolutional and fully 

connected layers.  

 

3.2 Fully Connected Network 

The fully connected network is available as a function in MATLAB [7] where certain 

parameters can be specified and changed systematically. The FCCN used in this code has the 

following parameters: the input layer consists of fully connected layers which automatically 

determine the input size during training and the output size is specified as a parameter of the 

number of neurons in the layer. This is done using the imageInputLayer function which inputs 2-

D images into a network and applies data normalization [7]. The normalization is zero centered, 

which means it subtracts the mean calculated during training. The default setting is 'auto' – If the 

training option is false and you specify any of the normalization statistics (mean, standard 

deviation, min, or max), then normalize over the dimensions matching the statistics. Otherwise, 

recalculate the statistics at training time and apply channel-wise normalization [7]. The standard 

deviation, the minimum and maximum value for rescaling are calculated during training. 

There are other parameters to consider when using this architecture, such as the function to 

initialize weights (default is the Glorot function which independently samples from the uniform 

distribution with zero mean and variance → 2/(inputSize + outputSize). The function to initialize 
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bias is set to zeros, the layer weights are specified as a matrix and are learnable parameters. In this 

case the trainNetwork function uses the weightInitalizer function mentioned earlier and it has an 

outputSize by inputSize matrix. Layer biases are also learnable parameters and use the 

specifications in the bias initializer function. The learning rate factor for the weights is set to 1.0, 

which is multiplied by the global learning rate specified in the code as “initialLearnRate” which is 

1.0e-5. The bias learn rate factor is also multiplied by the global learning rate for determining the 

learning rate for the biases in a layer. This code uses L2 regularization, which is also referred to as 

“Ridge regression,” to help prevent overfitting. This factor is set to 1.0. Ridge regression adds a 

square magnitude of the coefficient as a penalty term to the loss function [13] Regularization is 

used to avoid overfitting by penalizing high valued regression coefficients. [14] It also reduces 

parameters and simplifies the model. There is an L2 regularization factor for the biases that defaults 

to 0.0. This layer only accepts one input and one output by default.  The training options can be 

customized and include the following parameters: MaxEpochs is set to 3 epochs; thus, the network 

does 3 passes through the training data [8]. Training sequences are shuffled at the beginning of 

every epoch. The minibatch size is set to 128 in order to evaluate our 128 training signals at the 

same time. The validation function evaluates the predictors and the targets. The validation 

frequency is set to calculate the mean square error every epoch. This code used the adaptive 

moment estimation solver (ADAM).  

The fully connected network is trained using the parameters specified in the training 

options and architecture earlier in the code. The function trainNetwork(X, Y, Layers, Options) 

uses these parameters to train the network as follows: X is a 2D image data input with dimensions 

h x w x c x N which correspond to the height, width, # of channels of the images, and number of 

images, respectively; Y is the responses; Layers is an input argument that returns a series network 
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with all layers connected sequentially; and Options is an input argument that takes all the 

specifications from the training options portion of the code.  

The code counts the number of weights [7], biases the weight learn rate factor which uses 

the Glorot function as an input layer that takes the size of the 129x8 feature vector and is followed 

by two hidden fully connected layers containing 1024 neurons. Each hidden layer is followed by 

a ReLU layer and a batch normalization layer, which normalizes each input channel across a 

minibatch [7] This makes training faster and more robust. This layer takes the activations from 

each channel and normalizes them by subtracting the minibatch mean and dividing them by the 

minibatch standard deviation [7]. The input is then shifted by the layer by BETA(learnable offset) 

and the learnable scale factor. The batch normalization layer is set to the default parameters. The 

ReLU layer follows the batch normalization layer and first, it applies a threshold to each input 

element setting any value less than zero set to zero as follows:  

 

 

and second, it calculates the learn rate with a piecewise schedule to decrease the learning rate by 

0.9 after every epoch. 

 

 

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0
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3.3 Convolutional Neural Network 

The convolutional neural network (CNN) acts as a filter to the input by applying 

convolution and addition of the bias term. The filters are only applied in the frequency domain. 

Filter width for the time domain is eight for the first layer and one for the rest of the layers. There 

are seven convolutional layers in total, six of which are followed by a batch normalization layer, 

then a ReLU layer and one is followed by a regression layer. For CNNT processing, the input is 

taken as an image input layer specified by the parameters numFeatures and numSegments. The 2D 

convolution layer function takes the following parameters: filter size, number of filters, and name-

value pair arguments for specifying zero padding for the layer input and the stride filters. The stride 

format is [a b] where a is how many units it will be traversing in the vertical direction and b for 

the horizontal direction. This network was used with the default padding, which has a size 

calculated at training or prediction time to adjust the output size to the input size when the stride 

equals 1. For stride larger than 1, the output size is set to the ceiling of inputSize/stride, where 

inputSize is the input height or the width and the stride is in the corresponding dimension. The 

same amount of padding is added to the top, bottom, left, and right if possible. When the vertical 

Figure 3.1: Implementation of fully connected neural network (FCNN) 
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padding is odd, extra padding is added to the bottom. Also, for odd horizontal padding, extra 

padding is added to the right. Filters applied to the input image will generate feature maps. 

 

 

 

3.4 Testing Method 

To train this neural network, we load in the datastore containing the validation speech files,  

shuffle, and follow the algorithm shown  in Figure 6. The predict function is used to dereverberate 

(and potentially denoise) the signals. predict(Mdl, X) returns a vector of predicted class labels 

based on the trained discriminant analysis classification model [7]. Mdl is the classification 

discriminant model and X is predictor data to be classified. Root-mean-squared-error (RMSE) was 

used for both networks.  

Figure 3.2 Implementation of convolutional neural network (CNN) 
 

https://www.mathworks.com/help/stats/compactclassificationdiscriminant.predict.html#bs1qgq5-Mdl
https://www.mathworks.com/help/stats/compactclassificationdiscriminant.predict.html#bs1qgq5-X
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1.  Dataset Prep 

• Acquire clean anechoic speech 

dataset  

• Acquire impulse response 

dataset  

• Load dataset of anechoic 

speech files to code 

 

2. Signal Processing Parameters 

• Windowing 

• Input/ Output sample rate 

• Sample rate conversion 

• Convolve clean speech with 

impulse response 

3. Extract Features 

• Generate magnitude STFT 

vectors of clean and reverberant 

speech 

• Assign clean STFT vectors to 

targets and reverb STFT 

segments to predictors 

• Randomly split data into training 

and validation sets 

 

4. Training FCNN 

• Define FC layer parameters 

• Specify training options 

• Train the network 

• Count number of weights 

 

Figure 3.3 Implementation of convolutional neural network (CNN) 

 

Dereverberation 

5. Training CNN 

• Define convolutional layer 

parameters 

• Specify training options 

• Train the network 

• Count number of weights 

 

6. Test the FCNN and CNN 

• Load test speech files (not seen 

by either neural networks) 

• Repeat steps in “extract features” 

• Compute dereververated 

magnitude STFT 

• Compute dereverberated speech 

signals 
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Chapter 4: Experiments 

The datasets were prepared for training the neural networks. The Edinburgh dataset [10] 

contained sets of speech files meant for training and testing speech enhancement methods. The set 

consists of speech uttered by 56 English-speaking speakers with a variety of accents.  There are 

about 400 sentences spoken by each speaker and all dictations were recorded with a 96kHz 

sampling frequency with 24 bits, which was converted to 16 bits and downsampled to 48kHz. 

These were recorded from an omnidirectional microphone in a hemi-anechoic chamber of the 

University of Edinburgh. This anechoic clean speech dataset was augmented to include 

reverberation in various versions. Each of the clean speech recordings were convolved with the 

Aachen Impulse Response (AIR) database to produce the reverberated versions of the clean 

speech. The AIR database is a 

collection of room impulse responses 

derived from lecture rooms, 

stairwells, concert halls, etc., that can 

be easily imported to MATLAB [7]. 

Once the clean and reverberated 

signals are produced, they are 

assigned as target and predictor 

inputs respectively. The combined 

total of clean speech and reverberated speech is 

1000 speech signals which are later used to train the neural networks. During training, the FCNN 

and CNN use the target input to adjust learning. 

 

Figure 4.1 Room Impulse Response 
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Chapter 5: Results 

The results of the FCNN are shown in Figure 8 and Table 1. The RMSE shows the standard 

deviation of the prediction errors and the loss shows how the prediction performed in estimating 

the expected outcome. The time it took to take all of the speech files to apply the sample rate 

conversion, convolve them with a room impulse response, and assign them to targets and 

predictors was completed in 2 minutes 33 seconds. Estimation of the gradient and update of 

network parameters were performed in each iteration. The training progress smooths out the 

training accuracy with a smoothing algorithm to make it easier to spot trends. The training loss 

depicts the loss on each minibatch and its smoothed version and the loss on the validation set [7]. 

The number of weights in the fully connected network totaled 2237440. 

 

          
Figure 5.1 Training progress of fully connected neural network 
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The results of the CNN are shown in Figure 9 and Table 2. The time it took to take all of the speech 

files, apply the sample rate conversion, convolve with a room impulse response, and assign them 

to targets and predictors was completed in 2 minutes 33 seconds. Like in the FCNN case, 

estimation of the gradient and update of network parameters were performed in each iteration.  

                                   

 
Results 

Validation RMSE 6.2355 

Training Time 

Elapsed Time 6min 26sec 

Training Cycle 

Iterations per epoch 2793 

Maximum iterations 8379 

Validation 

Frequency 2793 iterations 

Other Information 

Hardware Resource Single CPU 

Learning rate 

schedule 

Piecewise 

Learning rate 8.1e-06 

Weights 2237440 

Epochs 3 

 

Table 1.1: FCNN  

 

 
Results 

Validation RMSE 7.4374 

Training Time 

Elapsed Time 23min 5sec 

Training Cycle 

Iterations per epoch 2793 

Maximum iterations 8379 

Validation 

Frequency 2793 iterations 

Other Information 

Hardware Resource Single CPU 

Learning rate schedule Piecewise 

Learning rate 8.1e-06 

Weights 31812 

Epochs 3 

 

Table 1.2: CNN  
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Again, the training progress smooths out the training accuracy with a smoothing algorithm to make 

it easier to spot trends. The training loss depicts the loss on each minibatch and its 

           

 smoothed version and the loss on the validation set [7]. The number of weights in the      

convolutional network totaled to 31812. Figure 10 includes visualizations of the resulting 

performance between FCNN and CNN. 

 

5.1 Conclusions 

The experimental setup shows that overall, the CNN performed better in terms of 

intelligible quality and generating fewer weights than its FCNN counterpart although the CNN 

was more computationally intensive. These results hold true to the CNN’s reputation for its 

superior image recognition and classification. In conclusion it is shown that intelligible speech can 

be best produced by the using the presented CNN. 

 

Figure 5.2 Training progress of convolutional neural network 
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5.2 Future Work 

For future work we can make more experiments utilizing architectures with different 

combinations of layers to observe what will work best for dereverberation. Additionally, using 

more testing metrics such as the Frequency weighted segmental SNR (fwSNR), short time 

objective intelligibility (STOI), and perceptual evaluation of speech quality (PESQ) for scoring on 

speech intelligibility. More computational capabilities will also be required to allow for training 

with much larger datasets to achieve improved optimization and learning parameters. 

  

Figure 5.3 Graph and Spectrograms of clean, noisy (reverberated), denoised with FCNN and CNN 
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