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ABSTRACT 

 In this work, a new constitutive model, the WCS model, is derived that combines the 

Wilshire equations with continuum damage mechanics (CDM) for the long-term prediction of 

creep deformation, damage, and rupture. Long-term creep data is expensive and time-consuming 

to obtain because conventional creep testing is real-time. There is a need to extrapolate long-term 

creep behaviors from short-term data. Models that can accurately predict long-term creep behavior 

over a wide range of boundary conditions are vital for design engineers. The classic Wilshire 

equations can accurately extrapolate the long-term stress-rupture, minimum-creep-strain-rate, and 

time-to-strain of various alloys as their functional form has an explicit description of stress and 

temperature dependency. Recently, the time-to-creep-strain equation has been exploited to 

generate full creep deformation curves; however, with the addition of a CDM model, the equations 

become suitable for finite element analysis (FEA). The Sinh model can predict creep deformation, 

damage, and has been implemented into FEA software; however it lacks a description of 

temperature-dependence which limits the range in which predictions can be made. The 

combination of the Wilshire and the Sinh model enables stress-rupture, minimum-creep-strain-

rate, creep deformation, and damage predictions with explicit stress and temperature dependency. 

In order to accomplish this goal; (a) the current Wilshire equations are evaluated for one material 

in in different forms and (b) the new CDM-based WCS model is developed and the realistic 

performance of the model is assessed. The WCS model predicts creep behaviors such as stress-

rupture, minimum-creep-strain-rate, damage evolution, and creep deformation with an explicit 

stress and temperature gradients. The explicitness of the stress and temperature gradients across 

makes the model suitable for FEA software. Parametric studies are performed on the WCS model 

and is observed that the model behaves in a realistic manner.   
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

 Drives to increase the efficiency of Advance Ultrasupercritical (A-USC) and Fossil Energy 

(FE) power plants lead to designs with steam pressures up to 4000 psi and temperatures ranging 

0.3 0.6m mT T T  , where mT  is the melting temperature of the specific material. The complexity 

in which these power plants operate, especially for the hot gas path in industrial gas turbines (IGTs) 

illustrated in Figure 1.1, pushes the limits of material science and the properties of materials [1]. 

Failure that occurs on IGTs turbine blades are caused by many phenomena such as fatigue and 

creep which are encounter at the extreme conditions that power plants operate [2-3]. Maintenance 

must be performed regularly to avoid catastrophic failure, as illustrated in the turbine blade of 

Figure 1.2, caused by creep and combined damage factors [4]. Maintenance costs are of the major 

concern in IGTs which inspections of hot gas path components occurring every 2 years and major 

inspections between 4 and 5 years [5]. Unexpected failures can emerge in the time interval in 

which inspections are made, due to the uncertainty and the continuum damage that creep generates. 

There is a need to predict these behaviors accurately to have a better maintenance interval and to 

avoid failures.  
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Figure 1.1 – GE H-Class 9HA.01/.02 Gas Turbine (50 Hz) (9HA.01 at 446 MW and the 9HA.02 
at 571 MW) [5].  

 

Figure 1.2 – Industrial gas turbine blade creep failure (Berkeley Research Company, Berkeley 
California) [4]. 
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 The current understanding and ability to predict long-term creep behaviors ( 510  hours) 

such as rupture time, minimum-creep-strain-rate (MCSR) and creep deformation curves, and 

damage is limited. Long-term creep is difficult to predict due to the lack of data at such extreme 

durations; where experiments must run continuously for greater than 10 years [6]. Over the years, 

an immense number of models have been developed as an alternative of conducting those long 

duration experiments. Numerous constitutive models have been developed to predict the creep 

deformation of materials; however extrapolations are not as accurate for some models and for 

others is impossible because of the complex dependence on stress and its parameters [6-8]. There 

is a need for reliable prediction methods with stress and temperature dependency to better 

extrapolate creep and damage behavior and to perform finite element simulations as well.  

1.2 Research Objectives 

 The objective of this research study is to develop a continuum damage model (CDM) using 

the Wilshire equations, the WCS model, that can predict long-term creep deformation, damage, 

and rupture with explicit stress and temperature dependency. The goals are to (a) assess the current 

Wilshire laws, and (b) developed the novel CDM WCS model and validate the realistic 

performance of the model. To accomplish goal  

(a) the Wilshire stress-rupture and minimum-creep-strain-rate (MCSR) equations predictive 

capabilities are assessed using short-term data ( 410 ). The equations are calibrated to alloy 

P91 data in tube, plate and pipe form. Post-audit validation is performed using long-term 

data ( 410 ) and the normalized-mean-squared error (NMSE) is reported for each material 

isotherm and material form. Additionally, using the stress-rupture equation, contour design 

maps are created as tools for design engineers. 
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(b) the new WCS model is derived, where the Wilshire stress-rupture and MCSR equations 

are incorporated into the Sinh CDM model. Creep deformation data is collected for alloy 

P91 for a single isotherm and multiple stress levels and is fitted to the model. Material 

constants are obtained for the WCS model using the calibration approach from the Wilshire 

equations and the Sinh model. Using the material constants, plots for creep deformation 

and damage demonstrate the accuracy of the novel model. A parametric study is performed 

to assess the interpolation and extrapolation ability of the novel model.  

1.3 Organization 

 The organization of this study is as follows: Chapter 2 provides background information 

on creep deformation and damage. Some constitutive models that have predicted different creep 

behaviors, such as MCSR and creep deformation, are discussed in a non-exhaustive manner. 

Chapter 3 introduces and describes the material used in each study providing mechanical properties 

and nominal chemical composition. Data is introduced in Chapter 3 and used in Chapter 4 for the 

application of the Wilshire equations, stress-rupture and MCSR, using alloy P91 tube, plate, and 

pipe form. The Wilshire equations are introduced in this chapter as well as the calibration 

approach. The model is then fitted, and post-audit validation is performed to vet the accuracy of 

the models. Chapter 5 introduces the novel WCS model for creep deformation and damage 

predictions. Material constants are obtained, and the model is calibrated to generate predictions. 

After the model is calibrated to the data, parametric simulations are performed to vet the 

performance of the model in realistic scenarios. Finally, Chapter 6 offers an overview of the results 

and conclusions as well as the future work that is related to this area of study.  
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CHAPTER 2: BACKGROUND 

2.1 Introduction 

 In order to create the novel WCS model, background study is needed to understand creep 

phenomenon. Creep is a phenomenological event that is divided in regimes. Many models are 

designed to understand different behaviors such as rupture time, MCSR, and creep deformation. 

A brief summary of a few traditional models is provided as well as their current limitations. 

Understanding such limitations provides guidelines on recent modeling needs and how the WCS 

model addresses such issues. Note both the Wilshire model and CDM Sinh model are not included 

on this analysis as they are discussed later to give a stronger flow to the narrative.  

2.2 Creep Phenomenon 

 Creep is a rate-dependent non-recoverable plastic deformation of materials as a function of 

stress and temperature [9]. The resulting conventional creep deformation curve is illustrated in 

Figure 2.1 [9]. Creep strain is activated thermally, and when stress is applied, typically to a metal 

or ionic solid, deformation leading to failure arises [10]. Most high temperature failures in 

materials are attribute to creep, fatigue, and combinations of damage [11]. Temperature ranges for 

creep deformation are: 0.6 mT T  for high temperature , where mT  is the melting temperature, 

0.3 0.6m mT T T   for intermediate temperatures and 0.3 mT T  for low temperature [2]. Assuming 

constant stress, high and intermediate temperatures generate short rupture times and low 

temperatures might extend to infinite life. There is an interest in such low temperature studies as 

many models intend to predict decades of life. Mechanical systems such as gas turbines, nuclear 

reactors, and chemical industries operate at these temperature ranges [11]. Therefore creep is 
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dependent on high temperatures as well as mixed conditions such as applied stress, geometry, and 

time.  

 

Figure 2.1 – Idealized conventional creep deformation curve [9].  
 
 

 In 1910, Andrade divided the creep deformation curve into three stages or regimes [12]. 

Those regimes are: the primary regime also called transient creep, the secondary regime called 

steady-state creep, and the tertiary regime called the accelerating creep, where rupture comes in 

the tertiary regime as shown in Figure 2.1 [9-13]. Depending on the material the arrangement of 

these creep regimes might vary. Many materials lack a primary regime or at high stress and 

temperatures exhibit only a short (transitional) secondary regime. Some brittle materials have little 

to no tertiary creep while ductile materials would have an extensive tertiary creep regime [10-11]. 

Some materials have an instantaneous response called 0  that depends on the magnitude of the 

applied stress, this instantaneous response is most of the primary creep regime [9]. Other materials 

have microstructural mechanism such as precipitate carbides that prevents grain boundary sliding. 
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Such materials exhibit little primary creep which, in many models, is typically neglected. Primary 

creep normally reaches its peak in a short time which contributes in the case of neglecting it in 

modeling. The secondary regime is large and has similar characteristics as plastic deformations 

[13]. Most mathematical models use this dominant steady-state behavior to approximate the creep 

curve. Such behavior is called the minimum-creep-strain-rate, min  which as shown in Figure 2.1 

is almost constant [9]. In the tertiary regime failure happens at a rapid rate and arrives as an 

unexpected behavior most of the time. Grain boundary sliding contributes to crack propagation 

and void nucleation and growth which ultimately leads to rupture of a specimen [11].  

 The dependency of creep from stress and temperature, strongly impacts the creep 

deformation curves. The influenced in stress where temperature is constant is observed in Figure 

2.2 a). Notice that as stress increases creep ductility is achieved at a faster time. Similarly, the 

temperature dependency at constant stress portraits a similar behavior as shown in Figure 2.2 b). 

It is observed that when the temperature is constant and different stress levels are applied (

3 2 1    ) then the rupture time has dramatic impact that can range even for decades of life. 

Similarly, when stress is constant and distinct isotherms are applied ( 3 2 1T T T  ).  Additionally, 

each individual curve generated has a corresponding min  where some creep curves can even 

transition from the primary to the tertiary regime at high levels of stress and temperature [9,11].   
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Figure 2.2 – Idealized creep deformation curves as a function of a) stress at constant temperature 
and b) temperature at constant stress. [9,11] 

 
2.3 Constitutive Models and Creep Modeling 

 Creep constitutive models are considered a viscoplasticity models, where viscoplastic 

materials sustain a shear stress at rest [13,14]. Typically constitutive creep models are either 

microstructural or phenomenological. Microstructural models are based on the creep deformation 

behaviors within the microstructure such as the nucleation of cavities within the grain boundaries. 

This study focuses more on phenomenological models. The phenomenological models are based 

on the material properties representing the response of the continua. The calibration process to 

obtain material constants for phenomenological models is either analytical, numerical, or a 

combination of both methods.  

 Creep mechanisms create functional relations that are the base theory for many existing 

constitutive models. According to Frost and Ashby polycrystalline solids yield strength and 

material properties of materials are define by the processes occurring at the atomic scale [15]. 
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Mechanisms which describe such atomic processes are therefore called deformation mechanisms. 

There are mainly five groups of deformation mechanisms  

 Collapse at ideal yield strength. After exceeding a shear strength flow occurs.  

 Low-temperature plasticity by dislocation glide. Limited by the lattice resistance, discrete 

obstacles, phonon, drags, and influenced by adiabatic heating.  

 Low-temperature plasticity by twinning. Dislocation glides involving partial dislocation 

motions.  

 Power-law creep by dislocation glide. Limited by glide processes, lattice-diffusion 

controlled climb, corediffusion controlled climb, power-law breakdown, Harper-Dorn 

creep, and creep with dynamic recrystallization.  

 Diffusional flow. Limited by Nabarro-Herring lattice-diffusion creep or bulk diffusion, 

coble creep or grain boundary diffusion, and interface-reaction controlled diffusion flow.  

 This deformation mechanisms are presented in deformation mechanisms maps. The 

constitutive laws for such mechanisms maps are describe in the following rate equations  

 
 , , ,s i if T S P   (2.1) 

 

 , , ,i
s i i

dS
g T S P

dt
  (2.2) 

where the shear strain-rate   is a function of the shearing or deviatoric stress field s , the 

temperature T , the state variables iS , and the material plastic properties iP . The shearing or 

deviatoric stress field is defined as  
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      2 2 2

1 2 2 3 3 1

1

6s             
(2.3) 

where 1 , 2 , and 3  are the principal stresses. Both [Eq. (2.1)] and [Eq. (2.2)] can be integrated 

with respect to time. The current understanding of the evolution of the structure is limited therefore 

typically iS  is assumed as a constant structure or at steady state. In order to simplify the rate 

equation the assumptions are used in [Eq. (2.2)] to obtained 1S , 2S , and 3S  in terms of s  and T  

leading to a single equation in the following form  

 
 ,sf T   (2.4) 

where properties for iP  are constant. It is useful to create deformation mechanism maps to make 

better prediction of creep at distinct isotherms and stress levels. A typical schematic illustration of 

a deformation mechanism is given in Figure 2.3 [15-16]. The schematic is given as a plot of the 

normalized equivalent stress eq G  with respect to the shear modulus versus the homologous 

temperature mT T  where mT  is the melting temperature. It is shown that over a wide range of stress 

and temperature distinct mechanism are considered. Every combination of the stress and 

temperature results in a contour representation of the mechanism and their respective strain rate, 

 . Another example of creep deformation mechanism map is given for alloy 9Cr-1Mo-V-Nb 

(P91) steel illustrated in Figure 2.4 [16]. It can be observed that in order to properly model for 

alloy P91 both mechanisms of power-law and linear/viscous creep must be taken into 

consideration.  
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Figure 2.3 – Schematic illustration of a typical deformation mechanism map [15-16].  

 

Figure 2.4 – Creep deformation mechanism map 9Cr-1Mo-V-Nb (P91) steel [16].  
   

 Using the deformation mechanisms as base theory various models are design and can 

predict many creep behaviors. There are life-prediction models that predict creep, fatigue, and 
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creep-fatigue rupture. On the other hand, there is constitutive laws that model creep, cyclic, and 

unified viscoplasticity. Amongst various efforts, there are several models describing the steady-

state creep (secondary creep) by using the minimum-creep-strain rate this behavior would be 

discussed as well as creep deformation models and continuum damage mechanics models (CDM).   

2.3.1 Minimum-creep-strain-rate (MCSR) 

  Since 1929, the MCSR was one of the earliest creep parameters measured as discussed by 

Norton who proposed a power-law to describe such behavior [19]. Many stress-dependence 

models to describe MCSR have been developed and some of the most common are listed in Table 

2.1 [20].  

Table 2.1 – Minimum-creep-strain-rate (MCSR) models [20, 25]. 
 

Source MCSR Model 

Norton, 1929 [19] 
min

0

n

A


 

  
 

  

Simplified Norton, 1929 [19] 
min

nA   

Nadai, 1931 [21] 
min

0

1
expA c 


 

  
 

  

Soderberg, 1936 [22] 
min

0

exp 1A



      
   

  

McVetty, 1943 [23] 
min

0

sinhA


 

  
 

  

Dorn, 1955 [24] 
min

0

expA



 
  

 
  

Johnson-Henderson-Kahn (JHK), 1936 [25] 

1 2

1 2
0

min
0

 

n n

A A  
 
   

    
   

  

Garofalo, 1965 [26] 
min

0

sinh

n

A



      
   

  
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Wilshire, 2007 [60-61]. 
1

*

2min ln( ) exp
v

c

TS

Qk
RT

 
  
  
       

   

 

 The base theory of the MCSR models comes from three deformation mechanism which are 

the diffusional-flow the power-law and breakdown illustrated in Figure 2.5. Diffusional flow, also 

known as the Harper-Dorn creep, is separated in the Nabarro-Herring and coble creep [20]. 

 

Figure 2.5- Master curve of the minimum-creep-strain-rate based on Norton-power law [20] 
 

   

 

 The Nabarro-Herring theory or bulk diffusion indicates that there is diffusion through the 

lattice and grain boundaries. As grain size increases the creep rate typically decreases. The flow 

of vacancies through the lattice is expressed in the following form  
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 2

NH L
NH

A D Gb b

kT d G

        
   

  
(2.5) 

where NHA  is a dimensionless constant typically 28, LD is the lattice diffusion coefficient, G  is 

the shear modulus, b  is the magnitude of the Burgers vector, k  is the Boltzmann’s constant, T  

is the absolute temperature, d  is grain size, and   is flow stress applied to d  [17].  

 Grain boundary diffusion considers flow vacancies along grain boundaries instead. Greater 

grain size influences the creep rate. Coble proposed an equation to express this behavior in the 

following form  

 3

CO GB
CO

A D Gb b

kT d G

        
   

  
(2.6) 

where material constants are the same as Nabarro-Herring;  except where, 33coA   and GBD  is 

the grain boundary diffusion coefficient [17].  

 Dislocation creep is vacancy absorption by dislocation core causing a movement of one 

atomic space where lattice boundary is diffuse. This causes a specimen or component to climb and 

glide. Power-law creep is associated with this behavior and is expressed as follows  

 n

L
PL

AD Gb

kT G

    
 

  
(2.7) 

where all material constants remain the same as Nabarro-Herring and Coble and 3n   [17,18]. 

Although these models are presented there is still some controversy as if diffusion flow really 

exists [27]. Some argue that diffusion flow is only true for pure metals, others sustain is true for 

all alloys, and some considered as an inexistent mechanism. As a result the exploration on other 

mechanisms is necessary.  
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 Considering the power-law deformation mechanism the Norton-power law form arrives. 

The Norton-power law is one of most classic models for MCSR and commonly is shown in the 

following form  

 

min
0

n

A


 

  
 

  
(2.8) 

where A  and n  are unitless material constant, 0  normalizes stress also known as activation stress 

and has units of M P a . A most simplified form of the Norton-power law is given without the 

normalized stress shown as  

 
min

nA   
(2.9) 

where now A  must be in units of nMPa  [19]. Both material constants A  and n  exhibit 

temperature-dependency. This means that the constants obtained at low stress levels are different 

from those obtained at high levels as shown in the n  constant on Figure 2.5. If the Norton-power 

law tries to model across multiple isotherms and stress levels, large levels of uncertainty would 

arrive. The slope for the distinct n  from Figure 2.5, is typically 5 but several authors have 

discovered that it can range between 2 and 12 depending on the creep resistance of materials [27-

34].  

 Soderberg, McVerry and made contributions to addresses temperature dependency and 

finally Dorn used an Arrhenius function [24]. Dorn suggested that after the material constant A  is 

modified using the Arrhenius approach, the Norton temperature dependent equation takes the 

following form  
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min
0

exp

n

cQ
A

RT



       

  
  

(2.10) 

where  cQ  is the apparent creep activation energy in J
1mol , R  is the universal gas constant 

8.314 J 1K  1mol . It is observed, that material constants cQ  and n  have stress dependence still. 

There is still a need to resolve this issue in order to model across multiple isotherms and stress 

levels for decades.  

 Although the secondary creep regime is the most dominant, using the MCSR equations 

does not predict failure. Many rupture models are also developed, and the combination of both the 

MCSR and the creep rupture equations can be used to recreate a complete creep deformation curve. 

Typical, CDM models are based on these two conditions.   

2.3.2Creep Rupture 

 Creep rupture predictions is one of the major concerns in modeling. There exist time-

temperature prediction models, relationships with MCSR, and many others which are summarized 

in Table 2.2.  

 
Table 2.2 – Creep rupture models [35-36,41,44,60-61]. 

 
Source MCSR Model 

Larson-Miller, 1952 [35]  1log rLM P T t K  , 

110r

LMP T K
t

T

 
  

Monkman Grant, 1956 [36]    minlog logr MGt m k  , 
min

10 MGk

rt 



 

Kachanov-Rabotnov, 1967-69 [41-42]   1
1r rt M  


     
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Evan-Wilshire (Theta Projection), 1984 [43]    2 4
1 31 1r rt t

F e e       , solve for rt  

Omega Method, 1996 [44] 

1
s ps

r s p

tt

t t







 




 

Wilshire, 2007 [60-61]. 
1

*

1ln( ) expr

u
c

TS

Qt k
RT




  
  
       

   

 

 One of the earliest prediction models is the Larson Miller parameter (LMP) model which 

is a time-temperature model [35]. The LMP model is defined as follows  

 
 1log rLM P T t K   (2.11) 

where LM P  is a function of stress, T  is the temperature, 1K  is a material constant typically 

ranging between 10 to 50 [37-39]. Monkman Grant recognized that there exists a relationship 

between the MCSR and rupture time [36]. Creep fractures appears to be inversely related to the 

MCSR and is given in the following form 

 
min rt M    (2.12) 

where M  is just the Monkman Grant constant. Further work from Monkman Grant work leads to 

the current work from Wilshire. Note that such work is discussed later. 

 Models such as the Kachanov-Rabotnov, Evans-Wilshire theta projection model, and the 

Omega Method capture creep ductility which helps model the tertiary creep regime. Many of these 

models are embedded into continuum damage mechanics-based models which not only capture 

the ductility, but it also takes in consideration the history of damage in materials.  
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2.3.3 Creep Deformation Models and CDM 

 The history of damage in a material causes, in most cases, a loss in mechanical properties 

and strength [40]. This behavior is typically not captured by previous describe creep models. 

Continuum damage mechanics (CDM) strives to model creep behaviors applying the history of 

given materials. Considering this process in damage rate equations CDM models provides 

accumulated damage, residual life and rupture life at given stress and temperature conditions. As 

a result, creep deformation and damage are best described by CDM based models. Other creep 

deformation constitutive equations have been developed nonetheless and a summary of these laws 

and the regimes modeled are shown in Table 2.3 [41-45].  

Table 2.3 – Summary of creep constitutive equations [41-45]. 
 

Source Creep Law Regimes 

Kachanov-Rabotnov, 
1967-69 [41-42] 

1

n

cr A



    
 , 

 1

M 









  
Secondary 

Tertiary 

Evans-Wilshire 
(Theta Projection), 

1984 [43] 

   2 4
1 31 1t te e        

Primary 
Secondary 

Tertiary 

Prager, M. 
(MPC Omega), 1995 

[44] 

 0 expcr p      Secondary 
Tertiary 

Liu and Murakami, 
1998 [45]. 

  3
1 2

2 13
exp

2 1 3
ijn

cr eq
eq eq

S n
A

n

  
 

 
     



    2
2

2

1 exp
expr

q
B q

q
  

 
  

Secondary 
Tertiary 

Sinh Model 2013, [14] 

   3 2sinh expcr sA   

 
 

1 exp
sinh exp

t

M
  

 
       

 
  

Secondary 
Tertiary 
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 The Kachanov-Rabotnov model came as a contribution between the work of Kachanov 

introducing phenomenological CDM for damage modeling and Rabotnov incorporated damage 

into the creep strain rate equation [41-42]. The Kachanov-Rabotnov model for creep strain and 

damage rate are as follow  

 

1

n

cr
cr

d
A

dt

 


     
  

(2.13) 

 

 1

d M

dt





 


 


  
(2.14) 

where A  and n  are the Norton-power law constants,   is equivalent stress, M ,  ,   are 

material constants that model the tertiary creep regime. The Kachanov-Rabotnov model has 

predicted accurately creep deformation, however, is limited on its fundamental forms [40-47]. 

Kachanov-Rabotnov is considered a local CDM approach which means rupture is achieve when 

damage variable is unity, however, rupture occurs below unity. The Kachanov-Rabotnov model 

has stress sensitivity which means that damage rate becomes unrealistically huge near rupture time 

[40].  

 The theta-projection model proposed by Evans and Wilshire is a multistage model that 

connects the primary and tertiary regimes using the material constants [43]. The classic theta-

projection model is shown as follows  

 
   2 4

1 31 1t te e        (2.15) 

where the theta-constants 1  and 2  generate the primary creep regime and 3 , 4  control the 

tertiary regime. The theta constants are functions of stress and temperature that are numerical in 
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nature. A limitation the theta-projection model shows is that a single set of theta values are not 

always accurate when predicting multiple isotherms and stress levels. There is especially a 

problem with 4  as for long rupture life predictions creep strain becomes very large and if 4  is 

set low underpredictions arrive at an early stage of the creep deformation curve [48].  

 The MPC Omega model was first introduced by Prager in 1995 [44]. The damage model 

of the MPC Omega is given as  

 

1
p

r p

tt

t t







 
 




 
(2.16) 

where t  is the current time, rt  is the rupture time, and p  is a material constant susceptible to 

creep [48]. Material constant p  is obtained through experimental data and by taking the natural 

logarithm, rearranging, and simplifying [Eq. (2.16)] the following creep strain form is obtained   

 
 0 expcr p      (2.17) 

where   is the current creep strain and the logarithm of both sides is as follows    

 
   0ln lncr p       (2.18) 

where p  is determined from the slope of  ln cr  versus  . If the plot between  ln cr  and   

determines if the plot does not have a straight line in which at this moment it is not recommended 

to use the MPC Omega model [48].   
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 As a modification of the Kachanov-Rabotnov model Liu and Murakami creep damage 

model is obtained [45]. Liu and Murakami model creep and damage models are in the following 

form  

   3
1 2

2 13
exp

2 1 3
ijn

eq eq
eq eq

S n
A

n

  
 

 
     

  
(2.19) 

     2
2

2

1 exp
expr

q
B q

q
  

 
  (2.20) 

 

where A , n , B , 2q , and   are material constants, r  is the rupture stress, eq  and eq  are the 

equivalent strain and stress respectively, ijS  is the deviatoric stress and   is damage. In this case, 

when   reaches a critical value, typically 0.99, failure is assumed to occurred [46]. Note that 

through this work the Sinh model is developed which is discussed later. 

  Many more models have been developed for both MCSR and creep deformation which are 

not listed. There is a need to determine which model is best and produce accurate predictions. Two 

additional models are discussed on future chapters which are used to develop the new constitutive 

model.  
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CHAPTER 3: MATERIAL P91 

3.1 Material Properties, Chemical Composition, Material Database 

 The subject material is 9Cr-1Mo-V-Nb steel better known as P91 alloy. Some applications 

for P91 are pipelining, boiling components, and steam generators due to the high resistance to 

stress corrosion and oxidation [49-50]. Alloy P91 is a ferritic-martensitic steel due to the 9 wt% 

Cr and with the addition of Nb and V creep strength increases [51]. The microstructure of a P91 

tube is obtained from the National Institute of Materials Science (NIMS) database and is illustrated 

in Figure 3.1, where the material has been heat treated to MGC. It is observed that there are 

precipitate carbides, which most typically are 23 6M C , located at the grain boundaries [52-53]. 

There are carbonitrides finely distributed within the ferritic-martensitic matrix as well. The 

microalloying elements Nb, V, and Mo are the ones that formed these fine and stable carbides and 

carbonitrides. These prevents dislocation within the grain boundaries and retains finer grains 

during austenization delaying plastic deformation due to grain boundary sliding. 

 

Figure 3.1 – Microstructure of 9Cr-1Mo-V-Nb (P91) steels tube MGC at center of wall thickness 
[53]. 
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 The NIMS nominal chemical composition in mass percent of alloy P91 is reported in Table 

3.1 [53]. Notice that the chemical composition varies between the material forms of tube, plate, 

and pipe. Distinct chemical compositions mean that the material properties are different and must 

be considered in modeling calibration processes. Even when the same material form is considered, 

the heat treatment defines many of the material properties.  

Table 3.1 - Nominal chemical composition (mass 
percent) of tube, plate and pipe for 9Cr-1Mo-V-Nb 

(P91) [53]. 

Element Tube Plate Pipe 
Fe Bal. Bal. Bal. 
C 0.07-0.14 0.06-0.15 0.08-0.12 
Si 0.20-0.50 0.18-0.56 0.20-0.50 

Mn 0.30-0.60 0.25-0.66 0.30-0.60 
P ≤0.020 ≤0.025 ≤0.020 
S ≤0.010 ≤0.012 ≤0.010 
Ni ≤0.40 ≤0.43 ≤0.40 
Cr 8.00-9.50 7.90-9.60 8.00-9.50 
Mo  0.85-1.05 0.80-1.10 0.85-1.05 
V 0.18-0.25 0.16-0.27 0.18-0.25 

Nb* 0.06-0.10 0.05-0.11 0.06-0.10 
N 0.30-0.070 0.025-0.080 0.030-0.070 

Al* ≤0.04 ≤0.05 ≤0.04 
≤0.02 ≤0.02 ≤0.02 

Ti* - - - 
≤0.01 ≤0.01 ≤0.01 

Zr* - - - 
≤0.01 ≤0.01 ≤0.01 

 

 The heat treatments for each material form for alloy P91 is presented in Table 3.2 which is 

taken from the NIMS database [53]. Heat treatments are denoted as; MGA, MGB, MGC, MGD, 

MGF, and MGD for tube, MgA, MgB, MgC, MgD for plate, and MGQ for pipe. Each batch of 

material is reported alongside with its type of melting, process, thermal history, and the Rockwell 

hardness (HRC). The types of melting are basic electric arc (BEA) furnace, LD converter (LDC), 
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and top and bottom blown converter (TBBC). The processing is either hot extruded and cold 

drawn, how extruded, and hot rolled with air cooling (AC) or furnace cooling (FC).  

 

 

 
Table 3.2- Details of heat treatment for alloy  9Cr-1Mo-V-Nb (P91) in tube, plate, and pipe 

form [53]. 

Tube 

Heat 
Treatment 

Type of 
Melting 

Processing and  
thermal history 

Rockwell 
hardness (HRC) 

MGA BEA 
Hot extruded and cold drawn 

1045 C /10 min AC 
780 C /60 min AC 

16 

MGB BEA 
Hot extruded and cold drawn 

1050 C /60 min AC 
760 C /60 min AC 

16 

MGC BEA 
Hot extruded and cold drawn 

1050 C /10 min AC 
765 C /30 min AC 

18 

MGD LDC 
Hot extruded and cold drawn 

1050 C /10 min AC 
780 C /40 min AC 

18 

MGF BEA 
Hot extruded 

1045 C /60 min AC 
780 C /60 min AC 

18 

MGG TBBC 
Hot rolled 

1050 C /15 min AC 
790 C /60 min AC 

18 

Plate 

Heat 
Treatment 

Type of 
Melting 

Processing and  
thermal history 

Rockwell 
hardness (HRC) 

MgA BEA 

Hot rolled 
1050 C /10 min AC 
770 C /60 min AC 
740 C /8.4 h FC 

13 
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MgB BEA 

Hot rolled 
1050 C /10 min AC 
770 C /60 min AC 
740 C /60 min FC 

14 

MgC LDC 

Hot rolled 
1060 C /90 min AC 
760 C /60 min AC 
730 C /8.4 h FC 

17 

MgD LDC 
Hot rolled 

1050 C /30 min AC 
780 C /30 min AC 

16 

Pipe 

Heat 
Treatment 

Type of 
Melting 

Processing and 
 thermal history 

Rockwell 
hardness (HRC) 

MGQ BEA 
Hot rolled 

1060 C /60 min AC 
780 C /60 min AC 

15 

 

 Considering each material form and knowing that each heat treatment produces different 

properties the tensile strengths, TS  given in Table 3.3. The average tensile strength for each form 

is given across the different heat treatments. The remaining values that are not given in the NIMS 

database but that are considered on this study are interpolated.  

Table 3.3 - Average tensile strength for alloy 
P91 for tube, plate and pipe interpolating and 

using the NIMS database [53] 

 Average Tensile Strength, TS  

Temperature  Tube Plate Pipe 
( C ) (MPa) (MPa) (MPa) 
100 658.33 635.75 621 
200 620.83 589.25 583 
300 592.50 561.00 554 
400 568.67 492.25 533 
450 527.67 516.75 512 
500 486.67 469.75 464 
550 418.00 414.00 402 
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575 382.09* 375.5* 367.5* 
600 346.17 337.00 333 
625 309.09* 306.13* 299.5* 
650 272.00 275.25 266 
675  237.25* 240.25* 483 
700 202.50 205.25 200 

*tensile strengths that are interpolated 
 

 In total, 200 stress-rupture and 350 MCSR experimental data points are available which 

are gathered and illustrated in Figure 3.2. These available points are used to calibrate the Wilshire 

equations that are later describe in Chapter 4. Both stress-rupture and MCSR data are presented 

with respect to the isotherm. The heat treatment and the material forms are not considered in Figure 

3.2. Note this is important as Chapter 4 considers the material form and the plot is separated into 

tube, plate, and pipe and Chapter 5 considers the specific heat treatment. Each material form has 

some sort of available data for calibration and for further post-audit validation. The available data 

and for both stress-rupture and MCSR for tube, plate, and pipe as well as the available isotherms 

is presented in Table 3.4. Notice that for each material form there is a different number of isotherms 

for stress-rupture and MCSR; tube has five isotherms for stress-rupture and eight for MCSR, plate 

has five and eight isotherms for stress-rupture and MCSR respectively, and pipe has five and seven 

for stress-rupture and MCSR.  

Table 3.4 – Available datapoints for stress-rupture and MCSR obtained from NIMS 
and Figure 3.2  [53] 

 Tube Plate Pipe 

Stress-Rupture 
Available Data 

80 80 40 

Stress-Rupture 
Isotherms (°C) 

500, 550, 600, 650, 
and 700 

450, 500, 550, 
600, and 650 

450, 500, 550, 
600, and 650 
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MCSR 
Available Data 

180 130 30 

MCSR 
Isotherms (°C) 

500, 550, 575, 600, 
625, 650, 675 and 

700 

450, 500, 550, 
575, 600, 625, 
650, and 700 

500, 550, 575, 
600, 625, 650, 

and 700 

 

 

Figure 3.2 – Data gather from the NIMS database for a) stress-rupture and b) minimum-creep-
strain-rate for multiple forms, isotherms, and heat treatments [53].  

 

 Creep deformation data is also collected from the work of Kimura et al for P91 as illustrated 

in Figure 3.3 [54]. The data is given for a single isotherm 600°C and six different stresses (100, 

110, 120, 140, 160, and 200 MPa). The data expands for more than 410  hours which is more than 

three years of data. The data for P91 in this study is reported to be heat treated as MGC. The 

chemical composition is specified in this study and is shown in Table 3.5. The material is assumed 

to be in tube form due to the description of the chemical composition and which together with the 

heat treatment matches those presented in the NIMS database. In this particular case for alloy P91, 

yield stress of the material at 600°C is 289 MPa  and the 357TS  MPa . 
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Figure 3.3 - Creep deformation curves for alloy P91 at 100, 110, 120, 140, 160, and 200 MPa 
and 600°C [54]. Note the x-axis is on a logarithmic scale. 

 

Table 3.5 – Nominal chemical composition 
(mass percentage) of Heat MGC for alloy 

9Cr -1Mo-V-Nb (P91) [54] 

Element Mass percent (mass%) 
Fe Bal.  
C 0.09 
Si 0.29 

Mn 0.35 
P 0.009 
S 0.002 
Ni 0.28 
Cr 8.70 
Mo  0.90 
Cu 0.032 
V 0.22 

Nb* 0.072 
N 0.044 

Al* 0.001 
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CHAPTER 4: APPLICATION WILSHIRE STRESS-RUPTURE AND MCSR IN TUBE, 

PLATE, AND PIPE FORM 

4.1 Introduction and Methodology 

 Through the background and literature it is understood that numerous models have been 

developed to predict different creep behaviors. Amongst existing models, the Wilshire model has 

emerged as a promising choice for extrapolation. The Wilshire model was introduced to predict 

the stress-rupture and MCSR behavior of materials and the model is well-accepted due to the 

explicit description of stress- and temperature-dependence allowing predictions across isotherms 

and stress levels.  

 There is a need to determine to what extent does the material form affect the predictions of 

the Wilshire model and the calibrated material constants. Considering the work done by 

Holdsworth, the material characteristics each form creates a different set of material constants 

affecting the accuracy of the Wilshire models. Also, data distribution is considered to assess the 

model’s behavior for each material form but rather than considering the complete dataset for model 

fitting, this study considers the short-term data for the calibration and the predictive abilities are 

vetted with the long-term data [55].  

 The objective of this chapter is to assess the stress-rupture and MCSR prediction models 

for Wilshire at multiple isotherms, stress levels, and material forms. The stress-rupture and MCSR 

predictions are generated for alloy P91 in tube, plate, and pipe form. Data used from the National 

Institute of Materials Science (NIMS) material database for alloy P91 at multiple isotherms as 

describe in Chapter 3 and illustrate in Figure 3.2. Following the establish method from Wilshire 

the model is calibrated using shot-term data ( 410  hours) and post-audit validation is performed 
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using long-term data ( 410  hours) to vet the extrapolations accuracy of each form at different 

isotherms. This chapter discusses, as well, the origins of the Wilshire model and how the model is 

calibrated. 

4.2 Origins of the Wilshire Model 

 To understand the Wilshire model, it is necessary to examine two classic models previously 

discussed: the Norton-power law for MCSR and the Monkman-Grant law for rupture prediction 

mention previously [19,56-59]. The Norton-power law models the MCSR, min  as follows 

 
min expn cQ

A
RT

     
 

  
 (4.1) 

where it takes a similar form as [Eq. (2.10)] but using the simplified Norton. The material 

parameters A , n , and cQ  are functions of stress and temperature; suggesting that different creep 

mechanism become dominant at different stress and temperature regimes. To mitigate this 

problem, stress can be normalized by the ultimate tensile strength, TS  as follows 

 *
*

min exp

n

c

TS

Q
A

RT



   

    
  

  
(4.2) 

where the coefficient, *A  and creep activation energy, *
cQ  are stress- and temperature-independent 

[60-61]. Unfortunately, stress-dependence persists in the n  constant due to the nonlinearity 

observed in normalized stress-rupture data when plotted on a log-log scale. The change in the n  

constant is associated with distinct creep deformation mechanism such as diffusional flow (Harper-

Dorn), power-law, and breakdown as illustrated in Figure 2.5 [60-62]. 
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 The Monkman-Grant law arises from the inverse relationship between the minimum-creep-

strain-rate, min  and rupture time, ft  as shown in [Eq. (2.12)]. Subsequently, rupture time can be 

predicted by combining the Norton-power and Monkman-Grant laws, [Eq. (4.2)] into [Eq. (2.12)] 

and rearranging as follows 

 1*
*( ) exp( )n c

f
TS

Q
t M A

RT





 

  
 

 
(4.3) 

where min  and ft  predictions take the same functional form distinguished by different 

coefficients and exponents. 

4.3 The Wilshire Model 

 Wilshire determine that Norton-power and Monkman-Grant laws have limitations 

predicting creep behaviors [63-66]. The stress-dependence of the stress exponent, n  persists where 

n  can varied from 5n   at high-stress to 1n  at low-stress [60-61, 67]. Diffusional flow is 

theorized to exist at low-stress  0.5 YS  ; however, literature suggests that diffusion flow does 

not exist [62]. Rather, diffusion flow is an artefact of the methodology being utilized (i.e. Norton-

power law) [67]. Note, this problem persists in the Wilshire model where the material constants 

may need to be segregated into low-, intermediate-, and high-stress regimes depending on the creep 

data [61,63]. Based on these observations, Wilshire proposed alternative rupture time, ft  and 

minimum-creep-strain-rate,  min  laws as follows 

 *

1exp exp

u

c
f

TS

Q
k t

RT




            
 

(4.4) 
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 *

2 minexp exp

v

c

TS

Q
k

RT

 


            
  

(4.5) 

where 1k (in uhr ), u , 2k  (in  1 v
hr

 ), and v  are material constants. The min  and ft  predictions 

take the same functional form and are distinguished by different coefficients ( 1k , 2k ) and 

exponents ( u , v ) [60-61,63-66,68]. Note the min  prediction lacks a negative sign ahead of *
cQ . 

An analytical solution to determine the material constants of the Wilshire model is well 

established. 

4.4 Calibration Methods of the Wilshire Model 

 The six material constants of the Wilshire model ( TS , *
cQ , 1k , u , 2k , and v ) can be 

analytically determined using the approach illustrated in Figure 4.1 through Figure 4.3. Three 

isotherms of creep data or more are required for calibration. First, monotonic tensile tests shall be 

performed at each isotherm to gather the ultimate tensile strength, TS . Next, creep tests at fixed 

stress ratio, /i TS   1, 2, 3i   shall be performed per isotherm. Creep activation energy, *
cQ  

appears in both [Eq. (4.4)] and [Eq. (4.5)] and must be determined first. To obtain *
cQ , take a fixed 

stress ratio and plot minln( )  or ln( )ft  versus 1 T  as illustrated in Figure 4.2. The fixed stress ratio 

enables [Eq. (4.4)] and [Eq. (4.5)] to be simplified such that the slope in Figure 4.2 reveals the 

creep activation energy, [67,69-70]. The remaining constants arise from plotting ln[ ln( )]TS   

versus 
*ln[ exp( )]f ct Q RT  and ln[ ln( )]TS   versus *

minln[ exp( )]cQ RT  as illustrated in 

Figure 4.3 (a) and (b). The stress-rupture constants 1k  and u  and the MCSR constants 2k  and v  
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are the y-intercept and slope in Figure 4.3 (a) and (b) respectively [63-66]. When properly 

calibrated, the Wilshire model is one of the best models for predicting the stress-rupture and MCSR  

over a wide range of temperatures and stress when compared to existing models [67,69]. 

 

Figure 4.1- Illustration of (a) stress-rupture and (b) minimum-creep-strain-rate using Wilshire 
model. 

 

Figure 4.2 - Analytical calibration of the creep activation energy, *
cQ  using either (a) stress 

rupture data or (b) minimum-creep-strain-rate data respectively. 

S
tr

es
s,

 
(M

P
a

)

Rupture time, tf (hr)
S

tr
es

s,
 

(M
P

a
)

Minimum creep strain rate, εmin (hr-1)

(a) (b)



34 

 

Figure 4.3 - Analytical calibration of (a) stress-rupture constants 1k  and u  using [Eq. (4.4)] and 

(b) minimum-creep strain-rate constants 2k  and   using [Eq. (4.5)]. 

 

4.5 Material Constants  

 The material constants of the Wilshire model *
1 2( , , , , ,  and )TS cQ k u k v  are obtained for 

each form using the described calibration method. The average tensile strengths, TS  listed in Table 

3.3 are employed everywhere except when calculating *
cQ  where the heat-specific strengths are 

employed.  

 The *
cQ  is determined by plotting ln( )ft  versus 1 T  at a constant stress ratio / TS   as 

illustrated in Figure 4.2 (b). The *
cQ  plots for tube, plate, and pipe alloy P91 are provided in Figure 

4.4 outline as (a), (b), and, (c) respectively. The *
cQ  is calculated for several stress ratios and are 

shown in Table 4.1 including the mean values, the standard deviation, and the coefficient of 

variation (COV).   

 It is observed that the variation between material form and even from stress ratio is 

significant. This is important because as shown in Figure 4.3 the Wilshire material constants 

)]

is the slope

is the y-intercept

)]

is the slope

is the y-intercept
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1 2( , , , and )k u k v  are determined using the creep activation energy. The curvature of the model and 

the extrapolations are determine using this material constants so a small change of *
cQ  constitutes 

uncertainty. Using the rounded mean value, the remaining material constants are determined. Note 

that if a single material batch of a specific heat treatment is needed then the predictive capabilities 

might not be as good. It is recommended that if the heat treatment and material properties of a 

material are given then a recalibration is needed for better predictions. 

Table 4.1 – Creep activation energy, *
cQ  at 

each stress ratio with the standard deviation, 
the mean value, and the coefficient of 

variation (COV) 

 Tube Plate Pipe 

0.3 ( 1kJmol ) 322.62 - - 

0.4 ( 1kJmol ) 213.35 363.38 276.96 

0.5 ( 1kJmol ) 177.25 266.75 200.03 

0.6 ( 1kJmol ) 198.86 229.83 196.56 

Mean 228.02 286.65 224.52 

St. Deviation 64.7875 68.9638 45.4504 

COV 0.2841 0.2406 0.2024 
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Figure 4.4 - Creep activation energy, *
cQ  calibration for (a) tube * 230cQ  1kJmol (b) plate 

* 290cQ  1kJmol and (c) pipe * 225cQ  1kJmol . 

1/T
1.0e-3 1.1e-3 1.2e-3 1.3e-3

ln
(t

f)

4

6

8

10

0.3
0.4
0.5 
0.6 

a) Tube

Qc
*= 230 kJ/mol 

Stress Ratio

N=27

N=27

N=27

1/T
1.0e-3 1.1e-3 1.2e-3 1.3e-3

ln
(t

f)

4

6

8

10

0.4 
0.5 
0.6

b) Plate

Qc
*= 290 kJ/mol 

Stress Ratio

1/T

1.0e-3 1.1e-3 1.2e-3 1.3e-3

ln
(t

f)

4

6

8

10

0.4
0.5
0.6

Stress Ratio

Qc
*= 225 kJ/mol 

c) Pipe

N=23

N=13



37 

 The 1 2( , , , and )k u k v  material constants are found analytically as illustrated in Figure 4.3. 

The stress-rupture and MCSR calibration plots for tube, plate, and pipe alloy P91 are provided 

from Figure 4.5 to Figure 4.7. The material constants for tube, plate, and pipe are summarized in 

Table 4.2. 

Table 4.2 – Summary of the material constants *
cQ , 1k , u , 2k , and v  for the tube, plate and 

Constant Tube Plate Pipe 
*

c avgQ  ( 1kJmol ) 230 290 225 

1k ( uhr ) 50.87 98.36 56.46 

u (unitless) 0.1688 0.1441 0.1761 

2k  1 v
hr

  50.71 88.31 54.22 

v  (unitless) -0.1584 -0.1357 -0.1661 

 

 The constants for the three forms are different even though the material remains the same. 

Besides the variation on the creep activation energy, defects of microstructures that presents at 

different heat treatments and manufacturing processes from form to form affect the material 

constants. The chemical composition of the material is an indicator of this change. The three forms 

have different chemical compositions as shown in Table 3.1 and depending of the heat process the 

chemical composition changes. The plate is the form that has the most significant change for the 

chemical composition. The plate is also the one that has the highest *
cQ  which can relate to less 

defect as is the easiest to manufacture.  
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Figure 4.5 – Calibration of tube material constants for a) stress-rupture where 1 50.87k   and 

0 .1 6 8 8u   using [Eq. (4.4)] and b) MCSR 2 50.71k   and 0.1584v   where using [Eq.(4.5)].  

 

Figure 4.6 – Calibration of plate material constants for a) stress-rupture where 1 98.36k   and 

0 .1 4 4 1u   using [Eq. (4.4)] and b) MCSR 2 88.31k   and 0 .1 3 5 7v   where using [Eq.(4.5)]. 
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Figure 4.7 - Calibration of pipe material constants for a) stress-rupture where 1 56.46k   and 

0 .1 7 6 1u   using [Eq. (4.4)] and b) MCSR 2 54.22k   and 0.1661v   where using [Eq.(4.5)]. 

 

4.6 Stress-Rupture Prediction Model and Design Maps 

 The material constants ( *
cQ , 1k , and u ) obtain from Table 4.2 are plug into the stress-

rupture Wilshire [Eq. (4.4)] to obtain the predictive model. The resulting predictions are shown in 

Figure 4.8 a), Figure 4.9 a), and  Figure 4.10 a) for tube, plate, and pipe respectively. The vertical 

dashed line across the graph represents the division between the data used in the calibration process 

and the extrapolations that were made. The numbers used for calibration did not exceed 5000, 

5500, and 6000 hours for the tube, plate, and pipe respectively. These limits are set as it does not 

exceed  41 0  from the available data which is the typical separation point from short-term to long-

term.  

 Using the stress-rupture model [Eq. (4.4)] as well, design maps are created for design 
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in C , and the contour value z is the predicted rupture time, rt . The material constants *
cQ , 1k , 

and u  as well as the, TS  are implemented into the stress-rupture equation at different 

combinations of stress and temperature. The label lines are the contour lines predicting rupture 

time and the bold line with white spacing is the UTS of the material. 

 Simulations are performed from 0 to 550 MPa and from 400 to 700 C for the tube, plate 

and pipe as illustrated in Figure 4.8 b), Figure 4.9 b), and  Figure 4.10 b) respectively. It is observed 

that the plate has the most “infinite life” of the three with a larger area for predictions greater than 

710 . The design maps are tools for engineers but also define which form performs best at different 

conditions. The maps have areas that are similar, or have small variance, which is also an indicator 

that at some conditions a design engineer can choose the three form and would have a similar 

rupture life.   

 

Figure 4.8 – Using Wilshire [Eq. (4.4)]  in a tube a) stress-rupture predictions for alloy P91 and b) 
design rupture maps are obtained.  
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Figure 4.9 – Using Wilshire [Eq. (4.4)]  in a plate a) stress-rupture predictions for alloy P91 and 
b) design rupture maps are obtained. 
 

 

Figure 4.10 - Using Wilshire [Eq. (4.4)]  in a pipe a) stress-rupture predictions for alloy P91 and 
b) design rupture maps are obtained. 
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 It is observed that the Wilshire stress-rupture model successfully extrapolates long-term 

data not used in the calibration process for all forms because it follows the trend of the 

experimental data. Despite the model clear trend, the material constants that differ from form to 

form affects the overall performance of the model. The accuracy of calibration and extrapolation 

is assessed using the Normalized-Mean Square Error function (NMSE). The NMSE is calculated 

for each isotherm and the overall in the following form 

 2
, exp,

1 exp

( )1 N
sim i i

i sim

X X
NMSE

N X X


   (0.6) 

 

where exp,iX  and  ,sim iX   are the experimental and simulated data respectively and expX  and simX  are 

the mean values. The NMSE values for each material form (tube, plate, and pipe) are given in 

Figure 4.11. It is observed that the plate, represented as the grey line, has the least error therefore 

has the highest accuracy of the three forms follow by the tube and then the pipe for the overall 

model and across isotherms as well.  

 

Figure 4.11 - Normalized-Mean Squared Error at each isotherm for the tube, plate, and pipe for 
stress-rupture [Eq. (4.4)] 
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 Using material constants ( *
cQ , 2k , and v ) from Table 4.2 and plugging them into Wilshire 

[Eq. (4.5)] the MCSR models are obtain illustrated in Figure 4.12 (a), (b), and (c) for tube, plate 

and pipe. Like the stress-rupture model, the vertical dashed line across the graph represents the 

data used for the calibration and the extrapolative results. The lowest minimum-creep-strain-rate 

used for all three forms is  310  where extrapolations are made from high strain levels to lower.  

 Similarly to the stress-rupture model, it is observed that the Wilshire minimum-creep-

strain-rate successfully extrapolates long-term data that is not used in the calibration process. The 

material constants are different for the three forms. Comparing the performance as well the NMSE 

values are given for the three material forms as shown in Figure 4.13. Unlike the stress-rupture 

model, the form with the lowest error for the minimum-creep-strain-rate model is the pipe and is 

follow by the plate and lastly the tube. The stress-rupture model has less data than the minimum-

creep-strain-rate. Both the data sets for the tube and plate almost double in size from the stress-

rupture to the minimum-creep-strain-rate but the pipe decreases in size. Stress-rupture has 80 data 

points for tube and plate and 40 for the pipe and the minimum-creep-strain-rate has 180 data points 

for the tube, 130 for the plate, and 30 for the pipe. This explains why the pipe in the minimum-

creep-strain-rate has the highest accuracy. The less data needed to extrapolate the less error it 

contains in this situation. The form that had a consistent trend in both models is the tube with the 

highest error. Because of the limited information from the pipe in both models it is safe to assume 

that the plate is the best in terms of accuracy relative to the other two forms. 
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Figure 4.12 - Minimum-creep-strain-rate (MCSR) predictions of Wilshire [Eq. (4.5)] compared 
to P91 experimental data at multiple isotherms for (a) tube, (b) plate, and (c) pipe 
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Figure 4.13 - Normalized-Mean Squared Error at each isotherm for the tube, plate, and pipe for 
minimum-creep-strain rate [Eq. (4.5)] 

 

 The models have different performance from form to form because of the variance of 

material constants. Creep behavior from test to test varies because of defects of the microstructure 

in the material due to manufacturing. As stated in this study, each form had various heat processes 

apply to it. The thermomechanical process also differs from tube, plate, and pipe making the 

material susceptible to additional defects depending on the form. The plate had the best 

performance overall and is the one with the most significant difference in the chemical 

composition. Therefore, the chemical composition of the plate and the processes it undergoes 

makes the plate less exposed to defects and has the best performance against creep. 

4.8 Overview 

 In this Chapter the research objectives were to assess the stress-rupture and minimum-

creep-strain-rate prediction models for Wilshire using alloy P91 in tube, plate, and pipe form. As 

well as provide design maps as tools for design engineers and using the Wilshire stress-rupture 

equation.  
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 The Wilshire models were calibrated with the existing analytical method. It is discovered 

that despite the material remains the same for tube, plate, and pipe the material constants are 

different for each form. During heat and manufacturing processes the chemical composition as 

well as the microstructure of the material changes. The change of process and chemical 

composition then affects the material constants obtain from the analytical approach. The plate is 

the form with the most notably chemical composition change.  

 Using the material constants obtain for *
cQ , 1k , and u  the stress-rupture Wilshire equation 

was then calibrated for each of the forms. The model successfully extrapolates the data not used 

in calibration for all forms. Using the NMSE each of the forms were compared to vet which has 

the best performance against creep behavior. It is then concluded that the plate has the best 

performance overall for the stress-rupture model. Using the Wilshire stress-rupture model design 

maps are created for the tube, plate, and pipe. The maps can be used to make decisions in design 

depending on the conditions given to engineers. The plate has the most “infinite life” with the 

largest area for 710  implying that the plate also has the best performance for combinations of stress 

and temperature. Similarly, using the material constants *
cQ , 1k , and u  the MCSR Wilshire model 

was calibrated for each of the forms. Similarly, to the stress-rupture model the MCSR model 

successfully extrapolates data. The pipe has the best performance according to the NMSE in such 

model, but the lack of data provided for the pipe leaves room to analyze before concluding is has 

the actual best performance. The second one with the best performance and with enough data is 

the plate.  
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 Overall the plate has the best performance, it sustains a high level of accuracy and has 

enough data for calibration in both models.  Future work in this area of study is to assess the impact 

different processes have on the performance of the material. Using the well-established Wilshire 

method, efforts to recreate the full creep curve are also an area of interest in this study.  
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CHAPTER 5: MODIFIED WILSHIRE MODEL FOR LONG-TERM CREEP 

DEFORMATION AND DAMAGE PREDICTION 

5.1 Introduction 

 The Wilshire equations were introduced and have been well-accepted for the stress-rupture 

and MCSR models but there exists a third equation that describes time-to-strain predictions [64-

66]. Literature review finds that the Wilshire model produces accurate long-term extrapolations 

across a wide range of stress and temperature for numerous alloys [60-61,63-66]. Despite 

Wilshire’s well-established equations, the ability to predict creep deformation is limited due to a 

complex calibration process required to make analytical predictions. In addition, the analytical 

time-to-strain equation is not compatible with finite element analysis. The Wilshire model needs 

to be modified to enable the prediction of creep deformation across a wide range of stress and 

temperature.  

 The objective of Chapter 5 is to develop a CDM-based Wilshire (WCS) model that can 

predict long-term creep deformation, damage, and rupture. To accomplish this objective the 

following steps must be completed. The WCS model is derived; where the Wilshire stress-rupture 

and MCSR equations are incorporated into the Sinh CDM framework. Creep deformation data is 

collected for alloy P91 for a single isotherm and multiple stress levels from literature as shown in 

Figure 3.3. Material constants are obtained for the WCS model using the existing calibration 

approaches. Creep deformation and damage predictions are compared to experimental to 

demonstrate the accuracy of the WCS model. A parametric study is performed to assess the 

interpolation and extrapolation ability of the WCS model. 
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5.2Wilshire Equations and Previous Approaches 

 The Wilshire equations are described in [Eq. (4.4)] and [Eq. (4.5)] for predictions of stress-

rupture and MCSR. Stress-rupture and MCSR predictions can be rearranged for predictions in the 

following form 
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(5.2) 

to obtained desired ft  and min  at given stress and temperature. The calibration method has already 

been discussed and there have been many studies that applied the Wilshire equations.  

 The Wilshire equations been applied to a variety of alloys including polycrystalline copper, 

9-12% chromium steels (Grade 122, 11Cr-2W, and 12Cr stainless steel bars), 1Cr-1Mo-0.25V, 

316H stainless steel, among others [61,63-64,67-68]. Note that not all these materials listed were 

heat treated or post-process as in the study of Grade 122 steels, where the material is in plate and 

pipe form and has been forged at distinct stresses and temperatures producing multiple material 

batches [63]. The Wilshire equations has accurate extrapolations for multi-batch short-term stress-

rupture data, typically less than 5000 hours, out to 100,000 hours for multiple isotherms 

[63,65,69,71].  
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 To better predict SR and MCSR across a range of stresses, Wilshire et al introduced the 

region-splitting approach where the material constants 1k , u , 2k , and v  are split into two sets for 

low and high stress ratios, TS   respectively [63-66]. Following Wilshire’s approach, Cedro et 

al found that region-splitting at the yield strength minimized the error in rupture predictions of 

alloys HR6W and Sanicro 25 [72]. When region-splitting is not considered, miscalculation of 

rupture time predictions arises commonly caused by transitions on the deformation mechanisms 

[72]. Deformation mechanism maps can be consulted to decide on the split point. Previously in 

Chapter 4, region-splitting is not considered which carries a major part of the error especially in 

large datasets. Despite this the Wilshire model makes reasonable predictions across a decade and 

at multiple isotherms. When properly calibrated, the Wilshire equations predict the stress-rupture 

and MCSR over a wide range of stress and temperature [67,69]. 

5.3 Wilshire Time-to-Creep-Strain 

Wilshire introduced a third equation for predicting the time-to-creep-strain, t  as follows 

 *

3exp exp

w
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Q
k t

RT
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

            
 

(5.3) 

where 3k  and w  are material constants at a constant creep strain, cr  [65,69]. To calibrate the 

model, the creep deformation data of many experiments is converted into a tabular form where the 

stress, temperature, and time-to-creep-strain ( , ,T t ) are reported with respect to creep strain, cr

e.g. 0.01%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, 5%, creep ductility). For each creep strain, cr  in the 

table, an independent set of 3k  and w  constants must be determined. The 3k  and w   material 

constants are obtained by plotting the experimental  ln ln TS     versus 
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 *ln exp ct Q RT
    where the slope is w  and the y-intercept is the 3k  constant. Region splitting 

may be required where the 3k  and w  constants specific to each creep strain, cr  are different in 

low- and high-stress regions [65-66]. 

Creep deformation predictions can be made by expressing the 3k  and w  constants as a 

function of creep strain, 

 
3 1( )crk f   (5.4) 

 
2 ( )crw f   (5.5) 

where typically, a single of w  is chosen to represent all creep strains and 3k  takes a power-law 

form 
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where 3,0 3,1, ,k k  and 3,2k  are additional material constants [69,73-74]. Introducing [Eq. (5.4)-(5.5)] 

into [Eq. (5.3)] furnishes the following  
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 (5.7) 

where the time-to-creep-strain, t  and the creep strain, cr exist together. Creep deformation is 

predicted by rearranging [Eq. (5.7)] to furnish a complex creep deformation  cr f t     

equation. Note, if 3k  and w  exist as functions of creep strain [Eq. (5.4)-(5.5)], an exact solution 

to  cr f t     does not exist and a numerical solver must be employed. 
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 Harrison assessed the time-to-strain approach to predict creep deformation prediction for 

alloy 720Li [74]. Region-splitting was employed using 0.65 TS   as a split point, where it is 

assumed that dislocations within the grain boundaries occurred. Using [Eq. (5.6)] to obtained 

material constants, creep deformation predictions are made across three combinations of stress and 

temperatures. Predictions were made for less than 3000 hours, and it is concluded that it 

extrapolates accurately introducing the functional form [Eq. (5.6)] to the existing model. Although 

Harrison concludes this, the method depends on cr , which is unknown, and there is still not 

clarity on how to choose the time to creep strain. Evans also studied the time-to-strain approach in 

Waspaloy. The study normalize creep strain by ductility using *
f   , to avoid the issue that at 

some t  values, which there little clarity on how to choose the values, some specimens have 

already failed. Although efforts were made to avoid this issue, the results obtained a consistent 

over prediction in the time for failure as well as in the creep strain curves [75]. There seems to be 

a variety of complications in using the time-to-strain equation to predict creep deformation and 

little consistency on the methods of implementation.  

5.4 Sin-Hyperbolic CDM Model 

The sin-hyperbolic (Sinh) model is a modern continuum damage mechanics (CDM)-based 

model for creep deformation and damage prediction [76-79]. The creep-strain-rate takes the 

following form 

  3 2sinh expcr
s

A
 

 

  
 

  
(5.8) 

where A  and s  are the MCSR constants and   is damage ranging from 0 1  . The constant 

  is defined as   



53 

  minln final      (5.9) 

where the MCSR, min  and final-creep-strain-rate,  final   are measured from experimental data. 

The MCSR arises in [Eq. (5.8)] when damage is zero 
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where temperature-dependence is not explicit. Damage evolution takes the following form 
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where the M ,   and t  are the rupture prediction material constants that are analytically 

determined from stress-rupture data,   is the damage trajectory material constant determine via 

numerical optimization of the creep deformation, and   is damage. Integration of damage 

evolution [Eq. (5.11)] from 0 ft t   and 0 1  ,  furnishes rupture prediction as 
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where temperature-dependence is not explicit. Integration of damage evolution [Eq. (5.11)] from 

0 ft t   and 0    ,  furnishes damage as 
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where the material constants remain the same. 

 The Sinh model has been applied to model the creep behavior of 304 stainless steel, 

Waspaloy, and Hastealloy X [76-78]. The Sinh model was designed to exhibit less stress-sensitive, 
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less mesh-dependent, and better convergence when compared to classic CDM creep laws [40,79]. 

In the Sinh model, critical damage is always equal unity, 1   irrespective to loading conditions 

(uniaxial or multiaxial). The model has been implemented in commercial FEA software to simulate 

multiaxial creep including notches and cracks [77,79]. In addition, a method for calibrating the 

Sinh model using data from disparate sources has been developed [6]. 

5.5 Problem with Wilshire and Sinh CDM Model  

The stress-rupture, MCSR, and creep deformation predictions of Wilshire and Sinh models are 

examined closely. Regarding Wilshire,  

 the stress-rupture and MCSR predictions [Eq. (5.1)-(5.2)] include temperature-

dependence, can be calibrated analytically, and are accurate over a wide range of 

temperature and stress. 

 the calibration process for creep deformation prediction [Eq. (5.3)] is complicated and 

tedious. A large database of creep deformation data is needed. Tables of time-to-strain 

[Eq. (5.3)] for each creep strain, cr of interest must be generated and a set of 3k  and 

w  constants calibrated. The 3k  and w  constants are then regressed into a function of 

creep strain. Depending on the 3k  and w  functions, a closed and differentiable creep 

deformation equation may not exist. If a closed-form does not exist, additional 

iterations are required at all material integration points of the elements, every time 

step, in a finite element problem. Subsequently, the Wilshire time-to-strain [Eq. (5.3)] 

has slower convergence rates in finite element analysis when compared to other creep 

models. 

Regarding Sinh, 
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 the Sinh model has been demonstrated to predict the creep deformation of a variety of 

alloys, with less stress-sensitivity, less mesh-dependence, and better convergence rates 

than conventional creep models. 

 temperature-dependence is not stated explicitly in the Sinh model such that there exists 

a challenge in calibrating and validating the model for non-isothermal conditions. 

 Overall, both the Wilshire equations and Sinh model need further development. It is 

hypothesized that the Wilshire model can be integrated into Sinh CDM framework to derive a new 

model that produces accurate long-term creep deformation and damage predictions across a wide 

range of temperature and stress. 

5.6 CDM-Based Wilshire Model (WCS) 

 The new CDM-based Wilshire model consists of a set of coupled differential equation for 

creep-strain-rate and damage evolution. For brevity, the model is referred to as the WCS model. 

The creep-strain-rate is furnished by taking the Sinh creep-strain-rate [Eq. (5.8)] and replacing the 

Sinh MCSR [Eq. (5.10)] with Wilshire’s [Eq. (5.2)] as follows  
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where   is raised to the power of 1 in this modified form, which allows a closed form solution to 

be obtained suitable for FEA with faster convergence rate. The damage evolution is furnished by 

taking the Sinh damage evolution [Eq. (5.11)] and replacing the Sinh rupture prediction [Eq. 

(5.12)] with Wilshire’s [Eq. (5.1)] as follows 
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The damage [Eq. (5.13)] is preserved. The complete WCS model is summarized in Table 5.1. The 

Wilshire material constants  1 2, , , , ,TS Q k u k v  and Sinh material constants  ,   can be 

determined using the existing calibration approach for each model respectively [63-66,76-79]. Any 

Wilshire or Sinh constants that have been previously calibrated for a given material can be directly 

applied in the new model. 

Table 5.1 - Summary of WCS Model 

Feature Equation Origin Material Constants 
MCSR [Eq. (5.2)] Wilshire 

2, , ,TS Q k v  

Rupture [Eq. (5.1)] Wilshire 
1, , ,TS Q k u  

Creep-strain-rate [Eq. (5.14)] Combined 
2, , , ,TS Q k v   

Damage evolution [Eq. (5.15)] Combined 
1, , , ,TS Q k u   

Damage [Eq. (5.13)] Sinh   

 

5.7 Material Constants  

 The material constants Wilshire and Sinh must be calibrated. In the Wilshire equations, the 

material constants 1k  and u  from [Eq. (5.1)] and 2k  and v  from [Eq. (5.2)] are calibrated using 

region splitting as shown in Figure 5.1 (a) and (b) respectively. Consulting the deformation 

mechanism map for alloy P91 shown in Figure 2.4 it is determined that region-splitting is required 

as a mechanism transition between power-law and viscous creep occurs at values >110 MPa at 

600°C [16]. Discussed in Chapter 4 and presented in Table 3.3 it is determined that TS  at 600°C 
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is approximately 357 MPa and the activation energy for P91 in tube form is * 230cQ  1kJmol

[53]. Subsequently, region splitting occurs at a stress ratio TS   of 0.31 approximately.  

 
Figure 5.1 – Normalized (a) stress-rupture and (b) minimum-creep-strain-rate (MCSR) data of 
P91 at 600°C for the calibration of 1,k u  and 2 ,k v  respectively with region splitting at a stress 

ratio of 0.31.  
 

 The calibrated material constants *
cQ , 1k , u , 2k , and v  are summarized in Table 5.2. The 

material constants correspond to previous studies and show the expected trend in which at high 

TS   the material constants are usually lower than those obtained at low TS   [63-66,72].  

Table 5.2 – Summary of Wilshire material constants for P91 tube at 600°C with region 
splitting at a stress ratio of 0.31TS    

Region *
cQ  1k  u  2k  v  

TS   1kJmol  uhr   vhr   
Low  

(High) 
230  
(--) 

40.41  
(12.50) 

0.1627  
(0.1100) 

18.91  
(5.70) 

-0.1569  
(-0.090) 

 

 In the Sinh model, the material constants   and   are required.  The   constant is 

obtained through [Eq. (5.9)] analytically using creep-strain-rate data. The   constant is obtained 
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numerically, by optimizing [Eq. (5.8)] and [Eq. (5.13)] with creep deformation data. The   

constant is obtained numerically, by optimizing [Eq. (5.8)] and [Eq. (5.13)] with creep deformation 

data. The objective function is the NMSE presented in [Eq. (0.6)]. To obtain the   constant, the 

*
cQ , 1k , u , 2k , v  and   are required. The calibrated   and   material constants are provided 

in Table 5.3. 

Table 5.3 – Summary of the individually calibrated Sinh material constants  and   

Temperature, 
T 

Stress,    final  
min      NMSE 

(°C) (MPa) ( 1hr ) ( 1hr )    

600 100 41.26(10 )  75.12(10 )  5.51 5.16 02.79(10 )  

600 110 41.60(10 )  78.42(10 )  5.25 3.74 06.69(10 )  

600 120 42.64(10 )  61.78(10 )  5.00 3.22 51.92(10 )  

600 140 45.77(10 )  67.57(10 )  4.33 2.51 13.00(10 )  

600 160 32.55(10 )  55.64(10 )  3.81 1.45 21.16(10 )  

600 200 26.48(10 )  31.81(10 )  3.56 4.14 51.06(10 )  

  
 During calibration, it was determined that a single set of   and   do not exist for all 

experiments; therefore,   and   were calibrated individual for each creep curve. Past studies 

have shown that these constants also exhibit temperature-dependence [6,40,76-79]. To account for 

the co-dependence on stress and temperature, regression is performed, where a modified Eyring 

equation is employed for   and  as follows  
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where *V  and 
*V  are the activation volumes (or stress coefficient) corresponding to   and  , 

bk  is the Boltzmann constant  231.3806 10  J K , and 0 0,   are material constants [80-81]. In the 

  [Eq. (5.17)], the +1 term is added so that 1   always for numerical reasons [76-79].   

 Using this two new models [Eq. (5.16)] and [Eq. (5.17)] the stress and temperature 

dependence issue that the Sinh has is now resolve. Using the optimal   and   values, the 

activation volumes and 0 0,   are found and are summarized in Table 5.4. The predictions and the 

fitting of [Eq. (5.16)] and [Eq. (5.17)] are shown in Figure 5.2, where it is observed that the model 

crosses the data and there is a small error on some of the optimal values. Due to the numerical 

nature of both material constants,   and  , even though the solutions are not optimal, a small 

change would have little impact on the overall model; as an exchange realistic results across 

isotherms and stresses can be obtained.  

 

Figure 5.2 – Regressed (a)   and (b)   material constants using [Eq. (5.16)] and [Eq. (5.17)] 
respectively plotted against their individual calibrated values. 
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Table 5.4 – Summary of material constants for modified Eyring [Eq. (5.16)-(5.17)]. 

Eyring [Eq. (5.16)]  Eyring [Eq. (5.17)] 

Material Constants Values Material Constants Values 

0 (unitless) 8.76 0 (unitless) 91.5 
*V ( 3cm )  235.95 10  *V ( 3cm )  223.75 10  

bk ( J K )  231.3806 10  bk ( J K )  231.3806 10  

Temperature ( K ) 873.15 Temperature ( K ) 873.15 

 

 A behavior observed in the optimal values of both   and   in Figure 5.2 (a) and (b) is 

that typically as stress increases,   and   decrease. This behavior is expected, as materials have 

longer lifetimes creep deformation curves become almost a flat line with less creep ductility. 

Recalling [Eq. (5.9)], it is noticeable that as final  approaches min  then 0  . Therefore, a long-

term creep curve is associated with a small  value and for a short-term creep curve  is larger. 

To further apply the WCS model to a FEA software parametric simulations are shown in Figure 

5.3 for (a)  and (b)   at distinct combinations of stress and temperatures to prove the model 

captures the expected trend. As observed, the expected behavior is perfectly described by the 

model also in agreement to the trend seen in Figure 5.2. The model physically represents the proper 

behavior across multiple stresses and temperatures. A summary of the new   and   values using 

[Eq. (5.16)-(5.17)] is shown in Table 5.5 with the updated NMSE values. Notice the NMSE values 

did not change dramatically on most stress levels. 



61 

 

Figure 5.3 – Parametric simulation of (a)  and (b)   at distinct combinations of stresses and 
temperatures.  

 
Table 5.5 – Summary of   and   values using [Eq. (5.16)-

(5.17)] 

Temperature, T Stress,        NMSE 
(°C) (MPa)    
600 100 5.35 5.09 02.84(10 )  

600 110 5.09 4.00 09.23(10 )  

600 120 4.84 3.20 33.05(10 )  

600 140 4.39 2.18 13.25(10 )  

600 160 3.98 1.63 21.18(10 )  

600 200 3.26 1.18 11.17(10 )  
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respectively and are illustrated in Figure 5.4. The predictions for stress-rupture and MCSR are 
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shows that the model is over and underpredicting respectively. The model is conservative for most 

of the stress levels and in the ones that is over predicting the percent error is not a major concern. 

The MCSR predictions are accurate which facilitates the overall creep deformation predictions.  

 
Table 5.6 – Experimental and simulated rupture time from the 

damage model and the Wilshire rupture predictions with percent 
error. 

Stress,    
Actual Rupture 

Time 
Simulated 

Rupture Time 
Percent  
Error 

(MPa) ( hr ) ( hr ) %  
100 34,121.41 34,014.31 (-) 0.31 
110 21,147.22 21,079.44 (-) 0.32 
120 12,796.49 13,533.69 (+) 5.76 
140 3,460.80 3,384.98 (-) 2.19 
160 943.46 835.44 (-) 11.45 
200 40.13 43.22 (+) 7.71 

*+ and – are for over and underpredictions respectively. 
 

 Creep deformation predictions using [Eq. (5.14)] are shown in Figure 5.5 (a) on a 

logarithmic time scale. It is observed that the novel constitutive model accurately fits for the 

secondary and tertiary creep regimes creep regimes. Damage predictions, using the integral form 

of [Eq. (5.15)], are provided in Figure 5.5 (b) on a logarithmic time scale. In all cases, the critical 

damage is found to be 1   at rupture. 



63 

 

Figure 5.4 - WCS model predictions of (a) stress-rupture and (b) minimum-creep-strain-rate 
(MCSR) data. Note that the x-axis in both scenarios are in logarithmic scale. 

 

Figure 5.5 – WCS model predictions of  (a) creep deformation [Eq. (5.14)] and (b) damage [Eq. 
(5.13)] for alloy 91 at 600 C  subject to 100, 110, 120, 140,160, and 200 MPa. Time is on a 

logarithmic scale. 
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FEA software to be used to predict creep behaviors as well.  A closed-form solution for creep 

strain is introduced as well, which is convenient for FEA convergence. The model is conservative.  

5.9 Parametric Exercise of WCS Model  

 Parametric simulations are performed using various combinations of stress and temperature 

to the constitutive WCS model. Extreme condition tests are performed to vet the accuracy of 

predictions where data is not given, especially for future FEA simulations.  

 These tests are separated into stress and temperature tests in which the stress-rupture, 

MCSR, and creep ductility are analyzed shown in Table 5.7.  Due to the way [Eq. (5.1)-(5.2)] are 

presented, when temperature and stress are 0 then the equation becomes undefine. The stress test 

includes zero stress, yield stress, and UTS and the temperature test are absolute zero, room 

temperature, and near melting temperature. Additionally, typical operating conditions on an 

advance Ultrasupercritical (A-USC) power plant are given. There seems to be coherency in the 

way the model behaves at extreme conditions in which realistic results are given. 

Table 5.7 – Extreme stress and temperature test for WCS model using rupture time, MCSR, and 
creep strain 

Test 
Stress Test ( MPa ) 

(at873 K ) 
Temperature Test ( K ) 

(at 160 MPa ) 
A-USC 

( MPa , K ) 

Type 
Zero 

Stress 
Yield 
Stress 

UT 
Stress 

Absolute 
Zero 

Room 
Temperatur

e 

Melting 
Temperatur

e 

Operating 
Conditions 

Value 0  289  357  0  298  1673  34.5 ,1033  

ft  

( hr ) 

Un-
defin

e 
 34.50 10  0 

Un-
define  293.00 10   42.19 10   49.67 10  

min  

( 1hr ) 

Un-
defin

e 
 24.76 10  Un-

define 
Un-

define  322.69 10   13.67 10   61.49 10  

cr  
Un-
defin

e 
 05.05 10  Un-

define 
Un-

define  29.90 10   11.38 10   19.44 10  
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 Together with the extreme test exercises, parametric studies variating stress and 

temperature are shown in Figure 5.6. In the temperature variations, Figure 5.6 a), constant stress 

of 160 MPa  is considered for all scenarios. Notice that if such stress level is considered, then from 

the region-splitting approach, this scenario is operating in high stress except for 500 C  and 525 C

. The temperature variations show a consistent behavior when interpolations and extrapolations 

are performed. Similarly in stress variations at constant temperature, Figure 5.6 b), the predictions 

are consistent in between and outside the stress levels from the experimental data. It can be clearly 

observed that as the creep deformation curve tends to longer rupture times creep ductility becomes 

smaller which is expected from conventional creep curves. Another parametric study is the 

variation of both stress and temperature as illustrated in Figure 5.7 a). A similar trend is observed 

in which at higher stress and temperature combinations, creep ductility is larger and vice versa, as 

stress and temperature are lower, then creep ductility is smaller. Additionally, there is another 

parametric simulation considering the typical operating conditions from supercritical (SC), ultra-

supercritical (USC), and Advance ultra-supercritical (A-USC) powerplants shown in Figure 5.7 

b). The operating conditions for the powerplants are obtained from previous studies and is 

summarized in Table 5.8 [82]. The vertical dotted line, defined as the service life requirement, in 

in Figure 5.7 b) is the expected life for most materials that operate at these conditions. It is observed 

that the predicted rupture time for the A-USC does not meet these conditions. There are multiple 

reasons why this behavior is presented, it can be uncertainty on the data used for calibration or the 

material selected is not suitable to operate at such conditions. Many materials for A-USC have 

shorter service life depending on the specifications.  
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Figure 5.6 – WCS model parametric simulations for both (a) temperature variations and (b) 
stress variations. Note the x-axis are in logarithmic scale. 

 

Figure 5.7 – WCS model parametric simulations for (a) both stress and temperature variations 
and (b) typical operating conditions for conventional supercritical (SC), ultra-supercritical 

(USC), and advance ultra-supercritical (A-USC) power plants. 
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 Overall WCS model performs in a realistic way which tells the reader that it can be useful 

for different applications and particularly those mention for SC, USC, and A-USC. The WCS 

model produces realistic results even where data is not given, making the model reliable for long-

term creep deformation predictions, damage evolution predictions, damage rate, rupture time, 

MCSR, and with a differential form useful for future FEA simulations.  
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Conclusions 

The objective of this work, the development of a WCS model using the Sinh CDM model has 

been completed. The capabilities of this new constitutive model are the ability to predict long-term 

creep deformation, damage rate, damage evolution, rupture time, MCSR, and has explicit stress 

and temperature gradients.  

 The WCS model has proven to fit and predict long-term creep deformation for a wide 

time period even where data is not provided. The model has an explicit stress and 

temperature dependency which allows multiple isotherms and stresses to be predicted. 

Only two additional material constants are necessary to complete the calibration 

process from the already established and well-accepted Wilshire laws.  

 The WCS model predicts both damage evolution and damage rate. Using the rupture 

predictions from Wilshire the damage accurately represents failure in the material 

reaching unity close to the rupture time. There seems to be small error from the damage 

predictions to the actual failure time. 

 The WCS model has conserved all Wilshire law properties including the ability to 

predict rupture time and MCSR as well as the Sinh model capabilities of predicting 

damage. Introducing the new stress dependent functions to the   and   Sinh material 

constants addresses the issue the model has continuously had.   

6.2 Future Work 

Future work in this area of study is to apply the model using probabilistic to avoid the 

uncertainty that conventional creep data has. There seems to be little consistency in creep data 
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where if the same conditions are applied to a specimen, it results in different creep deformation 

curves. These issues produce a variation of material constants resulting in over and 

underpredictions of failure time and damage. Adding a probabilistic model would result in better 

creep deformation and damage predictions. The model must be programed into an FEA software 

as well to vet the accuracy of simulation predictions. This would allow multiple materials to be 

calibrated to the model easier as well as more stress and temperature variations. Lastly, the 

possibility of adding a primary creep model to the WCS model would allow better predictions for 

materials that are not as creep resistant as P91.  
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