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Abstract 

Alternative sustainable energy sources are required to decrease our dependence on carbon-based 

fuels. Small molecule activation is one of the most promising to fulfill global energy demand and 

maintain a sustainable world. Most of the industrial processes relevant for global energy supply 

and expenditure involves small molecules and metal catalysts. However, it is still required to gain 

fundamental insights on how these catalysts achieve such reactions. Dinuclear compounds, namely 

dimolybdenum complexes, may serve as a good experimental model to understand metal-metal 

cooperativity and its influence in catalysis. 

In Chapter 2, three unsymmetric aryl formamidines were synthesized and characterized 

through 1H NMR, LCMS and SC-XRD. Compound 1 was compared with its symmetric analogs 

through NMR and was synthesized under equivalent conditions of its symmetric isomers. 

Syntheses of 2 and 3 required a stepwise approach and column but were accomplished, 

nonetheless. Bond distances in crystal structures manifested that the N=C bond resided on the most 

electron donating side on the unsymmetric aryl formamidine. and the proton are situated in the 

unsymmetric aryl formamidines. Furthermore, σ values were obtained for the synthesized ligands 

(1 = – 0.075, 2 = – 0.023, 3 = – 0.060). 

Chapter 3 discusses synthesis, characterization, and electrochemical studies of 

dimolybdenum complexes. Crystal structures for 5 and 6 were obtained with metal-metal bond 

distances of 2.0991 Å and 2.1009 Å, respectively. Cyclic voltammetry (CV) upon 5 depicts a one-

electron reversible redox event at   – 0.240 V. Electrochemical redox potential of 5 was compared 

to its symmetric analogs and fell between its homologues. Changing the position of one of the 

substituents in the phenyl ring tuned the redox behavior of the system. Compounds 6 and 7 display 

a one-electron reversible redox events – 0.283 V and – 0.260 V, respectively. Redox potentials for 
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6 and 7 have proximate values between them as well as their average Hammett constant, σ. As σ 

is constructed to be more negative, the redox potential will decrease for dimolybdenum 

compounds. Studying unsymmetric aryl formamidine ligands in dimolybdenum complexes gives 

rise to resourceful tool of electronic tuning empowered by a wide variation of possible substituents 

for ligand design. 
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Chapter 1: Introduction 

The consumed global energy is currently obtained through combustion of fossil fuels, over 80% 

of said energy comes from coal, oil, and natural gas.1–3 The world energy demand has increased 

since the industrial revolution with the  total energy reaching 13.5 TW in 2001, and it is expected 

to reach 30 TW in 2050 and 46 TW by the end of the century.4 The global energy demand has 

rapidly increased due to the dramatic population growth and the economic activity via 

industrialization and globalization. In addition, concerns have arisen from unsustainability and the 

environmental constraints of fossil fuel utilization.5,6 The rising emission of greenhouse gases 

(GHGs) is mainly attributed to combustion of fossil fuels which has a direct influence in some of 

the contemporary problems of humanity, namely global warming and climate change.7,8 Moreover, 

major dependence on fossil fuels has caused conflict amongst countries that prevents diplomatic 

conflict resolutions and alters civil security.6 Therefore, in the interest of fulfilling the expanding 

energy demand and alleviating the environmental impact and safety, significant research has being 

developed in order to take advantage of alternative sustainable global energy sources.9–14 

 Small molecule activation has great potential to deal with global energy consumption. 

Hydrogen gas (H2) is set to be the fuel of the future since its combustion produces water. Hence, 

it generates carbon-free emissions along with high gravimetric energy density.15,16 Additionally, 

H2 is used as chemical feedstock to synthesize other important energy related compounds (e.g. 

methane, ammonia, and liquid hydrocarbons). However, hydrogen gas is currently industrially 

produced through steam reforming of methane which involves fossil fuels and requires high energy 

input.17 Water is emerging as the new alternative source for hydrogen production; its splitting 

yields H2 and O2 gas which translates into a carbon-free hydrogen source. Nonetheless, as a 

hydrogen source water oxidation confronts several problems. This reaction involves a four-
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electron transfer process, it is pH dependent, and has huge thermodynamic and kinetic barriers.10 

Similarly, nitrogen (N2) reduction to ammonia (NH3) is a significant reaction in terms of energy. 

The Haber-Bosch process, which is the conventional industrial process to generate NH3, consumes 

~1% of the global energy.10 The conversion of nitrogen gas to ammonia involves the transfer of 

six electrons. The activation of other small molecules such as CO, CO2, or CH4 also require 

multielectron redox chemistry. Moreover, these small molecules (Scheme 1.1) contribute as 

greenhouse contaminants that need practical and economical methods for atmospheric 

remediation. For example, the Fischer-Tropsch process has become an efficient method for CO 

conversion in liquid hydrocarbons with the aid of transition metal heterogeneous catalysts. 

Suggestively, the metal-metal cooperativity found in these catalysts enables the process.12 

 

Scheme 1.1. Examples of small molecules requiring multielectron redox chemistry facilitated by 

transition metals and their compounds.18–22 

 

Most industrial processes involving catalysts are run at specific operating points which are 

rarely altered with few exceptions where temperature is gradually increased to compensate 

deactivation processes. These static conditions are obtained through trial and error until optimal 

yields and selectivities are found for specific catalysts.23 However, it is unknown how changing 

reactions conditions affect a catalyst on a molecular level. In addition, structural changes caused 

by reaction conditions of the reactant, intermediate, or product influences the catalytic activity.24–

27 Although several characterization methods have had significant advances in the study of 
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heterogeneous catalysts,28–30 theoretical descriptions are required in order to better understand the 

undergoing changes of catalysts. Molecular modeling and simulations have been greatly useful in 

approaching catalytic function.31–33 Nonetheless, experimental models are necessary to validate 

theories and to further comprehend these systems.  

Homogeneous metal complexes can serve as models for heterogeneous catalyst 

transformations.34,35 Their simplicity allows more characterization methods to be available.36 

However, mononuclear complexes differ widely from metal surfaces in the sense that the former 

lack the presence of adjacent metal atoms, which may have a significant influence on the 

performed chemistry. For instance, β-hydrogen elimination is common in mononuclear late-

transition metals,37 whereas analogous clusters yield α-hydrogen elimination.38,39 The presence of 

two metal centers in a complex, especially if they are directly interacting with each other (Sheme 

1.2), may depict a better representation of metal-metal cooperativity and how it affects catalytic 

reactions (e.g. olefin polymerization,40 alkyne/methylene coupling reaction,41 and C-H 

activation).36  

 

Scheme 1.2. Examples of conformations of bimetallic units. 

 

In this study, bimetallic paddlewheel complexes (Scheme 1.2 A) are utilized as 

experimental models due to their high d-orbital overlap in order to resemble metal cooperativity 

in a surface. In the interest of obtaining a high bond order, well-established electrochemical 

behavior, and a plethora of previously reported species,42 dimolybdenum species were the main 
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subject of study in this project. Formamidines are a great option as ligands since they are bidentate 

ligands that are reasonably easy to synthesize and characterize, as well as ease of functionalization 

with a wide variety of functional groups.43 Aryl formamidines and amidines have proved to be 

useful ligands in pursuance of quintuply bonded species, rendering complexes similar to those 

depicted in Scheme 1.2 C,D.44 Herein, we explored the effect of remote substitution of 

formamidinates in dinuclear metallic systems by applying symmetry descent into our ligand design 

(Scheme 1.3). Furthermore, the relation of the second coordination sphere to the electronic 

behavior of dimolybdenum systems was investigated, and the observations will be discussed in a 

later chapter. 

 

Scheme 1.3. Dimolybdenum species with unsymmetric aryl formamidine ligands that may 

polarize the metal-metal bond. 
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Chapter 2: Unsymmetric Formamidine Ligand Design and Its Utilization in 

Redox Tuning 

2.1 INTRODUCTION 

Ligand design in coordination complexes have served to modulate the electronic properties of 

metal species as well as to influence the steric environment around the metal coordination sphere. 

As a result, transition metal and organometallic chemistry, along with homogeneous metal 

catalysis, have benefited from designing and studying new ligand motifs, e.g pharmaceuticals,45 

polymers,46 catalysts.47 

Formamidinates have been utilized as π-donor ligands for several bimetallic systems 

because their bidentate nature enables them to bind to different metal atoms in order to build 

paddlewheel structures.42 These ligands have such flexibility in their coordinating abilities that 

derivatives of these species are designed to connect more than two metals48, and they are utilized 

as precursors for N-heterocyclic carbenes (NHCs).49 Moreover, a wide variety of substituents may 

be added to the amine group in order to manipulate the electronic behavior of the  metal with ease 

of characterization. Functionalization of aryl formamidines has given the opportunity to perform 

redox tuning in bimetallic complexes by varying the remote substituent.50–52 

      (Eq. 1)  

 

Scheme 2.1. Acid dissociation of benzoic acid and substituted derivatives. Reference reaction for 

Hammett constants (σ). 

 

log
𝐾

𝐾
0

=  𝜎𝜌 
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Systematic redox tuning with aryl formamidines can be accomplished through inductive 

and resonance effects exerted by modification of the substituent in their periphery.50 Hammett 

constants (σ) have shown to be a useful tool in measuring the electronic effects of such 

substituents.53 These constants were first obtained by Louis Hammett in 1937.54 He studied the 

effect of having different substituent groups in the meta- and para- positions of benzoic acid 

derivatives, and observed the change in the acid dissociation (Ka) reaction (Scheme 2.1). The 

Hammett equation (Eq. 1) presents a linear free-energy (ΔG) relationship between equilibrium 

constants(K/K0) and reaction rates (ρ) where electron donating groups produce an increase in Ka, 

and electron withdrawing groups decrease it. This behavior can be transfer into bimetallic 

complexes redox properties: as the electron donating ability of the substituent increases, the redox 

potential tends to be more positive (with respect to -H, K0) which has in addition a direct relation 

to ΔG.51  On the other hand, a decrease in redox potential of the bimetallic center occurs when the 

electron donating abilities of the second coordination sphere decreases due to the presence of 

electron withdrawing groups. In addition, it has been observed that the position of the substituent 

in the aromatic ring provides different donating abilities for the ligand.55 However, the presence 

of different functional groups on each side of the formamidine bridging ligand gives rise to new 

ways of performing electronic tuning in bimetallic complexes.  

Herein, it is proposed that aryl formamidines can be synthesized and characterized 

containing different substituent groups (unsymmetric). The designed formamidines are presented 

in Scheme 2.2, and they have different substituent groups attributing different electronic strengths 

and steric effects. Compound 1 was designed with the purpose of observing the effect of varying 

the position of the functional group in the aryl ring, as well as a proof of principle since its 

symmetric versions are well reported in literature.50 The ligand design for 2-4 includes two bulky 
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isopropyl groups in ortho- positions. Groups with significant steric bulkiness are of interest 

because they can be potentially used in paddlewheel complexes to obtain systems that present open 

coordination sites available to perform small molecule activation.56 Compounds 2-4 also involve 

other functional groups with different electron donating properties. These formamidines are 

intended be used as ligands provide the foundation for studying diverse environments in dinuclear 

metallic systems with the possibility of expanding and playing with miscellaneous functional 

groups and distinct structures.  

 

Scheme 2.2. Proposed unsymmetric formamidines with different electron donating properties on 

each side (EDG = electron donating groups, EWG = electron withdrawing groups). 
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2.2 EXPERIMENTAL SECTION 

 

2.2.1 Materials and Methods. 

All manipulations were carried under normal atmosphere at room temperature unless otherwise 

stated. All glassware was oven dried prior to use. The materials used CDCl3, acetic acid, p-

anisidine, triethylorthoformate, and 4-chloroaniline were purchased from Sigma-Aldrich. 2,6-

diisopropylaniline was purchased from TCI, while m-anisidine was purchased from Oakwood 

Chemicals both compounds were used as received. DippFm and MesFm were prepared according 

to literature procedures.1 The synthetic procedures for the preparation of the proposed aryl 

formamidines were based from previously reported methods.50 HCl, DCM, ethanol, hexanes, ethyl 

acetate, and diethyl ether were purchased from Fischer Scientific and used as received. 

2.2.2 Physical Measurements 

 

All 1H NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer, and the proton 

chemical shifts were referenced to CDCl3. Mass spectra was obtained using a JEOL AccuTOF 

JMS-T100LC under ESI+ mode. 

2.2.3 Syntheses 

 

2.2.3.1 Synthesis of N-3-methoxyphenyl, N’-4-methoxyphenyl-formamidine (Dm,pAniF) (1). 

 

Triethyl orthoformate (81.2 mmol), p-anisidine (1 mol eq.) and m-anisidine (1 mol eq.) were mixed 

in a 100mL round-bottom flask. The reaction mixture was heated at 140 oC while distilling ethanol 

until the theoretical amount of ethyl alcohol was collected.10 Diethyl ether was added to the brown 

oily product mixture to precipitate a white solid. Sonication helped separate the precipitate from 

the liquor. The white powder was washed with ether (3 x 30 mL) and hexanes (2 x3 0 mL). Yield 

= 9.334 g, 45%. Rf = 0.22. 1H NMR δ (ppm in CDCl3): 8.90 (s, 1H, N-H), 8.15 (s, 1H, NCHN-), 

7.18 (t, 1H, aromatic C-H), 7.00 (d, 2H, aromatic C-H), 6.86, (d, 2H, aromatic C-H), 6.60 (d, 2H, 
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aromatic C-H), 6.54 (s, 1H, aromatic C-H), 3.80 (s, 3H, -OCH3), 3.71 (s, 3H, -OCH3). ESI-MS 

(m/z): Calcd. 257.12[LH+], Found 257.87 [LH+]. 

2.2.3.2 Synthesis of N-3-methoxyphenyl, N’-2,6-diisopropylphenyl-formamidine (DippmAF) 

(2).  

 

DippFm (0.1025 mol), 1 eq. of m-anisidine, and catalytic amounts of HCl (0.05 eq. –approx. 1-2 

drops-) were mixed in a 50mL round-bottom flask. The reaction mixture was heated at 140 oC 

until theoretical amounts of ethanol were collected. A dark orange oil was obtained as a product. 

Silica column chromatographies were run with ethyl acetate: hexanes (1: 5). Clear crystals were 

grown from the collected fractions. The crystals were washed with hexanes (3 x 20 mL). Yield = 

40%, 12.72 g. Rf = 0.75. 1H NMR δ (ppm in CDCl3): 9.98 (s, 1H, N-H), 7.93 (s, 1H, NCHN-), 

7.18 (d, 2H, aromatic C-H), 7.14 (t, 1H, aromatic C-H), 7.08 (t, 1H, aromatic C-H), 6.49 (d, 1H, 

aromatic C-H), 6.43 (d, 1H, aromatic C-H), 6.26 (s, 1H, aromatic C-H), 3.41 (s, 1H, -OCH3), 3.27 

(sept., 2H, C-H), 1.20 (d, 12H, C-H). ESI-MS (m/z): Calcd. 311.20 [LH+], Found 312.16 [LH+]. 

2.2.3.3 Synthesis of N-2,6-diisopropyphenyl, N’-4-chloro-formamidine (ClDippF) (3).  

In a 50mL round bottom flask, DippFm (18.2 mmol) and 1 eq. of 4-chloroaniline were placed 

along with catalytic amounts of HCl (1 drop). The reaction mixture was heated at 140 oC for 1.5 h 

while distilling ethanol. The red brown product mixture was with a 5:1 hexanes:ethyl acetate silica 

chromatography column. Clear crystals were grown through slow evaporation from the 

corresponding elutions. The crystals were washed with hexanes (3x20mL). Yield: 2.4 g, 42%. Rf 

= 0.72 1H NMR δ (ppm in CDCl3): 8.75 (s, 1H, N-H), 7.77 (s, 1H, NCHN-), 7.27 (d, 2H, aromatic 

C-H), 7.18 (t, 1H, aromatic C-H), 6.83 (d, 1H, aromatic C-H), 3.21 (sept., 2H, C-H), 1.20 (d, 12H, 

C-H). ESI-MS (m/z): Calcd. 315.15 [LH+], Found 315.20 [LH+]. 
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2.2.3.4 Synthesis of N-2,6-diisopropyphenyl, N’-2,4,6-trimethylphenyl-formamidine 

(MesDippF) (4). 

 

In a 10mL round bottom flask, mesityl formimidate (MesFm) and 2,6-diisopropylphenylamine 

were placed in a 1:1 ratio, along with catalytic amounts of HCl. The reaction was heated at 140 oC 

until completion of ethanol distillation. The product mixture was diluted in toluene in order to 

obtain recrystallize the product of interest, but the reaction yielded bismesityl formamidine.  

 

2.3 X-RAY CRYSTALLOGRAPHY 

 

2.3.1 Dm,pAniF 

 

Figure 2.1. Crystal structure for 1 with ellipsoids drawn at 50% probability level. 

 

A specimen of C20HNO2, approximate dimensions 0.041 mm x 0.082 mm x 0.214 mm, was used 

for the X-ray crystallography analysis. The X-ray intensity data were measured on a Bruker 

SMART APEX CCD system equipped with a graphite monochromator and a MoKα fine-focus 

tube (λ = 0.71073 Å). The total exposure time was 8 hours. The frames were integrated with the 

Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using 

a monoclinic unit cell yielded a total of 14135 reflections to a maximum θ angle of 29.30° (0.73 

Å resolution), of which 3455 were independent (average redundancy 4.091, completeness = 

99.2%, Rint = 3.34%, Rsig = 3.48%) and 2559 (74.07%) were greater than 2σ(F2). The final cell 



11 

constants of a = 7.2915(9) Å, b = 5.7809(7) Å, c = 30.593(4) Å, β = 95.398(2)°, volume = 1283.8(3) 

Å3, are based upon the refinement of the XYZ-centroids of 3052 reflections above 20 σ(I) with 

5.35° < 2θ < 58.02°. Data were corrected for absorption effects using the multi-scan method 

(SADABS). The ratio of minimum to maximum apparent transmission was 0.894. The calculated 

minimum and maximum transmission coefficients (based on crystal size) are 0.6669 and 0.7459.  

The structure was solved and refined using the Bruker SHELXTL Software Package, using 

the space group P 1 21/c 1, with Z = 4 for the formula unit, C20HNO2. The final anisotropic full-

matrix least-squares refinement on F2 with 182 variables converged at R1 = 4.84%, for the 

observed data and wR2 = 14.68% for all data. The goodness-of-fit was 1.028. The largest peak in 

the final difference electron density synthesis was 0.433 e-/Å3 and the largest hole was -0.241 e-

/Å3 with an RMS deviation of 0.061 e-/Å3. On the basis of the final model, the calculated density 

was 1.486 g/cm3 and F(000), 576 e-.  

Table 2.1. X-ray crystallography data for 1. 

 

Chemical formula C15H16N2O2 

Formula weight 256.30 g/mol 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal size 0.041 x 0.082 x 0.214 mm 

Crystal system monoclinic 

Space group P 1 21/c 1 

Unit cell dimensions a = 7.2915(9) Å α = 90° 

 b = 5.7809(7) Å β = 95.398(2)° 

 c = 30.593(4) Å γ = 90° 

Volume 1283.8(3) Å3  

Z 4 

Density (calculated) 1.326 g/cm3 

Absorption coefficient 0.089 mm-1 

F(000) 544 
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2.3.2 DippmAF  

 
Figure 2.2. Crystal structure for 2 with ellipsoids drawn at 50% probability level. 

 

A specimen of C20H26N2O was used for the X-ray crystallography analysis. The X-ray 

intensity data were measured on a Bruker SMART APEX CCD system equipped with a graphite 

monochromator and a MoKα fine-focus tube (λ = 0.71073 Å). The total exposure time was 1 hour. 

The frames were integrated with the Bruker SAINT software package using a narrow-frame 

algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 25981 

reflections to a maximum θ angle of 28.25° (0.75 Å resolution), of which 9011 were independent 

(average redundancy 2.883, completeness = 92.2%, Rint = 4.20%, Rsig = 4.72%) and 4234 (46.99%) 

were greater than 2σ(F2). The final cell constants of a = 22.979(9) Å, b = 23.219(8) Å, c = 

14.790(6) Å, volume = 7891.(5) Å3, are based upon the refinement of the XYZ-centroids of 3748 

reflections above 20 σ(I) with 4.988° < 2θ < 42.23°. Data were corrected for absorption effects 

using the multi-scan method (SADABS). The ratio of minimum to maximum apparent 

transmission was 0.915.  
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The structure was solved and refined using the Bruker SHELXTL Software Package, using 

the space group P c c n, with Z = 16 for the formula unit, C20H26N2O. The final anisotropic full-

matrix least-squares refinement on F2 with 431 variables converged at R1 = 5.89%, for the 

observed data and wR2 = 21.78% for all data. The goodness-of-fit was 1.029. The largest peak in 

the final difference electron density synthesis was 0.292 e-/Å3 and the largest hole was -0.173 e- 

/Å3 with an RMS deviation of 0.042 e-/Å3. On the basis of the final model, the calculated density  

 was 1.045 g/cm3 and F(000), 2688 e-.  

Table 2.2. X-ray crystallography data for 2. 

 

 

 

 

 

 

 

 

 

Chemical formula C20H26N2O 

Formula weight 310.43 g/mol 

Temperature 296(2) K 

Wavelength 0.71073 Å 

Crystal system Orthorhombic 

Space group P c c n 

Unit cell dimensions a = 22.979(9) Å α = 90° 

 b = 23.219(8) Å β = 90° 

 c = 14.790(6) Å γ = 90° 

Volume 7891.(5) Å3  

Z 16 

Density (calculated) 1.045 g/cm3 

Absorption coefficient 0.064 mm-1 

F(000) 2688 
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2.3.3 ClDippF 

 

Figure 2.3. Crystal structures for 3 with ellipsoids drawn at 50% probability level. 

 

A specimen of C19H23ClN2 was used for the X-ray crystallography analysis. The X-ray 

intensity data were measured on a Bruker SMART APEX CCD system equipped with a graphite 

monochromator and a MoKα fine-focus tube (λ = 0.71073 Å). The total exposure time was 16 

hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame 

algorithm. The integration of the data using a monoclinic unit cell yielded a total of 13111 

reflections to a maximum θ angle of 22.70° (0.92 Å resolution), of which 2385 were independent 

(average redundancy 5.497, completeness = 100.0%, Rint = 5.97%, Rsig = 4.49%) and 1639 

(68.72%) were greater than 2σ(F2). The final cell constants of a = 10.4967(15) Å, b = 8.6681(8) 

Å, c = 19.6010(18) Å, β = 97.012(2)°, volume = 1770.1(3) Å3, are based upon the refinement of 

the XYZ-centroids of 1742 reflections above 20 σ(I) with 4.655° < 2θ < 43.86°. Data were 

corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum 

to maximum apparent transmission was 0.901.  

The structure was solved and refined using the Bruker SHELXTL Software Package, using 

the space group P 1 21/n 1, with Z = 4 for the formula unit, C19H23ClN2. The final anisotropic full-
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matrix least-squares refinement on F2 with 207 variables converged at R1 = 4.64%, for the 

observed data and wR2 = 13.16% for all data. The goodness-of-fit was 1.019. The largest peak in  

the final difference electron density synthesis was 0.348 e-/Å3 and the largest hole was -0.280 e-

/Å3 with an RMS deviation of 0.043 e-/Å3. On the basis of the final model, the calculated density 

was 1.181 g/cm3 and F(000), 672 e-.  

Table 2.3. X-ray crystrallographic data for 3. 

 

Chemical formula C19H23ClN2 

Formula weight 314.84 g/mol 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system monoclinic 

Space group P 1 21/n 1 

Unit cell dimensions a = 10.4967(15) Å α = 90° 

 b = 8.6681(8) Å β = 97.012(2)° 

 c = 19.6010(18) Å γ = 90° 

Volume 1770.1(3) Å3  

Z 4 

Density (calculated) 1.181 g/cm3 

Absorption coefficient 0.215 mm-1 

F(000) 672 

 

2.4 RESULTS AND DISCUSSION 

 

 

Scheme 2.3. Reaction scheme for synthesis of 1. 

 

 

The synthesis of 1 (Scheme 2.3) was done with the same procedure as its symmetric analogs and 

as many other symmetric formamidines. The yield agrees with the statistics that of having two 

unsymmetric molecules per every DpAniF and every DmAniF. Benzene would be used additionally 

when washing with Et2O did not the remove the residual amounts of the symmetric formamidines. 
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Benzene would lower the yield but in return we would get a more purified product. 1 is soluble in 

DCM, Toluene, THF, MeCN, acetone, CHCl3 and EtOAc. It is not soluble in water, EtOH, MeOH, 

slightly soluble in diethyl ether, hexanes, and benzene. Presence of the symmetric formamidines 

was monitored through both TLCs and 1H NMR. In the case of the TLC, 1 is spotted between its 

symmetric versions. Similarly, the methine proton is observed in the 1H NMR at 8.15 ppm, while 

for DpAniF there is a downfield shift at 8.24 ppm and DmAniF has an upfield shift at 8.05 ppm 

versus the unsymmetric formamidine, see Figure 2.4. Another characteristic comparison of these 

spectra is the shifts corresponding to —OCH3. D
pAniF and DmAniF have a singlet corresponding 

to six protons at 3.79, and 3.71 ppm, respectively. Differently, 1 presents two singlets integrating 

three protons each at 3.80 ppm (para-) and 3.71 ppm (meta-). Crystals for 1 were grown by slow 

evaporation of Et2O or acetone. The crystal structure for 1 is depicted in Figure 2.1. The distance 

for N1-C1 (meta- side) is 1.3516 Å and for N2-C1 (para- side) is 1.2899 Å. These distances denote 

the double bond being on the para- side of the molecule, where the resonance effect makes a 

difference for the arrangement of such double bond. 
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Figure 2.4. Stacked 1H NMR spectra comparison of HDpAniF (green, 1) HDm,pAniF (blue, 2), 

and HDmAniF (red, 3). See Appendix for single spectra. 

The synthesis of 2 was attempted in the same manner as for 1, but DmAniF was formed 

instead. DippF was the only product upon the addition of catalytic amounts of acid. Therefore, a 

stepwise approach with the formation of an intermediate (formimidate) was taken (Scheme 2.4 A). 

Formimidate synthesis yielded DippFm as the major product, however some DippF was formed 

as a byproduct. Syringe filters were utilized to isolate the orange oil from the white powder. 

DippFm over time becomes DippF but the can oil can be recovered by filtration. Reacting DippFm 

with m-anisidine in the presence of one drop HCl yielded 2 (Scheme 2.4 B). The missing 

percentage is attributed to loss of product during column chromatography. 2 is soluble in DCM, 

Toluene, THF, MeCN, acetone, benzene, CHCl3 and EtOAc. It is not soluble in water, EtOH, 

MeOH. It is slightly soluble in diethyl ether and hexanes. TLC, as with 1, showed that DippmAF 
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appears between its symmetric analogs. 1H NMR spectrum suggests the presence of tautomers. 

Crystals for 2 were grown by slow evaporation from elutions collected from column 

chromatography. The crystal structure for 2 is depicted in Figure 2.2. Distances for N2-C1 (iPr- 

side), 1.279 Å, and for N1-C1 (meta- side), 1.351 Å, corroborate that the double bond sets to the 

more electron donating side, which corresponds to the half of the diisopropyl groups.  

 

Scheme 2.4. A. Synthesis of DippFm. B. Reaction scheme for stepwise synthesis of 2 and 3 with 

DippFm as a precursor. 

 

Once the stepwise approach proved to be useful for unsymmetric formamidine formation, 

3 was synthesized by using DippFm (Scheme 2.4), as practiced with 2 previously. This reaction 

yielded 42% of the desired aryl formamidine after purification with silica column chromatography. 

3 is soluble in DCM, Toluene, THF, MeCN, acetone, benzene, CHCl3 and EtOAc. It is not soluble 

in water, EtOH, MeOH, slightly soluble in diethyl ether and hexanes. TLC trend for unsymmetric 

ligands remained true since 3 appears between its symmetric variations. 1H NMR spectra for 3 

also suggests the presence of tautomers. There are two septets corresponding to iPr- that integrate 

two protons overall. However, the septet at 3.24 has a significantly higher integration (1.62) than 

the septet at 3.07. Crystals for 3 were grown by slow evaporation. The crystal structure for 3 is 

depicted in Figure 2.3. For this ligand, the proton is bound to the diisopropyl side, the nitrogen-
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methine distances are 1.292 Å for N2-C7 (iPr- side), and 1.338 Å for N1-C7 (chloro- side). The 

N = C bond is favored, as with 1 and 2, to the more electron donating group. 

 

Scheme 2.5. A. Synthesis of MesFm. B. Reaction scheme for stepwise synthesis of 2 and 3 with 

MesFm as a precursor. 

 

Different from the other formamidines, 4 was not produced from mixing both anilines, as 

in with 1.  The stepwise approach for MesDippF only produced the dimesitylformamidine (MesF) 

when using DippFm and acid in the reaction. The synthetic procedure for 2 and 3 could not be 

replicated for this formamidine. Therefore, the synthesis of the same formamidine was attempted 

by using MesFm as the precursor. Although MesFm could be synthesized and isolated in high 

yields, MesF and DippF (symmetric formamidines) were only produced in the reaction. The 

similarity in these substituent groups and the proximal Hammett constants suggests that the more 

different the electron donating properties, the simpler it is to perform synthesis through the 

stepwise approach. 

Table 2.4 displays Hammett constants relevant for the proposed formamidines. Values for 

substituent that correspond to symmetric formamidines as obtained from literature57 and σ for the 

proposed unsymmetric formamidines were obtained by calculating the average σ values of the all 

susbstituents present in the formamidines. Substituents in ortho- positions were considered as 

having the same value as para- substituents. For instance, m, p-OCH3 (1) was measured (-0.268 + 
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0.115)/2, and -iPr, m-OCH3 (2) was calculated ((-0.151*2)+0.115)/3. These values will be useful 

for next chapter when considering Hammett plots. 

 

Group σ 

p—OCH3 - 0.268 

m, p—OCH3 (1) - 0.076 

m—OCH3 + 0.115 

—iPr, m—OCH3 (2) - 0.062 

—iPr - 0.151 

—iPr, p—Cl (3) - 0.025 

p—Cl + 0.227 

p—CH3 - 0.170 

—iPr, p—CH3 (4) - 0.162 

 

2.5 CONCLUSION 

Formation of 1 can be performed in the same conditions as its symmetric isomers. Nonetheless, 

production of 2 and 3 required utilizing DippFm as a precursor and column chromatography was 

necessary to separate unsymmetric products from their symmetric analogs. Crystal structures 

helped determine where the double bond and the proton are situated in the unsymmetric aryl 

formamidines. N=C interactions formed where the more electron donating substituent is bound. 

Differently, synthesis of 4 cannot be achieved through the described methods. Further variations 

in the experiment need to be explored since facile synthesis of 2 and 3 was achieved without aid 

of an extravagant catalyst. Complications in formation of 4 is attributed to similar electronic 

behavior of the involved substituent groups. Larger differences in Hammett constants may 

contribute to favor formation of unsymmetric aryl formamidines. Lastly, a method was proposed 

for calculating σ for our ligands. 

Table 2.4. Selected Hammett substituent constants. 



21 

Chapter 3: Electronic Tuning of Dimolybdenum Complexes by Modification 

of Ligand Periphery. 

3.1 INTRODUCTION 

 

Scheme 3.1. Molecular Orbital diagram (d-orbitals) of a quadruply bonded compound. 

 

Since the discovery of the Re–Re quadruple bond in Re2Cl8
2– 55 years ago, the chemistry of 

bimetallic complexes with metal-metal bonds has evolved to become an important field of 

chemistry.58 Currently, over a thousand quadruply bonded complexes have been successfully 

isolated and structurally characterized through single X-ray studies.59 This type of paddlewheel 

complexes has eight metal-based electrons, all of them paired and positioned in one bonding σ 
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composed of two dz
2 orbitals , two π bonding interactions, made up of two dxy and dyz, and one 

bonding δ orbital, which is constituted by the overlap between the dxy orbitals giving it a bond 

order of four (Scheme 3.1). In addition, bimetallic entities such as M2 
4+/5+ (M =Cr, Mo, W) where 

an electron is removed have an electronic configuration in which there is certainty as to the shape 

of the occupied orbital by the unpaired electron, namely a δ interaction. Differently, mononuclear 

systems often present ambiguity about the type of single-occupied MO (SOMO) because of low 

local symmetry.36 Hence, dimetal units provide better theoretical and experimental studies with 

clearer results than mononuclear compounds. 

Advances in bimetallic chemistry has been in part due to ligand design. Ligand control 

over transition metal complexes is plays a major role in homogeneous catalysis60,61 and electron 

transfer reactions.62 Substitution of the halide ions by bidentate carboxylate anions brought about 

an immediate growth in the field. Synthesis and characterization of hundreds of compounds with 

two metal atoms bridged by four monoanionic species, with paddlewheel or tetragonal structures 

(commonly recognized as having a D4h symmetry).63 Group six metals (Cr, Mo, W) as well as 

other metals such as Ru, and Rh are capable of forming such structural types.64 Utilization of 

different types of ligands such as formamidinates and guanidinates (Scheme 3.2) initiated the 

development of  bimetallic complexes with other transition metals, allowing the isolation of the 

first Ni2
5+ complex having a bond order of ½,65 as well as the first V2

4+,66 Fe2
2+,3+,67,68 Co2

3+,4+,5+,69 

and Pt2
4+,5+,6+,70 compounds. 
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Scheme 3.2. Examples of bidentate (κ2) ligands that support metal-metal bonds. 

 

 

The electronic behavior of bimetallic complexes can be manipulated by varying the nature 

of the coordinating molecules, by promoting steric effects, and by playing with substituents in the 

periphery. Nonetheless, changing the first coordination sphere may significantly affect the redox 

potential of the species. Steric hindrance usually prevents certain interactions to favor others. 

Altering the second coordination sphere of ancillary ligands on the metal unit modifies the energy 

of the orbitals, thus modulating redox potentials and photophysical properties of the unit.71,72 

Redox control over bimetallic entities can potentially be utilized to promote selectivity, and reach 

desired potentials for different applications. In fact, dinuclear compounds have been successfully 

used as antitumor agents73, platforms for supramolecular structures74, and catalysts.75,76 Therefore, 

the electron transfer process can be influenced through substituent effects on the ancillary ligands 

with minimum change in the coordination geometry. Tong Ren and his group first showed that 

redox potentials on Ni2L4 and Mo2L4 substituted aryl formamidinate complexes can be tuned from 

variations on the functional groups on the periphery, see Figure 3.1.77,78 Later work was performed 
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with Cr2L4 by Eglin.79 However, systematic studies of substituent effects on bimetallic centers are 

scarce and there is more left to know about their electronic properties.  

 

Figure 3.1. Dependence of E1/2 on the Hammett constant for several aryl formamidinato 

dimolybdenum species. 78 

 

Herein, it is proposed that using unsymmetric formamidinates as ancillary ligands to 

dimolybdenum species will provide a better understanding and a resourceful tool to tune the 

electronic properties of bimetallic complexes. Given the possibility of producing structural isomers 

(Scheme 3.3), it is of our interest to form the (4,0) or (3,1) isomers in order to potentially promote 

a metal-metal bond polarization. However, isolating these structural isomers has been synthetically 

challenging for chemists. Berry and his group have reported the only (4,0) isomer for 

dimolybdenum complexes.80,81 Notwithstanding, (2,2) isomers can be studied by observing change 

in the redox behavior caused by the second coordination sphere. Electrochemical studies were 

performed in a series of dimolybdenum in order to explore the redox behavior. We were able to 

probe the electronic tuning capabilities of aryl formamidines in bimetallic compounds with further 

redox manipulation by asymmetrical ligand synthesis.  
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Scheme 3.3. Possible structural isomers from having unsymmetric ligands. 

 

3.2 EXPERIMENTAL SECTION 

 

3.2.1 Materials and Methods 

 

All reactions and manipulations were conducted under a nitrogen atmosphere, using either a 

nitrogen glovebox or standard Schlenk line techniques unless otherwise stated. Solvents used were 

purified under argon using a Pure Process Technology solvent purification system or degassed 

under nitrogen. Commercially available chemicals methyllithium (1.6 M MeLi/Et2O), n-

butyllithium (2.5 M BuLi/Hex), sodium methoxide (0.5 M NaOCH3/MeOH), molybdenum 

carbonyl, o-dichlorobenzene, and acetic anhydride were purchased form Sigma Aldrich and used 

as received. Mo2OAc4,
82 Mo2(D

pAniF)4,
78 and Mo2(D

mAniF)4
78,83  were synthesized as reported in 

literature.  

3.2.2 Physical Measurements 

 

All 1H NMR spectra was recorded on a JEOL 600 MHz and a Bruker 400 MHz NMR 

spectrometers. All proton chemical shifts were referenced to CDCl3. Mass spectra was obtained 

using a JEOL AccuTOF JMS-T100LC under ESI+ mode. 

3.2.3 Electrochemical Studies 

 

Electrochemical analyses by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) 

were collected by using a CHI760D potentiostat with a Pt working and auxiliary electrodes, a 
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Ag/AgCl reference electrode, 1 mM solution of the compounds, and 0.10 M Bu4NPF6 (in THF or 

DCM) as electrolyte. Data for CV was obtained with a scan rate of 100 mV/s. Ferrocene was added 

at the end of each experiment and used as internal standard. 

3.2.4 Syntheses 

 

3.2.4.1 Synthesis of Mo2(Dm,pAniF)4 (5).  

Mo2(OAc)4 (0.233 mmol, 0.100 g) and 1 (0.934 mmol, 0.239 g) were placed in THF (20mL). 

NaOCH3/MeOH 0.5 M (1.87 mL) was added slowly to the reaction mixture under an ice bath. The 

reaction was allowed to reach room temperature and was stirred for 5h. THF was removed under 

reduced pressure. DCM (~ 25 mL) was added for extraction, and the resulting solution was filtered 

through frit-padded filter packed with celite. The filtrate was reduced in volume and then hexanes 

(40 mL) were added to precipitate a yellow powder. The precipitate was washed with EtOH (3 x 

30mL) and Hex (2 x 30mL). Yield = 0.094 g, 33%. 1H NMR δ (ppm in CDCl3): 8.56 (s, 1H, 

NCHN-), 7.00 (t, 1H, aromatic C-H), 6.87 (d, 2H, aromatic C-H), 6.66, (d, 2H, aromatic C-H), 

6.48 (d, 2H, aromatic C-H), 6.22 (s, 1H, aromatic C-H), 3.70 (s, 3H, -OCH3), 3.51 (s, 3H, -OCH3).  

3.2.4.2 Synthesis of Mo2(OAc)2(DippmAF)2 (6).  

Compound 2 (6.44 mmol, 2.0 g) was dissolved in THF (10 mL). MeLi/Et2O 1.6 M solution (4 mL) 

was added slowly while having the reaction mixture in an ice bath. Once reached room 

temperature, the yellow reaction mixture was transferred to a flask containing a suspension of 

Mo2(OAc)4 (3.22 mmol, 1.38 g) in THF (10 mL). The reaction was stirred at room temperature for 

5 h. Solvent was removed under reduced pressure to later extract with DCM. The red extracted 

solution was filtered through frit-padded a filter with celite. Solution volume was then reduced to 

~3 mL under reduced pressure. EtOH (40 mL) was added and precipitated a yellow powder. The 

powder was washed with EtOH (3x30 mL) and Hex (2x30mL). Yield = 1.182 g, 40%. 1H NMR δ 
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(ppm in CDCl3): 8.13 (s, 1H, NCHN-), 7.13 (s, 3H, aromatic C-H), 7.02 (t, 1H, aromatic C-H), 

6.53 (d, 1H, aromatic C-H), 6.37 (s, 1H, aromatic C-H), 6.26 (d, 1H, aromatic C-H), 3.66 (s, 1H, 

-OCH3), 3.39 (sept., 2H, C-H), 2.71 (s, 3H, OAc C-H), 1.25 (d, 6H, C-H), 1.21 (d, 6H, C-H). ESI-

MS (m/z): Calcd. 928.86 [ML], Found 931.83 [MLH+]. 

3.2.4.3 Synthesis of Mo2(OAc)2(pClDippF)2 (7).  

Compound 3 (1.59 mmol, 0.500 g) was dissolved in THF (10 mL). NaOCH3/MeOH 0.5 M solution 

(3.18 mL) was added slowly while having the reaction mixture in an ice bath. Once reached room 

temperature, the yellow reaction mixture was transferred to a flask containing a suspension of 

Mo2(OAc)4 (0.397 mmol, 0.170 g) in THF (5 mL). The reaction was stirred at room temperature 

for 5 h. Solvent was removed under reduced pressure to later extract with DCM. The extracted red 

solution was filtered through frit-padded a filter with celite. The volume of the solution was then 

reduced to ~3 mL under reduced pressure. EtOH (30 mL) was added and precipitated a yellow 

powder. The powder was washed with EtOH (3 x 30 mL) and Hex (2 x 30mL). Yield = 0.232 g, 

42%. 1H NMR δ (ppm in CDCl3): 8.06 (s, 1H, NCHN-), 7.14 (t overlap with d, 3H, aromatic C-

H), 7.09 (d, 2H, aromatic C-H), 6.64 (d, 2H, aromatic C-H), 3.34 (sept., 2H, C-H), 2.71 (s, 3H, 

OAc C-H), 1.23 (d, 6H, C-H), 1.20zz (d, 6H, C-H). 
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3.3 X-RAY CRYSTALLOGRAPHY 

 

3.3.1 Mo2(Dm,pAniF)4 

 

Figure 3.2. Crystal structure for 5 with ellipsoids drawn at 50% probability level. 

 

A specimen of C60H60Mo2N8O8 was used for the X-ray crystallography analysis. The X-ray 

intensity data were measured on a Bruker SMART APEX CCD system equipped with a fine-focus 

tube (MoKα, λ = 0.71073 Å) and a graphite monochromator. A total of 1440 frames were collected. 

The total exposure time was 12 hours. The frames were integrated with the Bruker SAINT software 

package using a narrow-frame algorithm. The integration of the data using a tetragonal unit cell 

yielded a total of 22915 reflections to a maximum θ angle of 27.55° (0.77 Å resolution), of which 

3142 were independent (average redundancy 7.293, completeness = 99.5%, Rint = 3.85%, Rsig = 

2.85%) and 2552 (81.22%) were greater than 2σ(F2). The final cell constants of a = 19.2060(13) 

Å, b = 19.2060(13) Å, c = 14.8707(10) Å, volume = 5485.4(8) Å3, are based upon the refinement 

of the XYZ-centroids of reflections above 20 σ(I). Data were corrected for absorption effects using 

the multi-scan method (SADABS). 
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The structure was solved and refined using the Bruker SHELXTL Software Package, using 

the space group I 41/a, with Z = 4 for the formula unit, C60H60Mo2N8O8. The final anisotropic full-

matrix least-squares refinement on F2 with 179 variables converged at R1 = 5.88%, for the 

observed data and wR2 = 14.96% for all data. The goodness-of-fit was 1.171. The largest peak in 

the final difference electron density synthesis was 1.932 e-/Å3 and the largest hole was -0.432 e-

/Å3 with an RMS deviation of 0.129 e-/Å3. On the basis of the final model, the calculated density 

was 1.469 g/cm3 and F(000), 2496 e-. 

Table 3.1. X-ray crystallography data for 5 

Chemical formula C60H60Mo2N8O8 

Formula weight 1213.04 g/mol 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system tetragonal 

Space group I 41/a 

Unit cell dimensions a = 19.2060(13) Å 

 b = 19.2060(13) Å α = 90° 

 c = 14.8707(10) Å β = 90° 

Volume 5485.4(8) Å3 γ = 90° 

Z 4  

Density (calculated) 1.469 g/cm3 

Absorption coefficient 0.521 mm-1 

F(000) 2496 
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3.3.2 Mo2(OAc)2(DippAF)2 

 

Figure 3.3. Crystal structure for 6 with ellipsoids drawn at 50% probability level. 

 

A specimen of C44H56Mo2N4O6, approximate dimensions 0.260 mm x 0.295 mm x 0.507 mm, 

was used for the X-ray crystallography analysis. The X-ray intensity data were measured on a 

Bruker SMART APEX CCD system equipped with a graphite monochromator and a MoKα fine-

focus tube (λ = 0.71073 Å). 

The total exposure time was 6 hours. The frames were integrated with the Bruker SAINT 

software package using a narrow-frame algorithm. The integration of the data using a triclinic unit 

cell yielded a total of 12800 reflections to a maximum θ angle of 27.56° (0.77 Å resolution), of 

which 5270 were independent (average redundancy 2.429, completeness = 98.6%, Rint = 1.12%, 

Rsig = 1.25%) and 5104 (96.85%) were greater than 2σ(F2). The final cell constants of a = 

10.3539(3) Å, b = 10.8756(3) Å, c = 11.5662(4) Å, β = 82.9730(10)°, γ = 72.2100(10)°, volume = 

1153.92(6) Å3, are based upon the refinement of the XYZ-centroids of 9914 reflections above 20 

σ(I) with 5.272° < 2θ < 55.11°. Data were corrected for absorption effects using the multi-scan 

method (SADABS). The ratio of minimum to maximum apparent transmission was 0.920. The 
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calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7540 

and 0.8620. The squeeze method from Platon84 was used, rendering a void of 112 Å3 with a residual 

electron count of 40e- located at 0, 0, 0 (x, y, z). 

The structure was solved and refined using the Bruker SHELXTL Software Package, using 

the space group P -1, with Z = 1 for the formula unit, C44H56Mo2N4O6. The final anisotropic full-

matrix least-squares refinement on F2 with 258 variables converged at R1 = 2.11%, for the 

observed data and wR2 = 5.92% for all data. The goodness-of-fit was 1.099. The largest peak in 

the final difference electron density synthesis was 0.540 e-/Å3 and the largest hole was -0.718 e-

/Å3 with an RMS deviation of 0.060 e-/Å3. On the basis of the final model, the calculated density 

was 1.337 g/cm3 and F(000), 480 e-. 

Table 3.2. X-ray crystallography data for 6. 

Chemical formula C44H56Mo2N4O6 

Formula weight 928.80 g/mol 

Temperature 150(2) K 

Wavelength 0.71073 Å 

Crystal size 0.260 x 0.295 x 0.507 mm 

Crystal system triclinic 

Space group P -1 

Unit cell 

dimensions 
a = 10.3539(3) Å 

 b = 10.8756(3) 

Å 
α = 69° 

 c = 11.5662(4) 

Å 

β = 

82.9730(10)° 

Volume 1153.92(6) Å3 
γ = 

72.2100(10)° 

Z 1  

Density (calculated) 1.337 g/cm3 

Absorption 

coefficient 
0.591 mm-1 

F(000) 480 
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3.4 RESULTS AND DISCUSSION 

 

3.4.1 Syntheses and Structures 

 

Dimolybdenum complexes were prepared with Mo2(OAc)4 as the starting material, where acetate 

ligands present in the bimetallic precursor were replaced by formamidinates. 59,78 In the case of 5, 

alternative synthesis can be done by utilizing Mo(CO)6 as a starting material, but the corresponding 

formamidine is added to the mixture instead of acetic acid.85,86 Upon substitution, Mo2(OAc)4-

n(L)n solubilizes and the reaction mixture turns dark. Dichloromethane was utilized to extract the 

product and leave the Li or Na salt behind. Ethanol and hexanes were used for precipitation 

because this type of dimolybdenum compounds are known to be insoluble in these solvents. The 

obtained isomers maintained the same electron density in the metal centers. Yields for all 

compounds were expected to be higher, but possible formation of other structural isomers and 

monomers might have decreased it. Nonetheless, 1H NMR for 6 and 7 depict the presence of a 

single isomer. Crystals for 5 (Figure 3.2) and 6 (Figure 3.3) were grown by layering DCM/Hex. 

Table 3.3. Selected bond lengths (Å) and bond angles (°) for 5 and 6. 

 

 5 6 

Mo1– Mo1 2.0991(9) 2.1009(2) 

Mo1 – N1 (m) 2.154(3) 2.1422(12) 

Mo1 – N2 (p, i-Pr) 2.169(3) 2.1643(12) 

N1 – C1 1.327(5) 1.3252(19) 
N2 – C1 1.322(5) 1.3264(18) 

Mo1 – Mo1 – N1 93.21(9) 92.86(3) 

Mo1 – Mo1 – N2 92.17(9) 92.66(3) 

N1 – Mo1 – N2 89.49(13) 174.36(4) 
N1 – C1 – N2 120.71(4) 121.07(13) 

 

Metal-metal bond distances for 5 and 6 are on the range of quadrupole dimolybdenum 

bonds (2.06 – 2.17 Å),87 with 2.0991 Å and 2.1009 Å respectively, as shown in Table 3.3.  

Molecules of this paddlewheel architecture are conventionally denominated as D4h structures due 
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to the point group symmetry of symmetric tetrakis-ligated complexes. For symmetric tetrakis-

ligated, trans-(2,2)-bis-susbtituted complexes, a D2h symmetry is obtained. D4h would be accurate 

to describe compound 5, while D2h would be an adequate description for 6 and 7 if the substituent 

groups were the same on both sides of the formamidinates. However, the presence of our 

unsymmetric ligands produces the appearance of less symmetry elements. Hence, lower symmetry 

point groups represent them best, namely C2v for 5 and C2h for 6 and 7. 

3.4.2 Electrochemistry 

Cyclic voltammetry on 5 reveals a one-electron reversible redox event at – 0.240 V (E1/2) vs Fc/Fc+. 

Figure 3.4 compares 5 versus its symmetric isomers. Redox events of Mo2(D
pAniF)4 and 

Mo2(D
mAniF)4 appear at – 0.282 V and – 0.190 V, respectively. The average E1/2 for Mo2(D

pAniF)4 

and Mo2(D
mAniF)4       – 0.236 V which is only a 4 mV difference with the experimental value 

obtained for 5. It is observed that changing the position of one of the substituents in the phenyl 

ring, systematically affects the redox behavior of the system. Figure 3.5 depicts the dependence of 

E1/2 to the Hammett constant (σ). The corresponding experimental and theoretical values obtained 

5 can be predicted with aid of Hammett constants. If the redox potentials for the symmetric 

versions are known, the redox event for the unsymmetric complex can be calculated in proportion 

to the average of the respective σ (See Chapter 2, Table 2.4). 
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Figure 3.4 CV comparison of Mo2(D
mAniF)4 (red, left), Mo2(D

m,pAniF)4 (5) (blue, middle), and 

Mo2(D
pAniF)4 (green, right). 

 

 

Figure 3.5 Hammett plot of 5 and its symmetric homologues. 

 

Compounds 6 (Figure 3.6) and 7 (Figure 3.7) display a single reversible wave at – 0.283 V 

and – 0.260 V, respectively, in their cyclic voltammograms. As for similar compounds, the redox 

wave is assigned as a one-electron reversible redox event of Mo2
4+/5+. Redox potentials for these 
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two compounds are close to each other varying by 23 mV. It comes to no surprise that they have 

such proximity since their average σ are also proximate to each other with – 0.06 for 6 and – 0.023 

for 7. For both systems, the trend follows that as σ becomes more negative, the dinuclear 

compounds also decrease their redox potential. Experimental unsymmetric variation of the second 

coordination sphere and predictive power of Hammett plots can be combined to comprehend a 

resourceful redox tuning tool. 

 

Figure 3.6. Cyclic voltammogram for 6.  Figure 3.7. Cyclic voltammogram for 7. 

 

3.5 CONCLUSION  

 

The formation of the discussed (2,2) isomers provided information about the electronic tuning 

process in bimetallic complexes. Dimolybdenum formamidinato complexes occurred by ligand 

substitution. All dinuclear centers discussed here present a single one-electron reversible redox 

event in their respective cyclic voltammograms. Binding unsymmetric ligands lowers the virtual 

symmetry of our systems and provides a plethora of substituent group combinations for electronic 

tuning. The tetrakis- substituted complex, 5, was fully characterized and studied through 

electrochemistry. The comparison to its symmetric analogs demonstrated that it is possible to tune 
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the electronic properties of the complexes just by changing the position of a substituent in the 

phenyl ring by observing that the E1/2 of 5 resulted to be between the para- and meta- versions of 

the complex. Redox potentials and Hammett constants for 6 and 7 have similar values. This 

relation supports the statement of tuning electronically dimolybdenum via remote substitution with 

unsymmetric formamidinate ligands. 

 

Scheme 3.4. Molecular Orbital diagram (d-orbitals) of a quintuply bonded compound. 

 

 

 Although these dimolybdenum complexes correspond to the saturated D4h paddlewheel 

structure, the acquired knowledge of electronic tuning in bimetallic systems can be transferred to 

other paddlewheel architectures, including D2h. This insight can transposed because the molecular 

orbital manifolds for these two systems (Scheme 3.2 and Schem 3.4)  are analogous, with the only 
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difference that the D2h manifold has the availability of its dx2-y2 orbitals to form a δ interaction 

between the two metal centers instead of occupying them in the metal-ligand interactions, as in the 

saturated D4h systems. Quintuply bonded complexes have been reported in the case of 

dimolybdenum with D2h symmetry containing open coordination sites and they are supported by 

bulky aryl formamidines.88 These compounds are of interest since they offer reactivity and 

potential small molecule activation.56,89,90  Moreover, the bulkiness in the formamidinate ligands 

from 6 and 7 can support the D2h structure and react them with H2 to substitute the acetate ligands 

and expose the dinuclear compound to UV light to form a quintuple bond and hydrogen gas, as 

reported by Carmona.91 Alternative routes can be explored by synthesizing chlorinated 

dimolybdenum D4h structures and reduce them to D2h systems, as shown by Tsai.92 Saturated 

bimetallic complexes serve as platforms to understand unsaturated dinuclear compounds, 

especially molybdenum since it is one of the few elements who has shown homonuclear quintuple 

bonds, and higher bond orders offer new chemistry. 
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Chapter 4: Conclusion 

In this thesis, unsymmetric aryl formamidinate ligands were utilized to tune the electronic behavior 

of dimolybdenum paddlewheel complexes. Unsymmetric formamidines were synthesized and 

characterized to later be used as ligands to form bimetallic complexes. Mo2
4+ compounds were 

synthesized, characterized and studied electrochemically. The effect of remote substitution of aryl 

formamidinates was investigated in dimolybdenum systems by synthetically lowering the 

symmetry. The direct relation of the second coordination sphere to redox behavior was observed, 

and it can be used as a tool to predict redox potentials and to further design complexes with specific 

electronic properties. 

In Chapter 2, we were able to synthesize and characterize unsymmetric aryl 

formamidinates. Compound 1 was compared to its symmetric homologues. Preparation of 2 and 3 

was approached by stepwise synthesis using DippFm as a precursor and were characterized 

successfully. Through x-ray crystallography, we determined that the N=C bonds in unsymmetric 

aryl formamidines will be positioned on the side of the more electron donating substituent. 

Furthermore, we propose a method for estimating σ values for unsymmetric formamidines, or 

disubstituted aryl rings in general.  

In Chapter 3, synthesis, characterization, and electrochemical studies of dimolybdenum 

complexes were accomplished in order to observe the change in electronic properties caused by 

varying the second coordination sphere. Cyclic voltammetry of 5-7 revealed a one-electron 

reversible redox event. From comparing 5 versus its symmetric isomers, it was observed that the 

experimental value for E1/2 agrees with the expected value. It was proved that changing the position 

of one of the substituents in the aromatic ring affected systematically the redox potential of the 

system. In addition, Hammett constants can be used as predictive tools when varying the 
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substituent groups of aryl formamidines, and likely other similar ligands, for electronic tuning 

purposes. The relation between redox potentials for 6 and 7 and their average σ supports the trend 

that as σ tends to be more negative, the redox potential of dimolybdenum compounds also 

decrease. Unsymmetric addition tool must hold to other dinuclear compounds if electronic tuning 

studies have been successfully done in other bimetallic systems. This study expands to compounds 

with open coordination sites, and these systems could be further reduced to explore reactivity.91,93 

Unsymmetric combination of substituents and aligned to Hammett plots behavior can become a 

resourceful electronic tuning tool and gives a step forward towards manipulating meta-metal 

interactions. 

Electronic tuning in saturated dimolybdenum systems give fundamental insights to apply 

that knowledge into sustainable energy production. Although unsymmetric formamidinato 

dimolybdenum complexes have a saturated architecture, unsymmetric ligand designing for redox 

tuning must hold to other paddlewheel dinuclear compounds, such as D2h, since  the molecular 

orbital manifolds for these systems are homologous, except for the participation of dx2-y2 orbitals 

in δ bonding instead of metal-ligand interactions. The removal of two ligands in D2h architecture 

provides open coordination sites which gives the opportunity for reactivity. In the case of 

dimolybdenum and dichromium analogs, complexes with open coordination and bond order of 

five, they have reacted with several reagents.56,94–101 Although these reagents are relatively highly 

reactive, bulky bisformamidinato dimolybdenum complexes like 6 and 7, showed interconversion 

of bond order of four and five by oxidative addition and reductive elimination of dihydrogen. 91,93 

This reactivity suggests potential for small molecule activation through homogeneous catalysis. 

Furthermore, the high d-orbital overlap in dimolybdenum systems may resemble the interaction 

between two metal centers in metal-metal cooperativity in a surface. This relationship is important 
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because the information acquired from these dimolybdenum systems can be utilized to understand 

and even manipulate systematically what happens at the surface level. Molybdenum bimetallic 

complexes were used as platforms to understand unsaturated dinuclear compounds, especially 

molybdenum since it is one of the few elements who has shown homonuclear quintuple bonds with 

higher bond orders that offer new chemistry to promote small molecule activation relevant for 

sustainable energy production.  
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Appendix 

 
Figure A.1. 1H NMR spectrum of DpAniF vs CDCl3. 

 

 
Figure A.2. 1H NMR spectrum of DmAniF vs CDCl3. 
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Figure A.3. 1H NMR spectrum of 1 vs CDCl3. 

 

 
Figure A.4 LCMS of 1. 
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Table A.1. Bond lengths (Å) for 1. 

N1-C1 1.3516(19) N1-C2 1.4110(18) 

N1-H1N 0.89(2) N2-C1 1.2899(19) 

N2-C9 1.4134(18) O1-C4 1.3661(19) 

O1-C8 1.4337(19) O2-C12 1.3713(18) 

O2-C15 1.429(2) C1-H1 0.989(18) 

C2-C3 1.391(2) C2-C7 1.396(2) 

C3-C4 1.397(2) C3-H3 0.95 

C4-C5 1.398(2) C5-C6 1.379(2) 

C5-H5 0.95 C6-C7 1.396(2) 

C6-H6 0.95 C7-H7 0.95 

C8-H8A 0.98 C8-H8B 0.98 

C8-H8C 0.98 C9-C10 1.397(2) 

C9-C14 1.399(2) C10-C11 1.392(2) 

C10-H10 0.95 C11-C12 1.392(2) 

C11-H11 0.95 C12-C13 1.397(2) 

C13-C14 1.384(2) C13-H13 0.95 

C14-H14 0.95 C15-H15A 0.98 

C15-H15B 0.98 C15-H15C 0.98 

 

Table A.2. Bond angles (°) for 1. 

C1-N1-C2 126.10(13) C1-N1-H1N 115.9(13) 

C2-N1-H1N 117.3(13) C1-N2-C9 118.11(12) 

C4-O1-C8 117.40(12) C12-O2-C15 117.64(12) 

N2-C1-N1 121.00(14) N2-C1-H1 121.2(10) 

N1-C1-H1 117.7(10) C3-C2-C7 120.74(14) 

C3-C2-N1 116.24(13) C7-C2-N1 123.02(14) 

C2-C3-C4 119.98(13) C2-C3-H3 120.0 

C4-C3-H3 120.0 O1-C4-C3 123.78(13) 

O1-C4-C5 116.40(13) C3-C4-C5 119.82(14) 

C6-C5-C4 119.27(14) C6-C5-H5 120.4 

C4-C5-H5 120.4 C5-C6-C7 122.00(14) 

C5-C6-H6 119.0 C7-C6-H6 119.0 

C6-C7-C2 118.17(14) C6-C7-H7 120.9 

C2-C7-H7 120.9 O1-C8-H8A 109.5 

O1-C8-H8B 109.5 H8A-C8-H8B 109.5 
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O1-C8-H8C 109.5 H8A-C8-H8C 109.5 

H8B-C8-H8C 109.5 C10-C9-C14 117.83(14) 

C10-C9-N2 119.02(13) C14-C9-N2 123.07(13) 

C11-C10-C9 121.75(14) C11-C10-H10 119.1 

C9-C10-H10 119.1 C10-C11-C12 119.55(14) 

C10-C11-H11 120.2 C12-C11-H11 120.2 

O2-C12-C11 124.37(14) O2-C12-C13 116.26(13) 

C11-C12-C13 119.37(14) C14-C13-C12 120.55(14) 

C14-C13-H13 119.7 C12-C13-H13 119.7 

C13-C14-C9 120.94(14) C13-C14-H14 119.5 

C9-C14-H14 119.5 O2-C15-H15A 109.5 

O2-C15-H15B 109.5 H15A-C15-H15B 109.5 

O2-C15-H15C 109.5 H15A-C15-H15C 109.5 

H15B-C15-H15C 109.5   

 

Table A.3. Torsion angles (°) for 1. 

C9-N2-C1-N1 -179.41(13) C2-N1-C1-N2 -167.50(14) 

C1-N1-C2-C3 154.11(14) C1-N1-C2-C7 -26.9(2) 

C7-C2-C3-C4 0.3(2) N1-C2-C3-C4 179.35(13) 

C8-O1-C4-C3 1.5(2) C8-O1-C4-C5 -177.96(13) 

C2-C3-C4-O1 -178.36(13) C2-C3-C4-C5 1.1(2) 

O1-C4-C5-C6 177.83(13) C3-C4-C5-C6 -1.7(2) 

C4-C5-C6-C7 0.8(2) C5-C6-C7-C2 0.6(2) 

C3-C2-C7-C6 -1.2(2) N1-C2-C7-C6 179.89(13) 

C1-N2-C9-C10 -127.17(15) C1-N2-C9-C14 56.3(2) 

C14-C9-C10-C11 -0.8(2) N2-C9-C10-C11 -177.58(13) 

C9-C10-C11-C12 1.2(2) C15-O2-C12-C11 -11.2(2) 

C15-O2-C12-C13 168.70(14) C10-C11-C12-O2 178.95(14) 

C10-C11-C12-C13 -1.0(2) O2-C12-C13-C14 -179.50(14) 

C11-C12-C13-C14 0.4(2) C12-C13-C14-C9 -0.1(2) 

C10-C9-C14-C13 0.3(2) N2-C9-C14-C13 176.87(14) 
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Figure A.5. 1H NMR spectrum of 2 vs CDCl3 

 
Figure A.6. LCMS of 2. 
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Table A.4. Bond lengths (Å) for 2. 

O2-C24 1.379(3) O2-C28 1.415(3) 

N4-C21 1.280(3) N4-C29 1.433(3) 

N1-C1 1.351(3) N1-C2 1.409(3) 

N1-H1N 0.90(2) N2-C1 1.279(3) 

N2-C9 1.434(3) N3-C21 1.357(3) 

N3-C22 1.416(3) N3-H2N 0.90(3) 

O1-C4 1.371(3) O1-C8 1.429(3) 

C29-C34 1.405(3) C29-C30 1.408(3) 

C23-C24 1.393(3) C23-C22 1.398(3) 

C23-H23 0.93 C21-H21 0.93 

C22-C27 1.373(3) C9-C10 1.400(3) 

C9-C14 1.412(3) C3-C4 1.376(3) 

C3-C2 1.392(3) C3-H3 0.93 

C1-H1 0.93 C2-C7 1.391(3) 

C24-C25 1.375(4) C30-C31 1.401(3) 

C30-C35 1.523(4) C34-C33 1.398(3) 

C34-C38 1.514(4) C14-C13 1.391(4) 

C14-C18 1.524(4) C4-C5 1.397(4) 

C10-C11 1.387(4) C10-C15 1.517(4) 

C35-C36 1.529(4) C35-C37 1.537(4) 

C35-H35 0.98 C13-C12 1.370(4) 

C13-H13 0.93 C7-C6 1.376(4) 

C7-H7 0.93 C27-C26 1.393(3) 

C27-H27 0.93 C18-C20 1.533(4) 

C18-C19 1.534(4) C18-H18 0.98 

C25-C26 1.369(4) C25-H25 0.93 

C33-C32 1.378(4) C33-H33 0.93 

C38-C40 1.515(4) C38-C39 1.529(4) 

C38-H38 0.98 C31-C32 1.369(4) 

C31-H31 0.93 C5-C6 1.373(4) 

C5-H5 0.93 C12-C11 1.369(4) 

C12-H12 0.93 C11-H11 0.93 

C26-H26 0.93 C6-H6 0.93 

C15-C16 1.528(4) C15-C17 1.539(5) 
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C15-H15 0.98 C32-H32 0.93 

C28-H28A 0.96 C28-H28B 0.96 

C28-H28C 0.96 C36-H36A 0.96 

C36-H36B 0.96 C36-H36C 0.96 

C8-H8A 0.96 C8-H8B 0.96 

C8-H8C 0.96 C37-H37A 0.96 

C37-H37B 0.96 C37-H37C 0.96 

C19-H19A 0.96 C19-H19B 0.96 

C19-H19C 0.96 C39-H39A 0.96 

C39-H39B 0.96 C39-H39C 0.96 

C20-H20A 0.96 C20-H20B 0.96 

C20-H20C 0.96 C40-H40A 0.96 

C40-H40B 0.96 C40-H40C 0.96 

C16-H16A 0.96 C16-H16B 0.96 

C16-H16C 0.96 C17-H17A 0.96 

C17-H17B 0.96 C17-H17C 0.96 

 

Table A.5. Bond angles (°) for 2. 

C24-O2-C28 117.05(18) C21-N4-C29 118.21(18) 

C1-N1-C2 125.8(2) C1-N1-H1N 116.9(15) 

C2-N1-H1N 116.8(15) C1-N2-C9 117.84(18) 

C21-N3-C22 125.9(2) C21-N3-H2N 116.8(16) 

C22-N3-H2N 117.2(16) C4-O1-C8 117.1(2) 

C34-C29-C30 121.6(2) C34-C29-N4 118.3(2) 

C30-C29-N4 119.9(2) C24-C23-C22 119.9(2) 

C24-C23-H23 120.0 C22-C23-H23 120.0 

N4-C21-N3 121.4(2) N4-C21-H21 119.3 

N3-C21-H21 119.3 C27-C22-C23 119.9(2) 

C27-C22-N3 123.6(2) C23-C22-N3 116.5(2) 

C10-C9-C14 121.7(2) C10-C9-N2 120.7(2) 

C14-C9-N2 117.5(2) C4-C3-C2 120.1(2) 

C4-C3-H3 119.9 C2-C3-H3 119.9 

N2-C1-N1 121.6(2) N2-C1-H1 119.2 

N1-C1-H1 119.2 C7-C2-C3 119.9(2) 

C7-C2-N1 122.8(2) C3-C2-N1 117.3(2) 

C25-C24-O2 116.3(2) C25-C24-C23 120.2(2) 

O2-C24-C23 123.4(2) C31-C30-C29 117.5(2) 

C31-C30-C35 121.0(2) C29-C30-C35 121.5(2) 
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C33-C34-C29 117.6(2) C33-C34-C38 122.0(2) 

C29-C34-C38 120.4(2) C13-C14-C9 116.9(2) 

C13-C14-C18 121.8(2) C9-C14-C18 121.2(2) 

O1-C4-C3 124.1(2) O1-C4-C5 116.1(2) 

C3-C4-C5 119.8(2) C11-C10-C9 118.0(3) 

C11-C10-C15 120.2(3) C9-C10-C15 121.8(2) 

C30-C35-C36 111.2(2) C30-C35-C37 113.2(2) 

C36-C35-C37 110.4(2) C30-C35-H35 107.2 

C36-C35-H35 107.2 C37-C35-H35 107.2 

C12-C13-C14 122.0(3) C12-C13-H13 119.0 

C14-C13-H13 119.0 C6-C7-C2 119.3(3) 

C6-C7-H7 120.3 C2-C7-H7 120.3 

C22-C27-C26 118.7(2) C22-C27-H27 120.7 

C26-C27-H27 120.7 C14-C18-C20 113.5(3) 

C14-C18-C19 110.1(2) C20-C18-C19 111.0(3) 

C14-C18-H18 107.3 C20-C18-H18 107.3 

C19-C18-H18 107.3 C26-C25-C24 118.9(2) 

C26-C25-H25 120.6 C24-C25-H25 120.6 

C32-C33-C34 121.6(3) C32-C33-H33 119.2 

C34-C33-H33 119.2 C34-C38-C40 113.3(3) 

C34-C38-C39 111.2(2) C40-C38-C39 111.0(3) 

C34-C38-H38 107.0 C40-C38-H38 107.0 

C39-C38-H38 107.0 C32-C31-C30 121.7(3) 

C32-C31-H31 119.1 C30-C31-H31 119.1 

C6-C5-C4 119.6(2) C6-C5-H5 120.2 

C4-C5-H5 120.2 C11-C12-C13 120.0(3) 

C11-C12-H12 120.0 C13-C12-H12 120.0 

C12-C11-C10 121.4(3) C12-C11-H11 119.3 

C10-C11-H11 119.3 C25-C26-C27 122.3(3) 

C25-C26-H26 118.8 C27-C26-H26 118.8 

C5-C6-C7 121.2(2) C5-C6-H6 119.4 

C7-C6-H6 119.4 C10-C15-C16 111.1(3) 

C10-C15-C17 113.6(3) C16-C15-C17 111.1(3) 

C10-C15-H15 106.9 C16-C15-H15 106.9 

C17-C15-H15 106.9 C31-C32-C33 119.9(3) 

C31-C32-H32 120.1 C33-C32-H32 120.1 

O2-C28-H28A 109.5 O2-C28-H28B 109.5 
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H28A-C28-H28B 109.5 O2-C28-H28C 109.5 

H28A-C28-H28C 109.5 H28B-C28-H28C 109.5 

C35-C36-H36A 109.5 C35-C36-H36B 109.5 

H36A-C36-H36B 109.5 C35-C36-H36C 109.5 

H36A-C36-H36C 109.5 H36B-C36-H36C 109.5 

O1-C8-H8A 109.5 O1-C8-H8B 109.5 

H8A-C8-H8B 109.5 O1-C8-H8C 109.5 

H8A-C8-H8C 109.5 H8B-C8-H8C 109.5 

C35-C37-H37A 109.5 C35-C37-H37B 109.5 

H37A-C37-H37B 109.5 C35-C37-H37C 109.5 

H37A-C37-H37C 109.5 H37B-C37-H37C 109.5 

C18-C19-H19A 109.5 C18-C19-H19B 109.5 

H19A-C19-H19B 109.5 C18-C19-H19C 109.5 

H19A-C19-H19C 109.5 H19B-C19-H19C 109.5 

C38-C39-H39A 109.5 C38-C39-H39B 109.5 

H39A-C39-H39B 109.5 C38-C39-H39C 109.5 

H39A-C39-H39C 109.5 H39B-C39-H39C 109.5 

C18-C20-H20A 109.5 C18-C20-H20B 109.5 

H20A-C20-H20B 109.5 C18-C20-H20C 109.5 

H20A-C20-H20C 109.5 H20B-C20-H20C 109.5 

C38-C40-H40A 109.5 C38-C40-H40B 109.5 

H40A-C40-H40B 109.5 C38-C40-H40C 109.5 

H40A-C40-H40C 109.5 H40B-C40-H40C 109.5 

C15-C16-H16A 109.5 C15-C16-H16B 109.5 

H16A-C16-H16B 109.5 C15-C16-H16C 109.5 

H16A-C16-H16C 109.5 H16B-C16-H16C 109.5 
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C15-C17-H17A 109.5 C15-C17-H17B 109.5 

H17A-C17-H17B 109.5 C15-C17-H17C 109.5 

H17A-C17-H17C 109.5 H17B-C17-H17C 109.5 

 

Table A.6. Torsion angles (°) for 2. 

C21-N4-C29-C34 98.3(2) C21-N4-C29-C30 -87.1(3) 

C29-N4-C21-N3 -174.7(2) C22-N3-C21-N4 -169.4(2) 

C24-C23-C22-C27 0.9(4) C24-C23-C22-N3 -177.0(2) 

C21-N3-C22-C27 12.2(4) C21-N3-C22-C23 -170.0(2) 

C1-N2-C9-C10 85.9(3) C1-N2-C9-C14 -97.6(2) 

C9-N2-C1-N1 174.8(2) C2-N1-C1-N2 174.1(2) 

C4-C3-C2-C7 1.5(4) C4-C3-C2-N1 179.0(2) 

C1-N1-C2-C7 -19.7(4) C1-N1-C2-C3 162.8(2) 

C28-O2-C24-C25 -178.1(3) C28-O2-C24-C23 2.0(4) 

C22-C23-C24-C25 -1.8(4) C22-C23-C24-O2 178.0(2) 

C34-C29-C30-C31 -2.8(3) N4-C29-C30-C31 -177.2(2) 

C34-C29-C30-C35 178.2(2) N4-C29-C30-C35 3.8(3) 

C30-C29-C34-C33 3.9(3) N4-C29-C34-C33 178.4(2) 

C30-C29-C34-C38 -177.9(2) N4-C29-C34-C38 -3.4(3) 

C10-C9-C14-C13 -3.9(3) N2-C9-C14-C13 179.6(2) 

C10-C9-C14-C18 178.2(2) N2-C9-C14-C18 1.6(3) 

C8-O1-C4-C3 10.3(4) C8-O1-C4-C5 -169.3(3) 

C2-C3-C4-O1 -180.0(2) C2-C3-C4-C5 -0.4(4) 

C14-C9-C10-C11 3.4(3) N2-C9-C10-C11 179.9(2) 

C14-C9-C10-C15 -177.9(2) N2-C9-C10-C15 -1.4(4) 

C31-C30-C35-C36 -83.3(3) C29-C30-C35-C36 95.8(3) 

C31-C30-C35-C37 41.7(3) C29-C30-C35-C37 -139.2(3) 

C9-C14-C13-C12 1.3(4) C18-C14-C13-C12 179.2(2) 
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C3-C2-C7-C6 -2.0(4) N1-C2-C7-C6 -179.4(3) 

C23-C22-C27-C26 0.6(4) N3-C22-C27-C26 178.4(3) 

C13-C14-C18-C20 43.7(3) C9-C14-C18-C20 -138.4(3) 

C13-C14-C18-C19 -81.4(3) C9-C14-C18-C19 96.4(3) 

O2-C24-C25-C26 -178.7(3) C23-C24-C25-C26 1.2(4) 

C29-C34-C33-C32 -2.6(4) C38-C34-C33-C32 179.2(3) 

C33-C34-C38-C40 -42.5(4) C29-C34-C38-C40 139.3(3) 

C33-C34-C38-C39 83.4(3) C29-C34-C38-C39 -94.8(3) 

C29-C30-C31-C32 0.3(4) C35-C30-C31-C32 179.4(3) 

O1-C4-C5-C6 179.4(3) C3-C4-C5-C6 -0.2(4) 

C14-C13-C12-C11 1.8(4) C13-C12-C11-C10 -2.3(4) 

C9-C10-C11-C12 -0.3(4) C15-C10-C11-C12 -179.0(3) 

C24-C25-C26-C27 0.4(5) C22-C27-C26-C25 -1.3(5) 

C4-C5-C6-C7 -0.3(5) C2-C7-C6-C5 1.4(5) 

C11-C10-C15-C16 77.8(3) C9-C10-C15-C16 -100.8(3) 

C11-C10-C15-C17 -48.3(4) C9-C10-C15-C17 133.0(3) 

C30-C31-C32-C33 1.0(4) C34-C33-C32-C31 0.3(4) 
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Figure A.7. 1H NMR spectrum of 3 vs CDCl3. 

 

Figure A.8. LCMS of 3. 

 

Table A.7. Bond lengths (Å) for 3. 
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Cl1-C1 1.749(3) N1-C7 1.292(3) 

N1-C4 1.413(3) N2-C7 1.338(3) 

N2-C8 1.440(3) N2-H2N 0.81(3) 

C1-C2 1.368(4) C1-C6 1.374(4) 

C2-C3 1.381(4) C2-H2 0.95 

C3-C4 1.383(4) C3-H3 0.95 

C4-C5 1.386(4) C5-C6 1.386(4) 

C5-H5 0.95 C6-H6 0.95 

C7-H7 0.95 C8-C13 1.405(4) 

C8-C9 1.407(4) C9-C10 1.382(4) 

C9-C14 1.520(4) C10-C11 1.382(4) 

C10-H10 0.95 C11-C12 1.379(4) 

C11-H11 0.95 C12-C13 1.396(4) 

C12-H12 0.95 C13-C17 1.518(4) 

C14-C15 1.509(4) C14-C16 1.511(4) 

C14-H14 1.0 C15-H15A 0.98 

C15-H15B 0.98 C15-H15C 0.98 

C16-H16A 0.98 C16-H16B 0.98 

C16-H16C 0.98 C17-C19 1.506(4) 

C17-C18 1.510(5) C17-H17 1.0 

C18-H18A 0.98 C18-H18B 0.98 

C18-H18C 0.98 C19-H19A 0.98 

C19-H19B 0.98 C19-H19C 0.98 

 

Table A.8. Bond angles (°) for 3. 

C7-N1-C4 116.0(2) C7-N2-C8 125.6(2) 

C7-N2-H2N 118.(2) C8-N2-H2N 117.(2) 

C2-C1-C6 120.9(3) C2-C1-Cl1 120.0(3) 

C6-C1-Cl1 119.1(3) C1-C2-C3 119.3(3) 

C1-C2-H2 120.3 C3-C2-H2 120.3 

C2-C3-C4 121.6(3) C2-C3-H3 119.2 

C4-C3-H3 119.2 C3-C4-C5 117.7(3) 

C3-C4-N1 119.7(3) C5-C4-N1 122.5(3) 

C6-C5-C4 121.3(3) C6-C5-H5 119.3 

C4-C5-H5 119.3 C1-C6-C5 119.1(3) 

C1-C6-H6 120.4 C5-C6-H6 120.4 

N1-C7-N2 124.3(3) N1-C7-H7 117.9 

N2-C7-H7 117.9 C13-C8-C9 121.9(2) 
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C13-C8-N2 119.0(2) C9-C8-N2 118.9(2) 

C10-C9-C8 117.9(3) C10-C9-C14 121.8(3) 

C8-C9-C14 120.3(2) C9-C10-C11 121.4(3) 

C9-C10-H10 119.3 C11-C10-H10 119.3 

C12-C11-C10 120.0(3) C12-C11-H11 120.0 

C10-C11-H11 120.0 C11-C12-C13 121.5(3) 

C11-C12-H12 119.3 C13-C12-H12 119.3 

C12-C13-C8 117.3(3) C12-C13-C17 120.1(3) 

C8-C13-C17 122.6(2) C15-C14-C16 111.4(3) 

C15-C14-C9 113.8(2) C16-C14-C9 110.1(2) 

C15-C14-H14 107.1 C16-C14-H14 107.1 

C9-C14-H14 107.1 C14-C15-H15A 109.5 

C14-C15-H15B 109.5 H15A-C15-H15B 109.5 

C14-C15-H15C 109.5 H15A-C15-H15C 109.5 

H15B-C15-H15C 109.5 C14-C16-H16A 109.5 

C14-C16-H16B 109.5 H16A-C16-H16B 109.5 

C14-C16-H16C 109.5 H16A-C16-H16C 109.5 

H16B-C16-H16C 109.5 C19-C17-C18 109.7(3) 

C19-C17-C13 112.4(2) C18-C17-C13 111.6(3) 

C19-C17-H17 107.6 C18-C17-H17 107.6 

C13-C17-H17 107.6 C17-C18-H18A 109.5 

C17-C18-H18B 109.5 H18A-C18-H18B 109.5 

C17-C18-H18C 109.5 H18A-C18-H18C 109.5 

H18B-C18-H18C 109.5 C17-C19-H19A 109.5 

C17-C19-H19B 109.5 H19A-C19-H19B 109.5 

C17-C19-H19C 109.5 H19A-C19-H19C 109.5 

H19B-C19-H19C 109.5   

 

Table A.9. Torsion angles (°) for 3. 

C6-C1-C2-C3 -0.7(5) Cl1-C1-C2-C3 178.5(2) 

C1-C2-C3-C4 0.2(4) C2-C3-C4-C5 -0.3(4) 

C2-C3-C4-N1 -176.8(3) C7-N1-C4-C3 -124.5(3) 

C7-N1-C4-C5 59.1(3) C3-C4-C5-C6 0.8(4) 

N1-C4-C5-C6 177.2(2) C2-C1-C6-C5 1.2(5) 

Cl1-C1-C6-C5 -178.0(2) C4-C5-C6-C1 -1.3(4) 

C4-N1-C7-N2 -174.4(3) C8-N2-C7-N1 7.5(4) 

C7-N2-C8-C13 74.2(3) C7-N2-C8-C9 -110.0(3) 

C13-C8-C9-C10 1.2(4) N2-C8-C9-C10 -174.5(2) 
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C13-C8-C9-C14 -178.2(2) N2-C8-C9-C14 6.1(4) 

C8-C9-C10-C11 -0.9(4) C14-C9-C10-C11 178.5(2) 

C9-C10-C11-C12 -0.3(4) C10-C11-C12-C13 1.3(4) 

C11-C12-C13-C8 -1.0(4) C11-C12-C13-C17 176.9(3) 

C9-C8-C13-C12 -0.3(4) N2-C8-C13-C12 175.4(2) 

C9-C8-C13-C17 -178.2(2) N2-C8-C13-C17 -2.5(4) 

C10-C9-C14-C15 27.3(4) C8-C9-C14-C15 -153.3(3) 

C10-C9-C14-C16 -98.5(3) C8-C9-C14-C16 80.8(3) 

C12-C13-C17-C19 53.8(4) C8-C13-C17-C19 -128.4(3) 

C12-C13-C17-C18 -70.0(4) C8-C13-C17-C18 107.9(3) 

 

 
Figure A.9. 1H NMR spectrum of 5 vs CDCl3. 

 

Table A.10. Bond lengths (Å) for 5. 

Mo1-Mo1 2.0991(9) Mo1-N1 2.154(3) 

Mo1-N1 2.154(3) Mo1-N2 2.169(3) 

Mo1-N2 2.169(3) O1-C4 1.366(6) 

O1-C8 1.429(7) O2-C12 1.369(6) 

O2-C15 1.429(8) N1-C1 1.327(5) 
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N1-C2 1.414(5) N2-C1 1.322(5) 

N2-C9 1.433(5) C1-H1 0.95 

C2-C7 1.392(6) C2-C3 1.409(6) 

C3-C4 1.392(6) C3-H3 0.95 

C4-C5 1.387(7) C5-C6 1.381(7) 

C5-H5 0.95 C6-C7 1.393(7) 

C6-H6 0.95 C7-H7 0.95 

C8-H8A 0.98 C8-H8B 0.98 

C8-H8C 0.98 C9-C14 1.387(6) 

C9-C10 1.388(6) C10-C11 1.398(7) 

C10-H10 0.95 C11-C12 1.381(8) 

C11-H11 0.95 C12-C13 1.383(8) 

C13-C14 1.404(7) C13-H13 0.95 

C14-H14 0.95 C15-H15A 0.98 

C15-H15B 0.98 C15-H15C 0.98 

 

Table A.11. Bond angles (°) for 5. 

Mo1-Mo1-N1 93.21(9) Mo1-Mo1-N1 93.21(9) 

N1-Mo1-N1 173.57(18) Mo1-Mo1-N2 92.17(9) 

N1-Mo1-N2 89.49(13) N1-Mo1-N2 90.26(13) 

Mo1-Mo1-N2 92.17(9) N1-Mo1-N2 90.26(13) 

N1-Mo1-N2 89.49(13) N2-Mo1-N2 175.65(18) 

C4-O1-C8 116.8(4) C12-O2-C15 117.7(5) 

C1-N1-C2 119.8(3) C1-N1-Mo1 116.7(3) 

C2-N1-Mo1 122.4(3) C1-N2-C9 115.7(3) 

C1-N2-Mo1 117.0(3) C9-N2-Mo1 126.6(3) 

N2-C1-N1 120.7(4) N2-C1-H1 119.6 

N1-C1-H1 119.6 C7-C2-C3 118.8(4) 

C7-C2-N1 123.3(4) C3-C2-N1 117.7(4) 
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C4-C3-C2 120.3(4) C4-C3-H3 119.8 

C2-C3-H3 119.8 O1-C4-C5 115.6(4) 

O1-C4-C3 124.1(4) C5-C4-C3 120.3(4) 

C6-C5-C4 119.3(4) C6-C5-H5 120.3 

C4-C5-H5 120.3 C5-C6-C7 121.3(4) 

C5-C6-H6 119.4 C7-C6-H6 119.4 

C2-C7-C6 119.9(4) C2-C7-H7 120.0 

C6-C7-H7 120.0 O1-C8-H8A 109.5 

O1-C8-H8B 109.5 H8A-C8-H8B 109.5 

O1-C8-H8C 109.5 H8A-C8-H8C 109.5 

H8B-C8-H8C 109.5 C14-C9-C10 118.4(4) 

C14-C9-N2 122.1(4) C10-C9-N2 119.5(4) 

C9-C10-C11 120.8(5) C9-C10-H10 119.6 

C11-C10-H10 119.6 C12-C11-C10 120.2(5) 

C12-C11-H11 119.9 C10-C11-H11 119.9 

O2-C12-C11 115.5(5) O2-C12-C13 124.6(5) 

C11-C12-C13 119.9(5) C12-C13-C14 119.5(5) 

C12-C13-H13 120.2 C14-C13-H13 120.2 

C9-C14-C13 121.1(4) C9-C14-H14 119.4 

C13-C14-H14 119.4 O2-C15-H15A 109.5 

O2-C15-H15B 109.5 H15A-C15-H15B 109.5 

O2-C15-H15C 109.5 H15A-C15-H15C 109.5 

H15B-C15-H15C 109.5   

 

Table A.12. Torsion angles (°) for 5. 

C9-N2-C1-N1 -176.7(4) Mo1-N2-C1-N1 -5.6(5) 

C2-N1-C1-N2 173.2(4) Mo1-N1-C1-N2 5.2(5) 

C1-N1-C2-C7 -28.6(6) Mo1-N1-C2-C7 138.6(4) 

C1-N1-C2-C3 157.3(4) Mo1-N1-C2-C3 -35.4(5) 

C7-C2-C3-C4 -1.6(6) N1-C2-C3-C4 172.8(4) 

C8-O1-C4-C5 170.5(5) C8-O1-C4-C3 -10.2(7) 

C2-C3-C4-O1 -177.7(4) C2-C3-C4-C5 1.7(7) 
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O1-C4-C5-C6 179.0(4) C3-C4-C5-C6 -0.4(7) 

C4-C5-C6-C7 -0.9(8) C3-C2-C7-C6 0.2(7) 

N1-C2-C7-C6 -173.8(4) C5-C6-C7-C2 1.0(7) 

C1-N2-C9-C14 -120.3(5) Mo1-N2-C9-C14 69.6(5) 

C1-N2-C9-C10 60.1(5) Mo1-N2-C9-C10 -110.0(4) 

C14-C9-C10-C11 0.2(8) N2-C9-C10-C11 179.8(5) 

C9-C10-C11-C12 0.2(9) C15-O2-C12-C11 -176.0(6) 

C15-O2-C12-C13 3.7(9) C10-C11-C12-O2 179.9(6) 

C10-C11-C12-C13 0.2(9) O2-C12-C13-C14 179.3(5) 

C11-C12-C13-C14 -1.0(9) C10-C9-C14-C13 -1.0(7) 

N2-C9-C14-C13 179.4(4) C12-C13-C14-C9 1.4(8) 

 

 
Figure A.10. 1H NMR spectrum of 6 vs CDCl3. 

Table A.13. Bond lengths (Å) for 6. 

Mo01-Mo01 2.1009(2) Mo01-O1 2.1171(10) 

Mo01-O2 2.1255(10) Mo01-N1 2.1422(12) 

Mo01-N2 2.1643(12) N1-C1 1.3252(19) 

N1-C2 1.4270(18) N2-C1 1.3264(18) 

N2-C9 1.4472(18) N2-Mo01 2.1642(12) 

O1-C21 1.272(2) O2-C21 1.2699(19) 
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O2-Mo01 2.1255(10) O3-C4 1.3714(18) 

O3-C8 1.432(2) C2-C7 1.394(2) 

C2-C3 1.402(2) C3-C4 1.395(2) 

C4-C5 1.393(2) C5-C6 1.382(2) 

C6-C7 1.392(2) C9-C14 1.406(2) 

C9-C10 1.409(2) C10-C11 1.398(2) 

C10-C15 1.512(2) C11-C12 1.377(3) 

C12-C13 1.383(3) C13-C14 1.398(2) 

C14-C18 1.526(2) C15-C16 1.519(3) 

C15-C17 1.527(3) C18-C20 1.529(3) 

C18-C19 1.530(3) C21-C22 1.505(2) 

 

Table A.14. Bond angles (°) for 6. 

Mo01-Mo01-O1 92.59(3) Mo01-Mo01-O2 90.87(3) 

O1-Mo01-O2 176.07(4) Mo01-Mo01-N1 92.86(3) 

O1-Mo01-N1 88.50(4) O2-Mo01-N1 89.46(4) 

Mo01-Mo01-N2 92.66(3) O1-Mo01-N2 90.09(4) 

O2-Mo01-N2 91.62(4) N1-Mo01-N2 174.36(4) 

C1-N1-C2 115.52(12) C1-N1-Mo01 117.15(9) 

C2-N1-Mo01 127.15(9) C1-N2-C9 113.77(12) 

C1-N2-Mo01 116.22(9) C9-N2-Mo01 129.84(9) 

C21-O1-Mo01 116.30(9) C21-O2-Mo01 117.52(10) 

C4-O3-C8 117.00(13) N1-C1-N2 121.07(13) 

C7-C2-C3 120.45(13) C7-C2-N1 120.67(13) 

C3-C2-N1 118.87(13) C4-C3-C2 119.00(14) 

O3-C4-C5 115.05(14) O3-C4-C3 124.43(15) 

C5-C4-C3 120.52(14) C6-C5-C4 119.85(15) 

C5-C6-C7 120.67(15) C6-C7-C2 119.49(14) 

C14-C9-C10 121.05(14) C14-C9-N2 119.49(13) 

C10-C9-N2 119.45(13) C11-C10-C9 118.27(15) 

C11-C10-C15 120.72(15) C9-C10-C15 120.97(14) 

C12-C11-C10 121.23(17) C11-C12-C13 119.99(16) 

C12-C13-C14 121.26(17) C13-C14-C9 118.20(15) 

C13-C14-C18 119.32(15) C9-C14-C18 122.49(14) 

C10-C15-C16 110.40(18) C10-C15-C17 113.10(18) 

C16-C15-C17 110.51(19) C14-C18-C20 111.83(15) 

C14-C18-C19 111.72(15) C20-C18-C19 110.37(15) 

O2-C21-O1 122.66(14) O2-C21-C22 118.53(15) 
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O1-C21-C22 118.80(15)   

 

Table A.15. Torsion angles (°) for 6. 

C2-N1-C1-N2 177.53(12) Mo01-N1-C1-N2 2.02(18) 

C9-N2-C1-N1 -176.67(12) Mo01-N2-C1-N1 -0.83(18) 

C1-N1-C2-C7 -50.04(19) Mo01-N1-C2-C7 124.94(13) 

C1-N1-C2-C3 130.74(14) Mo01-N1-C2-C3 -54.28(17) 

C7-C2-C3-C4 0.2(2) N1-C2-C3-C4 179.38(13) 

C8-O3-C4-C5 171.62(16) C8-O3-C4-C3 -8.4(2) 

C2-C3-C4-O3 -179.46(14) C2-C3-C4-C5 0.5(2) 

O3-C4-C5-C6 179.71(16) C3-C4-C5-C6 -0.2(3) 

C4-C5-C6-C7 -0.7(3) C5-C6-C7-C2 1.3(3) 

C3-C2-C7-C6 -1.0(2) N1-C2-C7-C6 179.75(14) 

C1-N2-C9-C14 79.94(17) Mo01-N2-C9-C14 -95.20(15) 

C1-N2-C9-C10 -99.74(16) Mo01-N2-C9-C10 85.12(16) 

C14-C9-C10-C11 -0.1(2) N2-C9-C10-C11 179.55(15) 

C14-C9-C10-C15 -177.63(15) N2-C9-C10-C15 2.0(2) 

C9-C10-C11-C12 -0.1(3) C15-C10-C11-C12 177.42(19) 

C10-C11-C12-C13 0.1(3) C11-C12-C13-C14 0.0(3) 

C12-C13-C14-C9 -0.3(3) C12-C13-C14-C18 179.17(18) 

C10-C9-C14-C13 0.3(2) N2-C9-C14-C13 -179.38(15) 

C10-C9-C14-C18 -179.11(15) N2-C9-C14-C18 1.2(2) 

C11-C10-C15-C16 -85.5(2) C9-C10-C15-C16 92.0(2) 

C11-C10-C15-C17 38.9(3) C9-C10-C15-C17 -143.63(18) 

C13-C14-C18-C20 -53.8(2) C9-C14-C18-C20 125.57(18) 

C13-C14-C18-C19 70.4(2) C9-C14-C18-C19 -110.16(18) 

Mo01-O2-C21-O1 -1.6(2) Mo01-O2-C21-C22 178.94(13) 

Mo01-O1-C21-O2 -0.4(2) Mo01-O1-C21-C22 179.07(13) 
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Figure A.11. 1H NMR spectrum of 7 vs CDCl3. 
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