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Abstract 

E-quality is a process through which inspection of the process and quality of the part produced is 

done online resulting in the improvement of the process and reduction in the amount of time 

consumed for the overall process. Automated quality control involves using a methodology to 

classify the parts based on the dimensions of the features on a part. However, achieving 100% 

classification accuracy is not an easy task, especially in area of quality control where small 

differences in dimensions result in part fall into a different category. In this study, a novel 

approach for modifying the data before being used for training of Support vector Machines 

(SVM) is presented. A new methodology for classifying the parts into different categories is also 

presented and the classification accuracies of both the approaches are compared with that of the 

traditional SVM approach. SVM was used as benchmark keeping in view of its higher 

generalization ability especially when the data set is small and class overlap is non-existent, 

primary attribute of quality control data. The data extracted from Machine Vision Systems 

(MVS) in a robotic set up was used as case study to demonstrate the three procedures. Results 

show that the proposed new (sine) methodology yielded superior results compared to the 

rest in the current scenario with 100% classification accuracy. Moreover, it was found that 

with the proposed methodology, the classification accuracy can be improved up to the level 

of 8
th

 decimal point by using more accurate ‘C’ value. In the current work, accuracy up to 4
th

 

decimal point was demonstrated. Any number of features on a part can be used without limit, for 

classification with the proposed new methodology, accuracy being unaffected.  
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Chapter 1 

Introduction 

1.1 Background 

   The ever increasing competition among the production groups in turn forced them to move 

towards shorter product life cycle, remote quality control, smaller products and network based 

production and distribution systems to stay in the competition. E-manufacturing is the process of 

integration of design, manufacturing, quality and business functions with integrated information 

networks. The competition in the manufacturing industry made them to place high emphasis on 

quality and reliability of the products. In other words, industry is striving towards achieving zero 

defect manufacturing. How precise the product may be produced, there is at least a little chance 

that a defective product is produced. Industries like those that produce brake wires for 

automobiles are forced to inspect each and every part as a defective product may result in an 

accident. In such scenarios, where each product is to be inspected for quality, internet based 

inspection systems help perform quality inspection reliably, accurately and in very less time. E-

quality is the process through which monitoring the process and inspection of the parts produced 

is performed online by integrating the machines into the information network [1]. Ability to 

control the equipment remotely offers tremendous benefits. Designers located remotely can 

visualize their designs and carry out inspections remotely. Inspections settings can be adjusted 

according to the requirements. A similar set up developed at Industrial Systems Engineering 

Laboratory (ISEL) at University of Texas at El Paso (UTEP) is explained in the following 

section. 
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1.2 Internet Based Inspection Set Up 

   In a manufacturing setting, to achieve zero defect products, parts are to be inspected at each 

stage to eliminate bad parts so that no defective product is produced at the end. Inspecting the 

parts as they are moving on a conveyer between stages of production minimizes the time for 

inspection. However, it also necessary to remove the bad parts away from the conveyer as they 

are moving on. Robots customized to pick and place are used to perform these functions. The 

current set up consists of a small conveyer on which parts move. A sensor attached to the 

conveyer detects the parts‟ arrival. Cognex machine vision system was used to inspect parts on 

the conveyer. The machine vision system performs the inspection by comparing the image of the 

current part to the standard image that is pre-loaded into the memory of the camera. Yamaha YK 

350X SCARA (selective compliance assembly robot arm) robot was used to pick bad parts on 

the conveyer and place them away. The robot makes use of vacuum to pick the parts from the 

conveyer. When the sensor detects the parts‟ arrival, a signal is sent to the robot controller 

(RCX240 robotic controller was used in the current set up). The robot controller sends signals to 

the conveyor and the machine vision system. The conveyor stops and the machine vision system 

perform the inspection process. If the part is good, the camera sends a signal to the robot 

controller and the robot controller in turn signals the conveyer to move. Else, there will not be 

any signal from the camera and the robot controller sends a signal to the robot to pick up the bad 

part and later the conveyor to move on. When the signal is sent to the robot, the robot moves to 

the appropriate position and the vacuum is switched on so that the suction tip of the robot holds 

the part by means of vacuum pressure. The robot then moves to a different position where the 

part is to be placed and the vacuum is switched off. The robot is directly linked to the robot 
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controller and all other equipment like conveyor, machine vision system (MVS) and vacuum are 

operated from the robotic controller by means of digital signals (Inputs and Outputs). All the 

logical operations to be performed are written in the form of programming code (Appendix I) 

into the robotic controller that can be controlled remotely through an onboard Ethernet card, 

which is an optional device for connecting over the internet. TCP/IP (Transmission Control 

Protocol/Internet Protocol), a standard internet protocol can be used to communicate with the 

controller. The unit uses 10BASE-T specifications and UTP (unshielded twisted-pair) or STP 

(shielded twisted-pair) cables can be used. PCs can access the controller using Telnet. 

Commands can be sent to the controller once the connection is established. Application 

Programming Interface (API) is developed by embedding the Telnet procedure in the form of 

visual basic codes to have improved visualization of robotic movements and quality control 

operations. Web cameras were fixed in such positions that the remote operators can view the 

entire process through them and make necessary changes to the program in the robot controller. 

The connection between API and the controller was established by using Winsock components 

using various ActiveX controls that communicate through IP addresses. Figure 1 shows the 

overall setting of the system. 
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Figure 1.1. Overall setting of the inspection system 

Figure 1.2 below shows the set up at ISEL (Industrial Systems Engineering Laboratory), UTEP. 
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Figure 1.2. Inspection System Set Up at ISEL, UTEP. 

1.3 Motivation of the research 

    Process of reworking a part that is not good to make it meet the requirements is common in 

any manufacturing industry. A part will be sent to scrap only if it cannot be reworked. Any 

inspection is expected to give out the result as whether the part is good, bad or can be reworked. 

But, the Cognex Insight software in the current scenario does not do the multi-classification 

of the dimensional values obtained. The objective of this research is to try using Support 

Vector Machines, a machine learning approach for prediction of the outcomes. A new approach 

of using index values in SVM was tested for improved classification accuracy. A completely 

new methodology was also tried that was found to give 100% accuracy with certain limitations. 
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Chapter 2 

Literature Review 

Achieving 100% classification accuracy is not an easy task, especially when dealing with a case 

where exactness matters. Quality control in this case involves analyzing the dimensional 

values of features where slight difference in value makes the part fall into a different 

category. The three best known methodologies are Neural Networks, Support vector Machines 

and Fuzzy Logic. Support Vector Machines was preferred due to its higher generalization 

ability especially when the data set is small and the class overlap is scarce or non-existent 

[2,3]. The following section presents previous works dealing with ways and combinations of 

methods with SVMs towards improving classification accuracy.  

2.1 Classification Accuracy using Support Vector Machines 

   Ming-HuwiHorng et al. [4] used multi-class fuzzy support vector machines for identifying 

injury to supraspinatus muscle of the rotator cuff. Five types of multi-class support vector 

machines along with fuzzy logic were tested for classifying the supraspinatus images into 

different disease groups. One against all fuzzy SVM (OAA-FSVM) was found to yield best 

classification accuracy of 90% compared to one against all SVM (OAA-SVM), one against all 

decision tree based, one against one voting based and one against one directed acyclic graph 

methods. Jin-Hyuk Hong and Sung-Bae Cho [5] used a new method integrating one vs. rest 

SVM (OVR SVM) and Naïve Bayes classifiers (NBs) for classifying cancer data. The proposed 

method yielded better results with an accuracy of 81.5% compared to existing OVR SVMs and 



7 

 

NBs worked out either individually or combined by sum and product strategies. Sukanta Mondal 

et al. [6] tested BLAST algorithm, I sort predictor, least hamming distance algorithm, least 

Euclidean distance algorithm and multi-class support vector machines for classifying conotoxins 

into A, M, O and T super families to find SVMs outperform other methods with an accuracy of 

88.1% with squared correlation of 0.75 for five classes using jackknife cross-validation test. Kai-

Quan Shen et al. [7] tested probabilistic based multi-class SVM for establishing a robust 

electroencephalography (EEG) based mental fatigue measurement and monitoring system. 

Average testing accuracy of 87.2% was achieved compared to that of 85.4% with one vs. one 

SVM (OVO SVM). Approach of aggregating the confidence estimates was found to yield 

increased classification accuracy with the value increasing with increase in the number of epochs 

considered for aggregation. Der-Chiang Li et al. [8] developed and tested kernel construction 

technique for increased classification accuracy with small data sets using support vector 

machines. Echocardiogram data, Wisconsin diagnostic breast cancer data, BUPA liver disorders 

data and Pima Indians diabetes data from UCI repository of machine learning data base were 

used for testing. Class possibility based kernel was found to give better classification 

performance compared to polynomial and Gaussian kernels on support vector machines. Cheng-

Jin Du et al. [9] tested three multi classification methods called, one vs. all, one vs. one and 

directed acyclic graph (DAG) on the pizza images obtained through computer vision for 

classifying them into four categories for pizza base and five categories for pizza sauce spread 

and topping.  One vs. one method yielded best accuracy levels of 89.17%, 87.5% and 80.83% for 

pizza base, sauce spread and topping respectively. C.Z. Cai et el. [10] tested SVM for 

classification of distinctly related proteins that include RNA-binding proteins, protein 
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homodimers, proteins responsible for drug absorption, proteins involved in drug delivery, drug 

excretion proteins, class-I drug metabolizing enzymes and class-II drug metabolizing enzymes 

into functional classes based on the features generated from the analysis of physiochemical 

properties of proteins. Classification accuracy of independent evaluation sets was found to be in 

the range of 86.5% to 99.4%. V. Sugumaran et al. [11] developed and tested a fault diagnostic 

system where critical features are selected by using decision tree algorithm based on information 

gain and prediction by Gaussian kernel based multiclass SVM. Accuracy of 94% was achieved. 

J.H. Hong et al. [12] developed a novel method for classification of finger prints dynamically by 

integrating Naïve Bayes (NB) classifiers and SVMs. Naïve Bayes was used for determining the 

sequence of the one vs. all SVM models to be evaluated based on singular points and pseudo 

ridges. One vs. all SVM models with Gaussian kernel is evaluated based on finger codes. 

Proposed method yielded an accuracy of 90.8% for five class problem and 94.9% for four class 

problem with 1.8% rejection during feature extraction phase of finger code from which it can be 

concluded that combination of different methods and features will result in increased 

classification accuracy. Xue-Wen et al. [13] proposed a new method combining independent 

component analysis (ICA) filter bank, recursive feature elimination method (RFE) and least 

square SVM with Gaussian kernel for feature extraction, feature selection and texture 

classification respectively. One against all strategy was used to combine the results from 

classifiers. The proposed RFE_max method was found to yield better results. Limitations with 

genetic systems, fuzzy logic and neural networks like requiring expensive evaluation processes, 

linguistic rules which are hard to generate and inability in determining the number of layers and 

number of neurons per layer respectively and the effectiveness of SVM in pattern recognition 
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drove Li-Chang Chao et al. [14] to propose a novel wafer defect recognition system using multi 

class SVM with a new defect cluster index. Gaussian kernel with one against one approach was 

used. Accuracy of 91.3725% was achieved with the proposed method compared to 62.7451% 

with RBF (radial basis function) neural network.  Jayadeva et al. [15] proposed the extension of 

fuzzy proximal support vector machines methodology to a multi-class problem by using one 

from rest (OFR) criteria for separation of each class from the rest. Iris and Wane data were used 

for the test. Tuning data set was used for finding optimal values for parameters. Fivefold cross 

validation was used for evaluating accuracy. Fuzzy proximal SVM and Proximal SVM were both 

tested. Fuzzy proximal SVM was found to better accuracy levels with improved process speed. 

EmreComak et al. [16] proposed a new training algorithm to overcome the problems related to 

outliers in the training set. Training data was mapped into higher space by using RBF kernel 

function and simple clustering scheme based on Euclidean distance measure was used for 

normalization of distance values. A K number that represents the number of neighbor for i th 

cluster of class j are computed independently for both classes. Pair wise SVM was used for 

separating the hyper planes. Pair wise SVM with Euclidean distance measure was used for multi 

class problems. Iris, Wane and Thyroid data were used for testing. The proposed method was 

found to yield better results compared to FLS (Fuzzy least square)-SVM, LS-SVM and LS-SVM 

with K-NN (K nearest neighborhood) methods with reduced training times. In health care, it is 

important to know the confidence levels of an outcome as it is critical in making a decision 

regarding the possible diagnosis.  Ben Van Calster et al. [17] evaluated the performances of 

algorithms like standard statistical MLR (multi-class logistic regression) with manual checks for 

transformations, interactions, and the linearity in logit assumption, standard binary LR (logistic 
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regression) models with similar checks, Bayesian MLP (multi-layer perceptron), combinations of 

binary Bayesian LS-SVMs (least square support vector machines) and multi class kernel logistic 

regression based on LS-SVM theory on the data collected at St. George‟s hospital in London.  

Binary logistic regression models combined using pair wise coupling isolated more than 80% 

patients as failing PUL (pregnancy of unknown location) or IUP (Intra-uterine pregnancy) with 

very high level of confidence leaving 20% at risk for ectopic pregnancy (EP) for which more 

attention is required. SVM methods are found to yield good results with MKLR (Multi-class 

kernel logistic regression), a close affiliate to SVM standing in top 5 for all the performance 

measures. David Meyer et al. [18] compared binary SVM to 16 other classification methods and 

9 regression methods accessible from R software version 1.6.1 with 21 data sets used for 

classification and 12 for regression to conclude that simple statistical procedures and ensemble 

methods  providing competitive results without the need for delicate and computationally 

expensive hyper parameter tuning. All the approaches mentioned above are summarized in the 

table 2.1 given below. 

Table 2.1. Review of various works on SVM 

Author Method Application Remarks 

Ming-Huwi 

Horng.,200

9. 

Various multi-class SVMs. Classify the 

supraspinatus image 

into different disease 

groups. 

One Against All Fuzzy 

SVM was found to yield 

the best classification 

accuracy of 90%. 

Jin-Hyuk 

Hong., 

One Vs. Rest SVMs and Classify cancer data Better accuracy of 81.5% 
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Sung-Bae 

Cho., 2008 

Naïve Bayes compared to simple SVMs. 

SukantaMo

ndal et al. 

Various methods including 

MSVMs 

Classify conotoxins SVMs outperformed with 

88.1% accuracy. 

Kai-

QuanShen 

et al. 

Probabilistic based multi-

class SVM 

Electroencephalogra

phy based mental 

fatigue measurement 

PWC-SVM performed 

better  compared to One 

Vs. One SVM. 

Der-Chiang 

Li et al. 

Possibility based kernel o be 

used with SVM 

Echocardiogram 

data, Wisconsin 

diagnostic breast 

cancer data, BUPA 

liver disorders data 

and Pima Indians 

diabetes data 

Proposed kernel performed 

better compared to 

Gaussian and polynomial 

kernials. 

Cheng-Jin 

Du et al. 

SVMs (One vs. All, One vs. 

One) and Directed Acyclic 

Graph (DAG) 

Pizza quality One vs. One found to be 

the best followed by DAG. 

C.Z. Cai et 

al. 

Gaussian Kernel based SVM Classification of 

functionally distinct 

proteins 

Accuracy levels of 86.5-

99.4% were achieved. 

V. 

Sugumaran 

et al. 

Information gain and 

multiclass SVM 

Identify faulty 

bearing conditions 

Accuracy of 94% was 

achieved 

J.H. Hong 

et al. 

Naïve Bayes classifiers and 

OVA SVMs with Gaussian 

kernel 

Finger print 

classification 

Accuracy of 90.8% for five 

class problem and 94.9% 

for four class problem with 

1.8% rejection 
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Wen Chen 

et al. 

ICA filter bank, a new 

recursive feature elimination 

method (RFE) and LS-SVM 

Texture Analysis Proposed RFE_max 

method performed better.  

Li-Chang 

Chao et al. 

Multi class SVM (Gaussian 

Kernel and One Against One 

approach) with new defect 

cluster index 

Wafer defect 

recognition 

Proposed cluster index 

yielded better results.  

Jayadeva et 

al. 

Multi class proximal support 

vector machines 

Iris data and Wane 

data 

Proper membership value 

assignment improved 

results. 

EmreComa

k et al. 

Training algorithm based on 

Euclidean distance measure 

and K nearest neighbor with 

pair wise SVM 

Iris, Wane and 

Thyroid data 

Proposed method 

performed better. 

Van Calster 

et al. 

Probabilistic algorithms Classification of 

pregnancies of 

unknown location 

Methods affiliated to SVM 

are found to perform good 

but not superior. 

David 

Meyer et 

al. 

Benchmarked SVM to 16 

classification and 9 

regression methods 

21 datasets for 

classification and 12 

for regression 

SVMs has high potential 

but not superior to all 

methods in all cases. 

 

   From the review it was found that in general, SVM was preferred over neural networks for its 

risk minimization capability. Alterations in the SVM and combinations with different methods 

were found to give increased classification accuracy and dominate other methods. However, the 

alterations and combinations were tested on specific applications and the results cannot be 
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generalized. In most cases, the methods were found to have developed to improve classification 

accuracies in particular cases they dealt with. It was observed authors mentioning that simple 

statistical approaches specific for an application may outperform all other algorithms [18]. It can 

be concluded that, alteration in SVM depending on the data or a problem specific simple 

statistical approach may lead to improved classification accuracy. 
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Chapter 3 

Methodology 

In the current section, SVM and two new approaches were explained. In the first case, the data 

extracted was modified to obtain new set of values and was used for analysis with SVM. 

Secondly, a completely new methodology for classifying the data was developed. This chapter 

illustrates the various methodologies including the traditional SVM process.  

3.1 Support Vector Machines 

    In this method, Support vectors machines methodology is applied to the training data set to 

obtain the classifier equation and any incoming data point of a part will be classified based on 

those classifier equations. Figure 3.1 below shows the flow diagram of the procedure using the 

part from the case study as example. 

START

(From 

Production)

QUALITY 

CONTROL
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Figure 3.1. Flow diagram of the procedure using SVM. 
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3.1.1 Binary Support Vector Machines 

   The SV algorithm is a nonlinear generalization of the Generalized Portrait algorithm developed 

in the sixties [19]. It is based on the frame work of statistical learning theory, which has been 

developed over the last three decades by Vapnik and Chervonenki [20]. The present form of 

SVM was developed to a great extent by Vapnik and co-workers at AT&T Bell Laboratories [21- 

23]. It is this industrial context that led the research on SVM to be oriented towards real-world 

applications. The decision function for the support vector classification is of the form 

 


m

i iii bxxyxf
1

))(),(sgn()(                                                                                         (1) 

Where 

m is the total number of data points considered for training, 

sgn (x) = 1, if x is positive, 

sgn(x) = -1, if x is negative, 

iy = ±1 depending on the class to which ith data point belongs to in the output space, 

i  is the Lagrange multiplier obtained by solving the quadratic problem, 

 yx, is the dot product of x and y, 

)(x is the mapping function that maps input value x into higher dimensional space, 

b is a constant. 
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Equation (1) gives rises to equation (2). 

)),(sgn()(
1

bxxkyxf i

m

i ii   
                                                                                                  (2) 

Where 

 )(),(),( ii xxxxk
. 

A mapping function is used to map the data points into higher dimensional feature space where 

they can be linearly separated. Figure 3.2 below demonstrates the use of a mapping function. 

()

( )

( )

( )

( )( )

( ) ( )

( )

( )

( )

( )

( ) ( )

( )

( )( )

( )

Input Space Feature space
 

Figure 3.2. Demonstration of mapping function. 

Equation (2) leads to the following quadratic problem 

Maximize ),(2/1)(
1,1 j

m

ji ijiji

m

i iR
xxkyyWm  

 


                                                     (3) 

Subject to 0i for all i = 1,……, m and 0
1

  i

m

i i y                                                             (4) 

Where 
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α is the Lagrange multiplier, 

y = ±1 is the class index value in the output space, 

x is the input data point vector, 

m is the total number of data points (vectors), 

),( ji xxk is the kernel function. 

To allow for the possibility of examples violating, slack variables were introduced. 

0i for all i = 1, … , m                                                                                                              (5) 

So that the constraints get relaxed to  

ii bxwy  1),(  for all i = 1, … , m                                                                                    (6) 

Where 

  xxyxw iii ,,  and 

 iii xyw   

Figure 3.3 demonstrates the working principle of SVM with slack variables included.  



18 

 

W

Class 1

Class 2

i

J

Xi

XJ

 

Figure 3.3. Geometric representation of SVM with slack variables included. 

    In the figure 3.3 shown above, ji  ,  are the amount of slacks for the data points iX  and jX  

respectively, where iX belongs to class 1 and jX  belongs to class 2. 0 bXW T is the 

classifier plane that separates the classes 1 and 2. 1 bXW T  and 1 bXW T are the 

equations used to maximize the separation space between the two classes where W is the vector 

shown in the figure. 

    A good generalizing classifier is found by controlling both the classifier capacity and the sum 

of the slacks. The latter can be used to set the upper bound on training errors. The soft margin 

classifier can be obtained by minimizing the objective function 

 


m

i iCww
1

2||||
2

1
),(                                                                                                          (7) 

Subject to constraints (5) and (6), 
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Where 

C > 0 determines the trade-off between margin maximization and training error minimization  

     Incorporation of kernel and rewriting in terms of Lagrange multipliers leads to problem of 

maximizing (3),  

Subject to Ci  0 for all i = 1, …, m and  


m

i ii y1
0                                                        (8) 

     The only difference from the separable case being the upper bound C on the Lagrange 

multipliers i . By this, the influence of individuals that could be outliers gets limited. The 

solution takes the form (1). Threshold b can be computed by exploiting the fact that for all 

support vectors,   with   < C, the slack variable    is zero, and hence 

 


m

j ijijj ybxxky
1

),(                                                                                                           (9) 

    Choosing b amounts to shifting the hyper plane and [24] suggests shifting the hyper plane 

such that support vectors with zero slack variables lie on the ±l lines. 

3.1.2 Multi-Class Support Vector Machines 

    As support Vector machines employ direct decision functions, an extension to multi-class is 

not straight forward. There are roughly four types of support vector machines that can handle 

multi-class problems. In one-against-all support vector machines, data of each class is compared 

with all the rest of the data as single class. In pair wise support vector machines, data from each 

class is compared with that of all other classes. In error correcting output codes SVM, “don‟t 

care” outputs will be introduced and a unified scheme that includes one-against-all and pair wise 
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formulations are used. In all at once SVM, all the decision functions of classes are solved 

simultaneously. More information can be found in [3]. In the current study, pair wise support 

vector machines was used. Pair wise strategy was selected keeping in view of the superior results 

obtained by Chih-Wei Hsu and Chih-Jen Lin [25] when tested on standard data like iris, wine, 

dna, shuttle, etc. compared to other strategies. 

    In pair wise support vector machines, a total of n (n-1)/2 decisions functions will be 

determined for all the combinations of pairs of classes (using binary SVM).            , 

where        is the decision function for class i against class j and i ≠ j. After arriving at decision 

functions, for classification of data into classes, a voting strategy was employed.  

X is classified into the class  

)(argmax

,..,1 xDini                                                                                                                              (10) 

for 

 


n

jij iji xDsignxD
1,

))(()(                                                                                                       (11) 

Where 

)(xDij  is the decision function for class i against class j. 

sign(x) = 1 for x ≥ 0 

sign(x) = -1 for x ≤ 0.  
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   In case two classes have same identical number of votes, the class with the smallest index is 

selected to avoid unclassifiable regions [25]. 

3.1.3 Example 

    The following example demonstrates the SVM methodology used in the current study. Let us 

consider six one dimensional data points:    ,     ,     ,     ,     ,      where 

      belongs to class 1,       belongs to class 2 and      belongs to class 3.Since, we use pair 

wise support vector machines, we solve for classes 1 and 2 first. Let us consider a polynomial 

kernel with degree=2, gamma=1 and coefficient=1 which results in K(x, y) = (xy+1) ^2. We 

assume C=100.  

We can solve for support vectors by using the equation 

Max     


4,3,2,1

2

4,3,2,1 4,3,2,1
)1(2/1

i jiji ij jii xxyy  

Subject to 1000  i ,  


4,3,2,1
0

i ii y  

   By using a quadratic programming solver, we get     ,         ,         ,     . 

Figure 3.4 below shows the screen shot from maple software. 
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Figure 3.4. Screen shot from Maple 13 where a=  , b=  , c=  , d=   

 

By definition, non-zero values of alpha are considered as support vectors. 

The decision function will be  

byyD  22

12 )13)(1(074.0)12)(1(074.0  

byyD  148.037.0 2

12  

 „b‟ can be recovered by solving for 1)2(12 D  or ,1)3(12 D  as all these points lie on 

1),(  bxwy ii and both give b=2.77. 

Hence the classifier equation is 77.2148.037.0 2

12  yyD          
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Similarly, 

384.1024.0084.0 2

13  yyD  and 

64.4048.0216.0 2

23  yyD  

From ,jiij DD   

77.2148.037.0 2

21  yyD , 

,384.1024.0084.0 2

31  yyD  

.64.4048.0216.0 2

32  yyD  

Suppose a new data point x = 2.2 is to be tested. 

,6536.012 D  

,9246.013 D  

,6536.021 D  

,48896.323 D  

,9246.031 D  

.48896.332 D  

From which ,21 D 02 D and 23 D . Hence, data point x = 2.2 is classified into class 1. 
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3.2 Support Vector Machines with modified data 

    The deficiency in accuracy with support vector machines is due to the improper development 

of separation boundary lines as the data points are close and the difference between values of 

different categories is very low. Hence, a new procedure of modifying the data points was 

developed so that the values of all the features for a particular category or class fall into a 

definite range and can be separated out easily by using support vector machines. Prior 

information about the limits is necessary, a general phenomenon in any industry. The procedure 

is an iterative process and has to be repeated twice. In the first iteration, the good ones were 

separated out from the rest and in the second iteration, the parts to be reworked are separated 

leaving out the bad ones. In the first iteration, both rework and bad parts will be evaluated under 

a single category. Figure 3.5 below shows the flow diagram of the proposed procedure using the 

part from the case study as example. 
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Figure 3.5. Proposed procedure that uses modified data with SVM 

 

    In the first iteration, equation (12) is applied to the original data to obtain the index values for 

each value of a feature in the sample point. The values obtained will be such that if the measured 

dimension of a particular feature is within limits, the value will be less than or equal to1 or else 

more than one. The idea is to bring uniformity in values of all the features so that SVM can 

classify the part into a category easily.  

1

4 ||

XX

XX




                                                                                                                                    (12) 

Where 

4X is the measured dimension of a particular feature in a data point. 

X  is the average of lower and upper tolerance limits. 

1X  is the lower tolerance limit. 

2X is the upper tolerance limit 
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   X₁, X₂, and X₃ are lower tolerance, upper tolerance and rework limits for a feature respectively. 

X is the average of lower and upper tolerance limits. X₄ is the measured dimension of a 

particular feature in the sample point. Rework has no role to play in the first iteration. SVM will 

be applied on the modified data containing index values for first iteration. The parts that are 

classified as not good will be exported to the send iteration. 

    In the second iteration, rework limit will replace the upper tolerance limit if greater than it or 

will replace lower tolerance limit if less than it. The new average of limits is called    and will 

replace X in equation (12) to form equation (13). The new lower tolerance limit is called     and 

will replace X  in equation (12). New set of index values will be calculated for the parts 

categorized as not good by applying equation (13) to the dimensions of the features. 

1

1

1

1

4 ||

XX

XX




                                                                                                                                  (13) 

Where 

4X is the measured dimension of a feature (on a part) in a data point. 

1X  is the average of new upper and lower tolerance limits. 

1

1X  is the new lower tolerance limit. 

   SVM will be applied on the new set of index values obtained to separate out the rework parts 

from bad ones. 

 

3.3 New Methodology 

   A simple statistical approach was proposed keeping in view of the current experiment and the 

kind of data. The proposed approach consists of two iterations and completely eliminates 

the need for training, saving lot of time and labor. First iteration is meant to isolate the good 
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parts from the rest. Second iteration is meant to separate the reworkable parts from bad ones. 

Suppose X₁, X₂, X₃ are dimension limits for a particular feature to be known prior to getting into 

the process of prediction. X₁ and X₂ are lower and upper tolerance limits. X₃ is the rework limit 

for the part that can be reworked. X is the midpoint of lower and upper limits. X₄ is the actual 

dimension measured for a feature. For that feature that does not have a rework limit, lower 

tolerance limit is considered as rework limit. In the first step, equation (14) is applied to each 

individual feature of the sample point. The values obtained will be rounded off to two decimal 

points. If any of the features is not within the limits, the corresponding value will be greater than 

zero or else will be equal to zero. The sum of values generated for all the features is calculated. If 

the sum of the values is equal to zero, indicates a good part or else will be processed through step 

2 for further analysis.  

]*}
||

[{
1

4 c
XX

XX
Sin




                                                                                                                    (14) 

Where  

c is a constant equal to 0.57296 degrees or 0.0100001 radians.  

4X is the measured dimension of a feature (on a part) in a data point. 

X is the average of lower and upper tolerance limits. 

1X  is the lower tolerance limit. 

In second step, for each individual feature, if the rework limit is less than the lower tolerance 

limit, then the lower tolerance limit value is replaced with the rework limit value. Similarly, if 
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the rework limit is higher than the upper tolerance limit, then the upper tolerance limit value is 

replaced with the rework limit value. New midpoint    is calculated. The obtained values are 

substituted into the equation (15) obtained by changing the variables in equation (14) 

accordingly.  

]*}
||

[{
1

1

1

1

4 c
XX

XX
Sin




                                                                                                                   (15) 

   Where 

4X is the measured dimension of a feature on a part (in a data point). 

 1

1X  stands for the new lower tolerance limit. 

1X  stands for the average of new lower and upper tolerance limits and 

C is a constant equal to  0.57296 degrees or 0.0100001 radians. 

 Sum of the corresponding values of the features is calculated as in iteration 1. If the sum 

obtained equals to zero, the sample is classified as rework, else a bad part.  

Figure 3.6 below shows the geometric representation of the proposed methodology. The 

methodology was demonstrated using normal distribution as measurements of features on parts 

produced by any controlled production process will resemble normal distribution and is the 

perfect chart to demonstrate the quality control process. 



29 

 

Good parts 

separated out using 

Equation(14) in 

iteration 1

Reworkable parts separated out using 

Equation (15) in iteration 2

Parts left over after two iterations are bad parts

 

Figure 3.6. Geometric representation of the proposed sine methodology. 

 Figure 3.7 below shows the flow diagram of the proposed sine methodology using the part from 

the case study as example. 
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Figure 3.7. Flow diagram of the proposed sine methodology. 

3.3.1 Necessity for a trigonometric function 

    In the current methodology, equations 13 and 14 are obtained by multiplying equations 11 and 

12 respectively with constant „c‟ and applying sine function to them. By applying equations 11 

or 12 to features in a data point (for a part), index values are obtained. For features that lie 

in the range of a particular class, index values are obtained between 0 and 1 and for 

features that does not lie within the range as greater than 1. After arriving at index values, 

it is required to classify the parts (data points). The main essence of the new methodology is 

that it eliminates the need for SVM in performing classification, process which requires 

analyzing the combined effect of index values of all the features in a data point (for a part). Only 

if index values for all the features are between 0 and 1, a part (data point) can be classified into a 

particular class. But, to verify at data point level, a combined value of index values of all the 

features is required. By summing up the index values of all the features in a data point (for a 

part), a random value is obtained, based on which, making a decision is not possible. Hence, it is 
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required to reduce the index values for features that are between 0 and 1 to zero, so that 

summing up all the resultant values for features of a data point (part) will be equal to zero 

and can be verified easily. Hence, to modify the index values, a function that can minimize the 

index values that are less than or equal to 1 by a decimal point or two is required so that the 

values obtained can be rounded down and then summed up to make a final decision. The 

importance of using a function is to turn the value ‘1’ into a value with same number of 

decimals as for example with ‘0.9’.  Trigonometric functions are found to serve the purpose. 

    In general, all the trigonometric functions are positive in first quadrant where θ Є {0, 90} in 

degrees or {0, π/4} in radians i.e., sin θ Є {0, 1}, Cos θ Є {1, 0}, Tan θ Є {0, ∞}, cosec θ Є {∞, 

1}, sec θ Є {1, ∞}, cot θ Є {∞, 0}. However, from the above scenario, it can be concluded that a 

function with increasing values with increase in θ is required. Sine, tangent and secant functions 

have increasing values and can be used to form equations 13 and 14 with appropriate c values as 

shown below. 

Sine function: With sine function, to convert index value „1‟ into a value with one decimal, c 

equals to 5.7391 ~ Inverse Sine (0.1) can be used and to convert „1‟ into a value with two 

decimals, c equals to 0.57296 ~ Inverse Sine (0.01) can be used. 

Tangent function: With tangent function, to convert index value „1‟ into a value with one 

decimal, c equals to 5.71059 ~ Inverse Tan (0.1) can be used and to convert „1‟ into a value with 

two decimals, c equals to 0.57293 ~ Inverse Tan (0.01) can be used. 



32 

 

Secant function: With secant function, to convert index value „1‟ into a value with one decimal, c 

equals to 0.01186791 ~ Inverse Sec (0.1) can be used and to convert „1‟ into a value with two 

decimals, c equals to 0.011182301 ~ Inverse Sec (0.01) can be used.  

   For all the above functions, values to convert „1‟ into values with more than two decimals can 

also be obtained, but will not affect the final result and hence are not mentioned here. The c 

values given above were found to work up to the values with 4
th

 decimal point difference. If 

using with values much closer i.e., values with decimal points more than 4, a more accurate c 

value as well may be chosen. The example below demonstrates the proposed methodology with 

the above mentioned sine function and corresponding c value for values with 4 decimal points 

difference. 

3.3.2 Example 

    Suppose a data point (of a part with six features to be measured on it) with dimensional values 

y1=0.2085, y2=0.21, y3=1.952, y4=1.184, y5=0.486, y6 =0.486 is given with limits as shown in 

the figure 3.8 below.  

 

Figure 3.8. Limits for dimensions of features on a part. 

    Since the proposed methodology involves application of equations 13 and 14 to all features of 

a data point iteratively, let us consider y1 for detailed analysis. Here, 4X  = y1 for equation 13.  



33 

 

     From the values for upper and lower tolerance limits,  

X = (0.2685+0.2085)/2 = 0.2385.  

Hence, we get Index value of feature y1 for iteration 1 as 

 |(0.2085-0.2385)|/(0.2385-0.2085) = 1,  

where 4X  (measured dimension) and 1X  (lower tolerance limit) are both equal to 0.2085.  

Multiplying index value „1‟ with 0.0100001 (for converting into two decimal values) and 

applying sine will result in 0.009999933.  

Rounding down the value 0.009999933 to two decimal places will result in a value 0.00.  

Similarly, for y2, y3, y4, y5 and y6, values 0.00, 0.00, 0.01, 0.00 and 0.00 are obtained 

respectively.  

For y4, 0.01 is obtained as 1.184 is not within 1.185 and 1.245.  

Summing up the values for y1 to y6 will result in 0.01, from which it can be concluded as a not 

good part and hence is moved to iteration 2. 

   In the second iteration, new value of X called 1X  is calculated, with rework limit replacing the 

upper or lower tolerance limit.  

Let us consider y4 for this iteration.  

1X  = (1.275+1.185)/2 = 1.23 is obtained  

Where  
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1

1X  = 1.185.  

1

2X = 1.275. 

New index value for second iteration for feature y4 is obtained as 

 |(1.184-1.23)|/(1.23-1.185) = 1.022222.  

Multiplying index value with 0.0100001 and applying sine will result in 0.010333.  

Rounding down the obtained value to two decimals will give 0.01.  

Similarly, 0.00, 0.00, 0.00, 0.00 and 0.00 are obtained for y1, y2, y3, y5 and y6 respectively. 

Summing up the values will result in 0.01 and hence is concluded as a bad part. 

   From the example, it can be noted that the given c value worked well for the dimensions as 

close as with 4th decimal difference between them.  
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Chapter 4 

Case Study 

To demonstrate the proposed methodologies and their classification capabilities over multi-class 

SVMs for quality control in an industrial set up, a part that contains all the three types of features 

was designed i.e., positive, negative and standard features. Positive features are those created by 

adding material in a production house (ex: extrusions). In the other way, features that can be 

reduced in size to meet the specifications are defined as positive features in the present case. 

Negative features are those created by removing the material (ex: holes on a part, formed by 

taking out the material by drilling). In the other way, features that can be increased in size to 

meet the specifications (ex: holes can be made larger, if small) are defined as negative features. 

Positive features have a rework limit on lower side and negative features have rework limit on 

the higher side of the dimension limits. A term “standard feature” is coined and is defined as a 

feature that cannot be reworked at all.  The part was designed using Google SketchUp and 

modified using Magics software version 14.01 to produce parts with varied dimensions. Figure 

shows the part design file with the dimensions of six features considered for the current case 

study. 
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Figure 4.1. Part Design and dimensions of various features of a good (basic) part. Length of part 

(L): 2 inches, width of part (W): 1.25 inches, Diameter of the circles: 0.25 inches (Dia1, Dia2), 

width of extruded rectangles (SW1, SW2): 0.5 inches. 

    Three types of features were identified for the current purpose. Length and width of the part 

were considered as positive features. Diameters of the two circles were considered as negative 

features and width of extruded rectangles were considered as standard features for the current 

case study. Though the width of the extruded rectangles can be considered as positive features, 

they considered as standard features keeping in view of the requirement and the fact that change 

in the dimensions of the feature may affect the surface roughness. The part design was edited to 

produce parts with varied dimensions. Part dimensions were varied by 0.03 inches or 0.06 inches 

to produce rework and bad parts. The digital files created were realized using Fused Deposition 
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Modeling machine version 3000, a rapid prototyping machine that creates parts layer by layer 

using extrusion technique. Figure 4.2 below shows the parts being produced. 

 

Figure 4.2. A close up view showing the FDM 3000 head building the parts. 

     A total of 103 parts were produced and the dimensions of the six features marked were 

measured using the inspection setup described in chapter 1. The data collected is shown in 

Appendix II. By analyzing the dimensions, 44 of the parts were identified as good, 28 as rework 

and 31 as bad. Two third of the parts were marked as train and one third as test for analyzing 
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with various methodologies. Marking is meant to maintain standard. Parts marked as train were 

used for training and the rest for testing. 
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Chapter 5 

Analysis 

Analysis of the data obtained with the three methods and the results generated are explained in 

the current chapter. For performing the analysis with SVM, commercially available software, 

STATISTICA 9 was used. All the four types of kernels were tried to find out the best classifier 

that provides superior classification accuracy. 

5.1 Support Vector machines 

    The data obtained from the case study explained above was analyzed with various kernels 

without making any modifications to the data. 

5.1.1 Linear Kernel 

    The data was analyzed with linear kernel. Fivefold cross validation was employed. Software 

enables to give a range and an increment for the training parameter through which it 

automatically selects the value that generates the best results. A range of 0 to 500 with an 

increment of 0.01 was given. Overall accuracy of 84.466% was achieved. Figure 5.1 below 

shows the results obtained. 
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Figure 5.1. Result obtained with linear kernel 

5.1.2 Polynomial Kernel 

    With polynomial kernel, user is required to provide the values for degree, gamma and 

coefficient parameters. Several iterations were run by varying degree from 1 to 25. Table 5.1 

below shows the results obtained for various iterations with different sets of values. In the 

column for number of support vectors, numbers in brackets indicate the number of bounded 

vectors. The set of values that generated highest accuracy with least number of support vectors 

was highlighted. 
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Table 5.1. Results obtained with different sets of values for degree, gamma and coefficient 

No Degree Gamma Coefficient Training 

Parameter 

Training 

Accuracy 

Testing 

Accuracy 

Overall 

Accuracy 

No of 

SVs 

1 1 0.1 0 75.6 89.855 73.529 84.466 42(5) 

2 1 0.1 0.1 75.7 89.855 73.529 84.466 42(5) 

3 1 0.1 0.5 75.6 89.855 73.529 84.466 42(5) 

4 1 0.1 1 75.6 89.855 73.529 84.466 42(5) 

5 1 0.1 2 75.6 89.855 73.529 84.466 42(5) 

6 1 0.1 5 75.6 89.855 73.529 84.466 42(5) 

7 1 0.1 10 75.6 89.855 73.529 84.466 42(5) 

8 1 0.1 25 75.6 89.855 73.529 84.466 42(5) 

9 1 0.5 0 72.4 89.855 73.529 84.466 31(1) 

10 1 1 0 36.2 89.855 73.529 84.466 31(1) 

11 1 2 0 18.1 89.855 73.529 84.466 31(1) 

12 1 5 0 7.3 89.855 73.529 84.466 31(1) 

13 1 10 0 3.7 89.855 73.529 84.466 31(1) 
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14 1 25 0 64.9 79.71 58.824 72.816 35(0) 

15 2 0.1 0 97.8 82.609 70.588 78.641 50(11) 

16 2 5 10 0.8 91.304 73.529 85.437 27(0) 

17 2 10 10 1.6 98.551 73.529 90.291 28(0) 

18 2 15 15 0.1 91.304 73.529 85.437 28(0) 

19 3 15 15 0.1 100 73.529 91.262 29(0) 

20 4 15 15 0.1 100 73.529 91.262 30(0) 

21 5 17.5 17.5 0.1 100 73.529 91.262 32(0) 

22 5 20 20 0.1 100 73.529 91.262 32(0) 

23 6 20 20 0.1 100 73.529 91.262 34(0) 

24 8 30 30 0.1 100 73.529 91.262 30(0) 

25 10 45 45 0.1 100 76.471 92.233 26(0) 

26 12 60 60 0.1 100 76.471 92.233 25(0) 

27 13 65 65 0.1 100 76.471 92.233 24(0) 

28 14 70 70 0.1 98.551 73.529 90.291 24(0) 

29 15 75 75 0.1 100 76.471 92.233 24(0) 
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30 16 80 80 0.1 100 76.471 92.233 24(0) 

31 17 85 85 0.1 98.551 73.529 90.291 24(0) 

32 20 100 100 0.1 95.652 76.471 89.32 23(0) 

33 21 105 105 0.1 97.101 79.412 91.262 24(0) 

34 23 115 115 0.1 94.203 73.529 87.379 22(0) 

35 25 125 125 0.1 95.652 73.529 88.35 24(0) 

 

    From the table, it can be found that the best overall classification accuracy of 92.233% was 

obtained. Figure 5.2 below shows the screen shot of the best result with STATISTICA. 
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Figure 5.2. Screen shot of the best result with polynomial kernel 

5.1.3 Radial Basis Kernel 

   With radial basis function kernel, user is required to provide the gamma value and a range for 

the training parameter. Several iterations were run with gamma value ranging from 0.01 to 25. 

Results were tabulated as shown in the table 5.2 below. The set of values that gave the best result 

was highlighted. 
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Table 5.2. Results obtained with radial basis kernel 

Trial 

No 

Gamma  Training 

Parameter 

Training 

Accuracy 

Testing 

Accuracy 

Overall 

Accuracy 

No of support 

vectors 

1 0.1 44.3 89.855 73.529 84.466 41(5) 

2 0.25 40.7 89.855 73.529 84.466 34(1) 

3 0.5 46.7 91.304 70.588 84.466 30(0) 

4 0.75 45.4 92.754 76.471 87.379 34(0) 

5 0.8 41.7 92.754 76.471 87.379 34(0) 

6 1 31.4 92.754 73.529 86.408 34(0) 

7 1.5 7.8 91.304 85.294 89.32 37(0) 

8 2 0.9 88.406 79.412 85.437 51(9) 

9 2.75 0.9 89.855 82.353 87.379 50(9) 

10 3 1.9 89.855 82.353 87.379 44(3) 

11 3.25 1.7 89.855 82.353 87.379 44(3) 

12 3.5 1.5 89.855 82.353 87.379 44(4) 

13 3.75 1.3 91.304 82.353 88.35 45(4) 
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14 4.5 1.2 91.304 82.353 88.35 48(5) 

15 5 1.3 91.304 82.353 88.35 50(4) 

16 6 1.1 91.304 82.353 88.35 52(5) 

17 6.5 7.5 100 76.471 92.233 51(0) 

18 6.75 7.6 100 76.471 92.233 52(0) 

19 7 7.6 100 73.529 91.262 51(0) 

20 8 11.7 100 73.529 91.262 56(0) 

21 8.15 13.2 100 76.471 92.233 56(0) 

22 9 1 92.754 79.412 88.35 57(3) 

23 9.5 1.2 94.203 79.412 89.32 58(1) 

24 10 3.9 97.101 76.471 90.291 60(0) 

25 11 3.6 98.551 73.529 90.291 58(0) 

26 12 3.3 98.551 70.588 89.32 58(0) 

27 12.75 3.3 100 70.588 90.291 58(0) 

28 13.5 3 100 67.647 89.32 58(0) 

29 14 3.3 100 67.647 89.32 58(0) 
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30 15.5 3 100 67.647 89.32 59(0) 

31 17 2.6 100 67.647 89.32 60(0) 

32 19.5 2.3 100 67.647 89.32 60(0) 

33 21 2.3 100 67.647 89.32 61(0) 

34 23 2.3 100 67.647 89.32 60(0) 

35 25 1.8 100 61.765 87.379 60(0) 

 

     From the table, it can be found that the best classification accuracy of 92.233% was achieved. 

Gamma 6.5 was chosen as it has least number of support vectors. Figure 5.3 below shows the 

screen shot of the result from STATISTICA. 
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Figure 5.3. Screen shot of the best result with radial basis function kernel  

5.1.4 Sigmoid Kernel 

   With sigmoid kernel, user is required to input the values for gamma, coefficient and the range 

for training parameter. Several iterations were made by varying the gamma and coefficient 

values. Results were tabulated as shown below in the table 5.3. The best result was highlighted. 
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Table 5.3. Results obtained with sigmoid kernel 

Trial 

No 

Gamma  Coefficient Training 

Parameter 

Training 

Accuracy 

Testing 

Accuracy 

Overall 

Accuracy 

No of SVs 

1 0.01 0 266.1 82.609 70.588 78.641 50(10) 

2 0.05 0 740.5 89.855 73.529 84.466 31(1) 

3 0.1 0 399 89.855 73.529 84.466 30(1) 

4 0.1 10 0 34.783 20.588 30.097 0(0) 

5 0.15 0 154.8 89.855 73.529 84.466 32(1) 

6 0.25 0 286.4 85.507 67.647 79.612 26(2) 

7 0.6 0 5.4 68.116 70.588 68.932 58(20) 

8 1 1 6.2 50.725 50 50.585 66(32) 

9 1 5 0 34.783 20.588 30.097 0(0) 

10 2 50 0 34.783 20.588 30.097 0(0) 

11 5 5 0 34.783 20.588 30.097 0(0) 

12 50 5 0 34.783 20.588 30.097 0(0) 
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   The best overall classification accuracy of 84.466% was obtained. Figure 5.4 below shows the 

screen shot of the result from STATISTICA. The accuracy values were found to improve for 

gamma value up to 0.1 and decrease later. 

 

Figure 5.4. Screen shot of the best result with sigmoid kernel 
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5.1.5 Analysis of SVM results 

    Of all the four kernels, polynomial kernel was found to yield the best classification accuracy 

of 92.233% with least number of support vectors. Table 5.4 below shows the confusion matrix 

for the polynomial kernel with the best set of values. 

Table 5.4. Confusion matrix for polynomial kernel (degree 13, gamma 65, coefficient 65) 

 Predicted  

Actual Good Rework Bad Total 

Good 43 1 1 45 

Rework 4 23 0 27 

Bad 2 0 29 31 

 

    Out of 45 good parts, 43 were predicted as good, 1 was predicted as rework and 1 as bad. Out 

of 27 rework parts, 4 were predicted as good. Out of 31 bad parts, 2 were predicted as good. In 

all, 95 parts were classified correctly and 8 were predicted wrong. 

5.2 Support Vector Machines with Modified Data 

   For the first iteration, index values were calculated for all the 103 parts and were analyzed with 

all the four kernels to find the one that gives out the best classification accuracy.Index values for 

1
st
 iteration were shown in Appendix III. The parts that were classified as not good in the first 
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iteration are sent to the second iteration. Index values were calculated again with the new limits 

and analyzed with SVM to differentiate rework and bad parts. The kernel that gave the best 

result in the first iteration was chosen for the second iteration as the data is similar. 

5.2.1 Iteration 1 

5.2.1.1 Linear kernel 

   In the software, linear kernel was selected. Fivefold cross validation with training parameter 

range of 0 to 500 with an increment of 0.01 was given. Classification Accuracy of 83.95% was 

achieved. Figure 5.5 below shows the screen shot of the result generated using STATISTICA 

software.  
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Figure 5.5. Screen shot of the result generated using linear kernel with modified data for 1
st
 

iteration 

5.2.1.2 Polynomial Kernel 

    Several iterations were performed with different set of values for degree, gamma and 

coefficient. A range of 0 to 100 with an increment of 0.1 was given for the training parameter 

with fivefold cross validation. Results were tabulated as shown in table 5.5 below. 
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Table 5.5. Results generated using polynomial kernel with modified data for 1
st
 iteration 

Trial 

No 

Degr

ee 

Gam

ma 

Coeffic

ient 

Training 

Parameter 

Training 

Accuracy 

Testing 

Accuracy 

Overall 

Accuracy 

No of 

support 

vectors 

1 1 0.01 0 20.3 86.957 79.412 84.466 55(51) 

2 1 0.1 0 2.1 86.957 76.471 83.495 53(50) 

3 1 0.5 0 0.5 86.957 76.471 83.495 50(48) 

4 1 0.5 1 0.5 86.957 76.471 83.495 50(48) 

5 1 1 0 0.3 86.957 76.471 83.495 47(46) 

6 1 1 1 0.3 86.957 76.471 83.495 46(46) 

7 1 2 0 0.2 84.058 79.412 82.524 43(41) 

8 1 2 1 0.2 84.058 79.412 82.524 43(41) 

9 1 5 0 72.1 81.159 79.412 80.583 45(5) 

10 1 5 3 72.1 81.159 79.412 80.583 45(5) 

11 1 10 0 45.6 73.913 64.706 70.874 38(2) 

12 1 10 5 45.6 73.913 64.706 70.874 38(2) 
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13 2 5 0 7.3 97.101 79.412 91.262 22(1) 

14 2 5 3 3.5 98.551 79.412 92.233 24(3) 

15 2 5 5 3.5 98.551 79.412 92.233 24(3) 

16 3 10 10 0.1 100 85.294 95.146 24(0) 

17 3 20 20 0.1 100 85.294 95.146 24(0) 

18 4 20 20 0.1 100 85.294 95.146 22(0) 

19 5 25 25 0.1 100 85.294 95.146 24(0) 

20 6 40 40 0.1 100 85.294 95.146 24(0) 

21 7 40 40 0.1 100 85.294 95.146 24(0) 

22 10 50 50 0.1 97.101 79.412 91.262 26(0) 

23 12 50 50 0.1 95.652 79.412 90.291 23(0) 

24 12 70 70 0.1 98.551 79.412 92.233 31(0) 

25 15 90 90 0.1 100 79.412 93.204 26(0) 

26 17 90 90 0.1 95.652 79.412 90.291 21(0) 

27 17 110 110 0.1 94.203 82.353 90.291 22(0) 

28 20 100 100 0.1 88.406 82.353 86.408 20(0) 
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29 20 120 120 0.1 97.101 82.353 92.233 29(0) 

30 20 120 135 0.1 95.652 79.412 90.291 22(0) 

31 20 135 135 0.1 95.652 82.353 91.262 24(0) 

32 23 135 135 0.1 91.304 79.412 87.379 22(0) 

33 23 150 150 0.1 92.754 85.294 90.291 20(0) 

34 23 160 160 0.1 91.304 85.294 89.32 21(0) 

35 25 160 160 0.1 92.754 82.353 89.32 23(0) 

36 25 175 175 0.1 91.304 85.294 89.32 22(0) 

37 25 190 190 0.1 94.203 85.294 91.262 22(0) 

38 25 200 200 0.1 92.754 82.353 89.32 21(0) 

 

    The best classification accuracy of 95.146% was found to be achieved with set of values 

degree=4, gamma=20, coefficient=20. The result was highlighted in the table above. The figure 

5.6 below shows the screen shot of the same. 



57 

 

 

Figure 5.6. Screen shot of the result generated using polynomial kernel with modified data for 

iteration 1 

5.2.1.3 Radial Basis Kernel 

   Table 5.6 below shows the results generated with various values of gamma using the radial 

basis function kernel. The best result is highlighted. 
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Table 5.6. Results generated using radial kernel with modified data for 1
st
 iteration 

Trial 

No 

Gamma Training 

Parameter 

Training 

Accuracy 

Testing 

Accuracy 

Overall 

Accuracy 

No of support 

vectors 

1 0.01 10.2 86.957 76.471 83.495 55(51) 

2 0.05 2.1 86.957 76.471 83.495 55(51) 

3 0.1 1.3 85.507 79.412 83.495 51(48) 

4 0.25 4.3 88.406 79.412 85.437 32(25) 

5 0.5 2.2 88.406 79.412 85.437 32(27) 

6 0.75 1.9 88.406 82.353 86.408 31(23) 

7 1 21.8 97.101 82.353 92.233 26(8) 

8 1.25 18.6 98.551 82.353 93.204 26(6) 

9 1.5 13.8 98.551 82.353 93.204 26(7) 

10 1.75 11.5 98.551 82.353 93.204 26(8) 

11 2 10 98.551 82.353 93.204 27(7) 

12 2.5 8 98.551 82.353 93.204 29(7) 

13 2.75 32.1 100 85.294 95.146 26(0) 
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14 3 6.7 98.551 85.294 94.175 32(7) 

15 3.25 1.8 91.304 85.294 89.32 38(15) 

16 3.5 1.3 91.304 82.353 88.35 39(19) 

17 4.5 0.8 92.754 79.412 88.35 43(22) 

18 5 0.9 91.304 79.412 87.379 42(21) 

19 6 0.8 92.754 76.471 87.379 48(20) 

20 7.25 3.4 98.551 82.353 93.204 49(3) 

21 8.5 2.5 98.551 82.353 93.204 52(5) 

22 9.25 2.6 98.551 79.412 92.233 52(3) 

23 9.75 2.7 98.551 76.471 91.262 52(3) 

24 10 0.8 94.203 76.471 88.35 54(19) 

25 10.5 2.3 98.551 79.412 92.233 54(4) 

26 12.5 2 98.551 76.471 91.262 54(5) 

27 14 1.9 98.551 76.471 91.262 57(5) 

28 15 1.9 98.551 76.471 91.262 57(5) 

29 16.5 1.9 98.551 76.471 91.262 57(4) 
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30 18 1.8 98.551 76.471 91.262 58(4) 

31 19.5 1.5 98.551 76.471 91.262 58(5) 

32 22 1.5 98.551 76.471 91.262 58(5) 

33 24 0.9 98.551 76.471 91.262 60(16) 

34 28 1.5 98.551 76.471 91.262  60(4) 

35 35 1 98.551 76.471 91.262  61(13) 

 

   The best accuracy of 95.146% was achieved with gamma=2.75. Figure 5.7 below shows the 

screen shot of the best result. 
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Figure 5.7. Screen shot of the result using radial kernel with modified data for 1
st
 iteration 

5.2.1.4 Sigmoid Kernel 

   Table 5.7 below shows the results generated with various set of values using the sigmoid 

kernel. The best result is highlighted. 
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Table 5.7. Results generated using sigmoid kernel with modified data for 1
st
 iteration 

Trial 

No 

Gamma  Coefficient Training 

Parameter 

Training 

Accuracy 

Testing 

Accuracy 

Overall 

Accuracy 

No of SVs 

1 0.001 0 202.6 86.957 79.412 84.466 55(51) 

2 0.01 0 20.3 86.957 79.412 84.466 55(51) 

3 0.05 0 4.1 86.957 76.471 83.495 55(51) 

4 0.1 0 2.1 86.957 76.471 83.495 54(50) 

5 0.5 0 2.9 85.507 79.412 83.495 34(29) 

6 1 0 1.8 82.609 79.412 81.553 32(30) 

7 1.5 0 0.5 81.159 85.294 82.524 45(43) 

8 2 0 0.3 81.159 73.529 78.641 54(54) 

9 3 0 0.4 66.667 52.941 62.136 54(54) 

10 3 3 44.6 59.42 55.882 58.252 58(58) 

11 3 0.3 1.1 62.319 41.176 55.34 50(48) 

12 5 0 0.1 57.971 52.941 56.311 58(58) 

13 5 0.5 0.1 57.971 52.941 56.311 58(58) 
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14 5 5 0.1 57.971 52.941 56.311 58(58) 

15 5 15 0.1 57.971 52.941 56.311 58(58) 

16 6 0 0.1 57.971 52.941 56.311 58(58) 

17 7 0 0.3 49.275 41.176 46.602 58(58) 

18 9 0 0.1 57.971 52.941 56.311 58(58) 

19 9 6 0.1 57.971 52.941 56.311 58(58) 

20 10 0 0.1 57.971 52.941 56.311 58(58) 

21 10 10 0.1 57.971 52.941 56.311 58(58) 

22 15 0 0.1 57.971 52.941 56.311 58(58) 

23 15 1.5 0.1 57.971 52.941 56.311 58(58) 

24 25 0 0.1 57.971 52.941 56.311 58(58) 

25 25 250 0.1 57.971 52.941 56.311 58(58) 

 

   The best classification accuracy of 84.466% was achieved at gamma=0.001, 0.01 and 0.05. 

Figure 5.8 below shows the screen shot of the result. 
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Figure 5.8. Screen shot of the result using sigmoid kernel with modified data for 1
st
 iteration 

5.2.1.5 Analysis of the results 

    It was found that both the polynomial and radial basis kernels resulted in highest classification 

accuracy. However, polynomial kernel generated the result with least number of support vectors 

and hence selected. The predictions for the test data are analyzed to find out the wrong 

predictions. STATISTICA provides option to see the predictions for all the cases tested. Figure 

5.9 below shows the screen shot of the same. 
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Figure 5.9. Screen shot of the predictions with modified data for 1
st
 iteration 

   Table 5.8 below shows list of all the test cases and the predictions made by SVM using 

polynomial kernel with set of values that generated highest accuracy. 

Table 5.8. Predictions with modified data for 1
st
 iteration 

Part 

No 

Actual Predicted 

1 Good Good 

2 Good Good 
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3 Good Good 

4 Good Good 

5 Good Good 

6 Good Good 

7 Good Good 

8 Not Good Not Good 

9 Good Good 

10 Not Good Not Good 

11 Good Good 

12 Good Not Good 

13 Not Good Not Good 

14 Not Good Not Good 

15 Good Good 

16 Good Not Good 

17 Not Good Not Good 

18 Not Good Not Good 
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19 Not Good Good 

20 Not Good Not Good 

21 Not Good Not Good 

22 Not Good Good 

23 Not Good Not Good 

24 Good Good 

25 Not Good Not Good 

26 Not Good Not Good 

27 Not Good Not Good 

28 Not Good Not Good 

29 Not Good Not Good 

30 Not Good Not Good 

31 Good Good 

32 Good Good 

33 Not Good Not Good 

34 Good Not Good 
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    From the table, it can be found that a total of 5 cases were predicted wrong. Since the training 

accuracy was 100%, it can be said that a total of 5 wrong predictions out of 103 cases was made. 

Going through the table, it can be found that cases 88 and 91 which are originally rework are 

wrongly predicted as good and cases 49, 53 and 103 which are originally good are wrongly 

predicted as not good. All the cases predicted as not good including those of wrong predictions 

and training cases are exported to the second iteration. A total of 59 cases were obtained of 

which 40 were training and 19 test cases. The good ones that are predicted as not good are 

marked as rework for the analysis in the second iteration.  

5.2.2 Iteration 2 

5.2.2.1 Polynomial kernel 

    For all the 59 cases imported from first iteration, actual values obtained from case study were 

evaluated with new limits to obtain the new set of data. The new set of index values were 

presented in Appendix IV. The new set of data was then analyzed with SVM using polynomial 

kernel. Polynomial kernel was used as it resulted in best classification accuracy for the similar 

type of data. Several trials were made with different set of values starting out with the values 

from the previous iteration. Table 5.9 below shows the results from various trials. Best result is 

highlighted. 
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Table 5.9. Results using polynomial kernel with modified data for iteration 2 

Trial 

No 

Degree Gamma Coefficient Training 

Parameter 

Training 

Accuracy 

Testing 

Accuracy 

Overall 

Accuracy 

No of 

SVs 

1 2 10 10 0.1 100 78.947 93.22 12(4) 

2 2 15 15 0.1 100 84.211 94.915 7(2) 

3 3 15 15 0.1 100 84.211 94.915 6(0) 

4 4 15 15 0.1 100 84.211 94.915 9(0) 

5 4 15 20 0.1 100 84.211 94.915 9(0) 

6 4 20 20 0.1 100 84.211 94.915 9(0) 

7 5 30 30 0.1 100 94.737 98.305 9(0) 

8 6 40 40 0.1 100 94.737 98.305 10(0) 

9 7 45 45 0.1 100 94.737 98.305 11(0) 

10 10 70 70 0.1 100 94.737 98.305 12(0) 

11 15 90 90 0.1 100 94.737 98.305 14(0) 

12 20 100 100 0.1 100 84.211 94.915 15(0) 

13 30 120 120 0.1 100 84.211 94.915 13(0) 
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Figure 5.10 below shows the screen shot of the best result. 

 

Figure 5.10. Screen shot of the best result with modified data for iteration 2 

5.2.2.2 Analysis of the result 

   The predictions made are analyzed to find out the wrong predictions. Figure 5.11 below shows 

the screen shot of the predictions. 
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Figure 5.11. Screen shot of the predictions with modified data for 2
nd

 iteration 

    From the figure 5.11, it can be seen that case 53, which is case number 95 in the original data 

was predicted wrongly as rework.  

5.2.3 Analysis of the results with modified data 

     By analyzing the results from sections 5.2.1 and 5.2.2, it be concluded that the two good ones 

which are predicted as not good in the first iteration and marked as rework are classified into the 

rework category in the second iteration. In all, one bad part is wrongly predicted as rework, two 

rework parts are wrongly predicted as good and three good parts are wrongly predicted as 

rework. Table 5.10 below shows the confusion matrix developed by combining the results from 

both iterations. 
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Table 5.10. Confusion matrix for the results from SVM with modified data 

  Predicted   

Actual Good Rework Bad Total 

Good 42 3 0 45 

Rework 2 25 0 27 

Bad 0 1 30 31 

 

   From the matrix, it can be seen that 6 cases were predicted wrong out of 103 cases resulting in 

the classification accuracy of 94.175%. 

5.3 New Methodology 

   The new methodology is created in excel sheet as shown in figure below. Each column stands 

for a feature measured on parts. Depending on the type of feature, it is programmed to 

automatically take the rework limits for the second iteration. The user needs to enter the limits 

tolerance and rework limits for all the features in the first three rows. The measured values will 

be entered in the fourth row. All the remaining processing will be done automatically and the 

final result will be displayed in one of the cells.  



73 

 

 

Figure 5.12. Prediction of case number 103 with the developed methodology 

   With the developed methodology, all the 103 cases were predicted correctly resulting in 100% 

classification accuracy. Figure 5.12 shows the prediction of case 103, distinguishing the values 

with 4
th

 decimal point difference. Table 5.11 below shows the confusion matrix. 
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Table 5.11. Confusion matrix with the new methodology 

  Predicted   

Actual Good Rework Bad Total 

Good 45 0 0 45 

Rework 0 27 0 27 

Bad 0 0 31 31 
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Chapter 6 

Conclusions 

The insights into the results obtained in the previous chapter and conclusions based on them 

were presented in this chapter. The purpose of this work is to improve the classification process 

by selecting the best methodology that gives out superior classification accuracy at high speed. 

SVM is selected as bench mark keeping in view of its higher generalization ability compared to 

other methods, especially when the data overlap is non-existent. From the literature review, it is 

learnt that alterations in working with SVM may improve the results and simple statistical 

procedure designed for a particular case may dominate all other well-known methods. Hence, 

two new approaches were designed and tested along with traditional SVM. The first approach 

included altering the data obtained before applying SVM and the second approach is based on a 

new methodology developed exclusively for the current experiment. The following results were 

generated with the three approaches. 

1. With traditional SVM, the classification accuracy achieved was 92.233%. 

2. With the modified data using SVM, the classification accuracy achieved was 94.175% 

3. With the new methodology, the classification accuracy achieved was 100%. 

   From the results, it can be concluded that the proposed method fared better compared to the 

other two alternatives with 100% classification accuracy and the proposed alteration of the data 

resulted in improved classification accuracy compared to the one without alteration of the data. 

Moreover, the proposed sine method works faster without need for any training. The proposed 

sine method is tested for the current experiment and is expected to work in any similar 
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scenario. In terms of the data type, it works on the data where one class encloses the other, 

similar to the current case study. With other types of data, the methodology is yet to be tested 

and may be required to be modified to suit that particular type of data. However, in the industry 

applications (with or without E-Quality) where parts are to be classified as good, bad and 

rework, the proposed methodology can be used right away. The accuracy in the demonstrated 

experiment is limited by the accuracy with which the camera measures the dimensions and the 

methodology can classify dimensions to the accuracy level of 8 decimal points. The 

methodology can accommodate as many features as the user needs and can classify the parts into 

good, rework or bad classes with 100% accuracy. 

 

 

 

 

 

 

 

 

 

 



77 

 

Chapter 7 

Future Research 

1. In the current work, the proposed methodology was applied to one type of part, 

developed my mimicking an index part, commonly used in RP industry to benchmark the 

RP machines. It needs to be tested on wide variety of parts to completely validate the 

methodology through various types of applications. 

2. The proposed procedure of applying SVM to index values (modified data) needs further 

testing to completely validate the results, as the results may vary with different types and 

amounts of data. 
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Appendix 

Appendix I: Robot Code 

ACCEL 80 /*SETTING ACCELERATION TO 80% OF TOTAL AVAILABLE*/ 

DECEL 80 

SPEED 60 

MOVE P, P0, Z=0 /*MOVING TO P0, INITIAL START UP POINT*/ 

*MAIN: 

DO2(5)=0 /*SETTING THE TRIGGER OF CAMERA TO OFF*/ 

DELAY 5000 

DO2(6)=1 /*SETTING THE CONVEYER TO ON*/ 

DELAY 1600 

WAIT DI(30)=0/*WAITING FOR THE SENSOR TO DETECT THE PART*/ 

DO2(6)=0 /* SETTING THE CONVEYER TO STOP */ 

DELAY 50 

DO2(5)=1 /*TRIGGERING THE CAMERA*/ 

DELAY 10000 

IF DI(37)=0 THEN /*CHECKING IF THE PART IS BAD (DI(37) IS THE OUTPUT FROM 

CAMERA)*/ 

MOVE P, P101, Z=0 /*MOVE TO THE POINT OVER THE BAD PART ON CONVEYER*/ 

DO2(0)=1 /*TRIGGERING THE SUCTION TIP 1 TO BE ON*/ 

DO2(1)=1 /*TRIGGERING SUCTION TIPS 2 & 3 TO BE ON*/ 

MOVE P, P0, Z=0 /*MOVE TO DROP OFF POINT*/ 

DO2(0)=0 /*TRIGGERING SUCTION PORT 1 TO BE OFF*/ 
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DO2(1)=0 /*TRIGGERING SUCTION PORTS TO BE OFF SO THAT PART IS DROPPED*/ 

ELSE /* CHECKING IF THE PART IS GOOD*/ 

GOTO *MAIN 

END IF 

GOTO *MAIN 
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Appendix II: Experimental Data  

Dia 1 Dia 2 L W SW1 SW2 Decision Sample 

0.24 0.241 1.947 1.217 0.494 0.489 Good Train 

0.24 0.241 1.946 1.217 0.493 0.49 Good Train 

0.242 0.239 1.946 1.22 0.487 0.495 Good Train 

0.239 0.241 1.95 1.217 0.493 0.487 Good Train 

0.239 0.242 1.943 1.218 0.492 0.487 Good Train 

0.235 0.238 1.942 1.214 0.491 0.485 Good Train 

0.241 0.24 1.948 1.214 0.485 0.49 Good Train 

0.241 0.242 1.947 1.214 0.487 0.495 Good Train 

0.239 0.239 1.955 1.214 0.483 0.489 Good Train 

0.24 0.235 1.938 1.219 0.493 0.488 Good Train 

0.236 0.241 1.953 1.212 0.488 0.484 Good Train 

0.241 0.232 1.951 1.219 0.49 0.486 Good Train 

0.236 0.233 1.946 1.214 0.492 0.484 Good Train 

0.239 0.239 1.956 1.219 0.487 0.492 Good Train 

0.242 0.24 1.943 1.219 0.486 0.497 Good Test 

0.24 0.242 1.946 1.219 0.495 0.488 Good Test 

0.239 0.242 1.95 1.218 0.495 0.486 Good Test 

0.24 0.241 1.942 1.219 0.485 0.499 Good Test 
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0.239 0.238 1.947 1.215 0.485 0.489 Good Test 

0.235 0.231 1.946 1.21 0.493 0.48 Good Test 

0.235 0.233 1.954 1.213 0.486 0.488 Good Test 

0.235 0.24 1.933 1.214 0.488 0.488 Good Test 

0.205 0.211 1.944 1.239 0.48 0.488 Rework Train 

0.212 0.213 1.977 1.219 0.484 0.487 Rework Train 

0.241 0.241 1.965 1.249 0.489 0.489 Rework Train 

0.241 0.241 1.976 1.247 0.486 0.486 Rework Train 

0.207 0.241 1.94 1.247 0.484 0.488 Rework Train 

0.209 0.211 1.969 1.219 0.479 0.485 Good Train 

0.242 0.241 1.971 1.243 0.485 0.485 Good Train 

0.21 0.24 1.95 1.212 0.481 0.484 Good Train 

0.21 0.24 1.966 1.249 0.486 0.487 Rework Train 

0.239 0.209 1.974 1.248 0.492 0.484 Rework Train 

0.212 0.241 1.944 1.249 0.483 0.491 Rework Train 

0.243 0.208 1.972 1.214 0.488 0.484 Good Train 

0.211 0.24 1.975 1.217 0.482 0.485 Rework Train 

0.236 0.209 1.942 1.212 0.484 0.484 Good Train 

0.214 0.213 1.971 1.214 0.482 0.483 Good Train 

0.242 0.243 1.975 1.216 0.483 0.486 Rework Train 

0.213 0.239 1.972 1.245 0.482 0.487 Good Train 

0.239 0.242 1.942 1.241 0.479 0.483 Good Train 
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0.208 0.208 1.971 1.24 0.481 0.488 Rework Train 

0.211 0.241 1.98 1.217 0.486 0.485 Rework Train 

0.239 0.239 1.947 1.241 0.481 0.48 Good Train 

0.239 0.239 1.949 1.24 0.479 0.475 Good Train 

0.241 0.213 1.947 1.248 0.487 0.485 Rework Test 

0.211 0.213 1.948 1.215 0.481 0.485 Good Test 

0.21 0.206 1.946 1.239 0.483 0.483 Rework Test 

0.209 0.211 1.945 1.212 0.478 0.481 Good Test 

0.21 0.211 1.951 1.239 0.48 0.481 Good Test 

0.208 0.212 1.944 1.217 0.489 0.486 Rework Test 

0.209 0.211 1.98 1.24 0.479 0.477 Rework Test 

0.209 0.24 1.947 1.214 0.481 0.483 Good Test 

0.24 0.243 1.972 1.214 0.483 0.488 Good Test 

0.243 0.243 1.981 1.213 0.481 0.485 Rework Test 

0.207 0.209 1.975 1.24 0.481 0.482 Rework Test 

0.238 0.268 1.947 1.245 0.485 0.487 Bad Train 

0.268 0.272 1.952 1.185 0.479 0.486 Bad Train 

0.179 0.208 1.971 1.21 0.486 0.482 Rework Train 

0.293 0.269 1.975 1.211 0.483 0.481 Bad Train 

0.272 0.27 1.945 1.214 0.512 0.516 Bad Train 

0.272 0.27 1.944 1.219 0.506 0.514 Bad Train 

0.267 0.269 1.996 1.247 0.474 0.484 Bad Train 
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0.269 0.294 1.978 1.212 0.478 0.476 Bad Train 

0.268 0.295 1.972 1.213 0.489 0.477 Bad Train 

0.211 0.184 1.977 1.211 0.483 0.481 Rework Train 

0.21 0.179 1.975 1.213 0.476 0.484 Rework Train 

0.24 0.242 1.943 1.183 0.481 0.489 Bad Train 

0.268 0.266 1.936 1.22 0.515 0.517 Good Train 

0.268 0.273 1.947 1.184 0.488 0.48 Bad Train 

0.238 0.238 1.915 1.213 0.482 0.514 Good Train 

0.272 0.269 1.972 1.211 0.491 0.482 Bad Train 

0.272 0.263 1.981 1.21 0.472 0.478 Bad Train 

0.273 0.269 1.944 1.247 0.488 0.482 Bad Train 

0.27 0.272 1.949 1.247 0.487 0.484 Bad Train 

0.271 0.269 1.938 1.22 0.485 0.489 Bad Train 

0.271 0.269 1.996 1.246 0.481 0.486 Bad Train 

0.24 0.243 1.969 1.218 0.486 0.515 Good Train 

0.237 0.241 1.977 1.218 0.487 0.517 Rework Train 

0.24 0.244 1.919 1.184 0.484 0.485 Bad Train 

0.267 0.269 1.941 1.184 0.481 0.485 Bad Train 

0.271 0.272 1.941 1.247 0.488 0.486 Bad Train 

0.209 0.207 1.944 1.216 0.484 0.512 Good Train 

0.242 0.271 1.952 1.243 0.487 0.482 Bad Train 

0.27 0.239 1.942 1.244 0.492 0.478 Bad Train 
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0.269 0.271 1.999 1.247 0.48 0.49 Bad Train 

0.238 0.24 1.946 1.181 0.483 0.482 Bad Train 

0.273 0.269 1.941 1.215 0.483 0.484 Bad Train 

0.207 0.211 1.94 1.217 0.485 0.514 Rework Test 

0.268 0.27 1.977 1.21 0.483 0.48 Bad Test 

0.207 0.211 1.976 1.27 0.483 0.485 Rework Test 

0.208 0.21 1.947 1.218 0.513 0.485 Rework Test 

0.241 0.242 1.951 1.181 0.477 0.48 Bad Test 

0.243 0.24 1.973 1.218 0.486 0.518 Good Test 

0.27 0.27 1.946 1.217 0.484 0.489 Bad Test 

0.24 0.24 1.912 1.211 0.515 0.487 Bad Test 

0.241 0.241 1.912 1.182 0.491 0.483 Bad Test 

0.21 0.212 1.979 1.273 0.487 0.486 Rework Test 

0.209 0.208 1.972 1.27 0.487 0.485 Rework Test 

0.208 0.21 1.945 1.182 0.488 0.483 Bad Test 

0.24 0.24 1.923 1.185 0.486 0.483 Good Test 

0.237 0.241 1.921 1.212 0.484 0.511 Good Test 

0.211 0.21 1.944 1.183 0.487 0.483 Bad Test 

0.21 0.21 1.952 1.185 0.486 0.483 Good Test 
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Appendix III: Modified data set for Iteration 1 

Dia 1 Dia 2 L W SW1 SW2 Decision Sample 

0.05 0.15 0.08333 0.06667 0.16667 0.01667 Good Train 

0.05 0.15 0.05 0.06667 0.13333 0.01667 Good Train 

0.11667 0.08333 0.05 0.16667 0.06667 0.18333 Good Train 

0.01667 0.15 0.18333 0.06667 0.13333 0.08333 Good Train 

0.01667 0.18333 0.05 0.1 0.1 0.08333 Good Train 

0.11667 0.05 0.08333 0.03333 0.06667 0.15 Good Train 

0.08333 0.11667 0.11667 0.03333 0.13333 0.01667 Good Train 

0.08333 0.18333 0.08333 0.03333 0.06667 0.18333 Good Train 

0.01667 0.08333 0.35 0.03333 0.2 0.01667 Good Train 

0.05 0.05 0.21667 0.13333 0.13333 0.05 Good Train 

0.08333 0.15 0.28333 0.1 0.03333 0.18333 Good Train 

0.08333 0.15 0.21667 0.13333 0.03333 0.11667 Good Train 

0.08333 0.11667 0.05 0.03333 0.1 0.18333 Good Train 

0.01667 0.08333 0.38333 0.13333 0.06667 0.08333 Good Train 

0.11667 0.11667 0.05 0.13333 0.1 0.25 Good Test 

0.05 0.18333 0.05 0.13333 0.2 0.05 Good Test 

0.01667 0.18333 0.18333 0.1 0.2 0.11667 Good Test 

0.05 0.15 0.08333 0.13333 0.13333 0.31667 Good Test 

0.01667 0.05 0.08333 0 0.13333 0.01667 Good Test 

0.11667 0.18333 0.05 0.16667 0.13333 0.31667 Good Test 
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0.11667 0.11667 0.31667 0.06667 0.1 0.05 Good Test 

0.11667 0.11667 0.38333 0.03333 0.03333 0.05 Good Test 

1.11667 0.85 0.01667 0.8 0.3 0.05 Not Good Train 

0.88333 0.78333 1.08333 0.13333 0.16667 0.08333 Not Good Train 

0.08333 0.15 0.68333 1.13333 0 0.01667 Not Good Train 

0.08333 0.15 1.05 1.06667 0.1 0.11667 Not Good Train 

1.05 0.15 0.15 1.06667 0.16667 0.05 Not Good Train 

0.98333 0.85 0.81667 0.13333 0.33333 0.15 Good Train 

0.11667 0.15 0.88333 0.93333 0.13333 0.15 Good Train 

0.95 0.11667 0.18333 0.1 0.26667 0.18333 Good Train 

0.95 0.11667 0.71667 1.13333 0.1 0.08333 Not Good Train 

0.01667 0.91667 0.98333 1.1 0.1 0.18333 Not Good Train 

0.88333 0.15 0.01667 1.13333 0.2 0.05 Not Good Train 

0.15 0.95 0.91667 0.03333 0.03333 0.18333 Good Train 

0.91667 0.11667 1.01667 0.06667 0.23333 0.15 Not Good Train 

0.08333 0.91667 0.08333 0.1 0.16667 0.18333 Good Train 

0.81667 0.78333 0.88333 0.03333 0.23333 0.21667 Good Train 

0.11667 0.21667 1.01667 0.03333 0.2 0.11667 Not Good Train 

0.85 0.08333 0.91667 1 0.23333 0.08333 Good Train 

0.01667 0.18333 0.08333 0.86667 0.33333 0.21667 Good Train 

1.01667 0.95 0.88333 0.83333 0.26667 0.05 Not Good Train 

0.91667 0.15 1.18333 0.06667 0.1 0.15 Not Good Train 
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0.01667 0.08333 0.08333 0.86667 0.26667 0.31667 Good Train 

0.01667 0.08333 0.15 0.83333 0.33333 0.48333 Good Train 

0.08333 0.78333 0.08333 1.1 0.06667 0.15 Not Good Test 

0.91667 0.78333 0.11667 0 0.26667 0.15 Good Test 

0.95 1.01667 0.05 0.8 0.2 0.21667 Not Good Test 

0.98333 0.85 0.01667 0.1 0.36667 0.28333 Good Test 

0.95 0.85 0.21667 0.8 0.3 0.28333 Good Test 

1.01667 0.81667 0.01667 0.06667 0 0.11667 Not Good Test 

0.98333 0.85 1.18333 0.83333 0.33333 0.41667 Not Good Test 

0.98333 0.11667 0.08333 0.03333 0.26667 0.21667 Good Test 

0.05 0.21667 0.91667 0.03333 0.2 0.05 Good Test 

0.15 0.21667 1.21667 0.06667 0.26667 0.15 Not Good Test 

1.05 0.91667 1.01667 0.83333 0.26667 0.25 Not Good Test 

0.01667 1.05 0.08333 1 0.13333 0.08333 Not Good Train 

0.98333 1.18333 0.25 1 0.33333 0.11667 Not Good Train 

1.98333 0.95 0.88333 0.16667 0.1 0.25 Not Good Train 

1.81667 1.08333 1.01667 0.13333 0.2 0.28333 Not Good Train 

1.11667 1.11667 0.01667 0.03333 0.76667 0.88333 Not Good Train 

1.11667 1.11667 0.01667 0.13333 0.56667 0.81667 Not Good Train 

0.95 1.08333 1.71667 1.06667 0.5 0.18333 Not Good Train 

1.01667 1.91667 1.11667 0.1 0.36667 0.45 Not Good Train 

0.98333 1.95 0.91667 0.06667 0 0.41667 Not Good Train 
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0.91667 1.75 1.08333 0.13333 0.2 0.28333 Not Good Train 

0.95 1.91667 1.01667 0.06667 0.43333 0.18333 Not Good Train 

0.05 0.18333 0.05 1.06667 0.26667 0.01667 Not Good Train 

0.98333 0.98333 0.28333 0.16667 0.86667 0.91667 Good Train 

0.98333 1.21667 0.08333 1.03333 0.03333 0.31667 Not Good Train 

0.01667 0.05 0.98333 0.06667 0.23333 0.81667 Good Train 

1.11667 1.08333 0.91667 0.13333 0.06667 0.25 Not Good Train 

1.11667 0.88333 1.21667 0.16667 0.56667 0.38333 Not Good Train 

1.15 1.08333 0.01667 1.06667 0.03333 0.25 Not Good Train 

1.05 1.18333 0.15 1.06667 0.06667 0.18333 Not Good Train 

1.08333 1.08333 0.21667 0.16667 0.13333 0.01667 Not Good Train 

1.08333 1.08333 1.71667 1.03333 0.26667 0.11667 Not Good Train 

0.05 0.21667 0.81667 0.1 0.1 0.85 Good Train 

0.05 0.15 1.08333 0.1 0.06667 0.91667 Not Good Train 

0.05 0.25 0.85 1.03333 0.16667 0.15 Not Good Train 

0.95 1.08333 0.11667 1.03333 0.26667 0.15 Not Good Train 

1.08333 1.18333 0.11667 1.06667 0.03333 0.11667 Not Good Train 

0.98333 0.98333 0.01667 0.03333 0.16667 0.75 Good Train 

0.11667 1.15 0.25 0.93333 0.06667 0.25 Not Good Train 

1.05 0.08333 0.08333 0.96667 0.1 0.38333 Not Good Train 

1.01667 1.15 1.81667 1.06667 0.3 0.01667 Not Good Train 

0.01667 0.11667 0.05 1.13333 0.2 0.25 Not Good Train 
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1.15 1.08333 0.11667 0 0.2 0.18333 Not Good Train 

1.05 0.85 0.15 0.06667 0.13333 0.81667 Not Good Test 

0.98333 1.11667 1.08333 0.16667 0.2 0.31667 Not Good Test 

1.05 0.85 1.05 1.83333 0.2 0.15 Not Good Test 

1.01667 0.88333 0.08333 0.1 0.8 0.15 Not Good Test 

0.08333 0.18333 0.21667 1.13333 0.4 0.31667 Not Good Test 

0.15 0.11667 0.95 0.1 0.1 0.95 Good Test 

1.05 1.11667 0.05 0.06667 0.16667 0.01667 Not Good Test 

0.05 0.11667 1.08333 0.13333 0.86667 0.08333 Not Good Test 

0.08333 0.15 1.08333 1.1 0.06667 0.21667 Not Good Test 

0.95 0.81667 1.15 1.93333 0.06667 0.11667 Not Good Test 

0.98333 0.95 0.91667 1.83333 0.06667 0.15 Not Good Test 

1.01667 0.88333 0.01667 1.1 0.03333 0.21667 Not Good Test 

0.05 0.11667 0.71667 1 0.1 0.21667 Good Test 

0.05 0.15 0.78333 0.1 0.16667 0.71667 Good Test 

0.91667 0.88333 0.01667 1.06667 0.06667 0.21667 Not Good Test 

0.95 0.88333 0.25 1 0.1 0.21667 Good Test 
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Appendix IV: Modified data set for Iteration 2 

Dia 1 Dia 2 L W SW1 SW2 Decision Sample 

0.41111 0.23333 0.34444 0.2 0.3 0.05 Rework Train 

0.25556 0.18889 0.38889 0.24444 0.16667 0.08333 Rework Train 

0.38889 0.43333 0.12222 0.42222 0 0.01667 Rework Train 

0.38889 0.43333 0.36667 0.37778 0.1 0.11667 Rework Train 

0.36667 0.43333 0.43333 0.37778 0.16667 0.05 Rework Train 

0.3 0.41111 0.14444 0.42222 0.1 0.08333 Rework Train 

0.34444 0.27778 0.32222 0.4 0.1 0.18333 Rework Train 

0.25556 0.43333 0.34444 0.42222 0.2 0.05 Rework Train 

0.27778 0.41111 0.34444 0.28889 0.23333 0.15 Rework Train 

0.41111 0.47778 0.34444 0.31111 0.2 0.11667 Rework Train 

0.34444 0.3 0.25556 0.22222 0.26667 0.05 Rework Train 

0.27778 0.43333 0.45556 0.28889 0.1 0.15 Rework Train 

0.38889 0.18889 0.27778 0.4 0.06667 0.15 Rework Test 

0.3 0.34444 0.3 0.2 0.2 0.21667 Rework Test 

0.3 0.23333 0.18889 0.2 0.3 0.28333 Rework Test 

0.34444 0.21111 0.34444 0.28889 0 0.11667 Rework Test 

0.32222 0.23333 0.45556 0.22222 0.33333 0.41667 Rework Test 

0.36667 0.47778 0.27778 0.35556 0.2 0.05 Rework Test 

0.43333 0.47778 0.47778 0.37778 0.26667 0.15 Rework Test 

0.36667 0.27778 0.34444 0.22222 0.26667 0.25 Rework Test 
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0.32222 1.03333 0.27778 0.33333 0.13333 0.08333 Bad Train 

0.98889 1.12222 0.16667 1 0.33333 0.11667 Bad Train 

0.98889 0.3 0.25556 0.44444 0.1 0.25 Rework Train 

1.54444 1.05556 0.34444 0.42222 0.2 0.28333 Bad Train 

1.07778 1.07778 0.32222 0.35556 0.76667 0.88333 Bad Train 

1.07778 1.07778 0.34444 0.24444 0.56667 0.81667 Bad Train 

0.96667 1.05556 0.81111 0.37778 0.5 0.18333 Bad Train 

1.01111 1.61111 0.41111 0.4 0.36667 0.45 Bad Train 

0.98889 1.63333 0.27778 0.37778 0 0.41667 Bad Train 

0.27778 0.83333 0.38889 0.42222 0.2 0.28333 Rework Train 

0.3 0.94444 0.34444 0.37778 0.43333 0.18333 Rework Train 

0.36667 0.45556 0.36667 1.04444 0.26667 0.01667 Bad Train 

0.98889 1.14444 0.27778 1.02222 0.03333 0.31667 Bad Train 

1.07778 1.05556 0.27778 0.42222 0.06667 0.25 Bad Train 

1.07778 0.92222 0.47778 0.44444 0.56667 0.38333 Bad Train 

1.1 1.05556 0.34444 0.37778 0.03333 0.25 Bad Train 

1.03333 1.12222 0.23333 0.37778 0.06667 0.18333 Bad Train 

1.05556 1.05556 0.47778 0.22222 0.13333 0.01667 Bad Train 

1.05556 1.05556 0.81111 0.35556 0.26667 0.11667 Bad Train 

0.3 0.43333 0.38889 0.26667 0.06667 0.91667 Rework Train 

0.36667 0.5 0.9 1.02222 0.16667 0.15 Bad Train 

0.96667 1.05556 0.41111 1.02222 0.26667 0.15 Bad Train 
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1.05556 1.12222 0.41111 0.37778 0.03333 0.11667 Bad Train 

0.41111 1.1 0.16667 0.28889 0.06667 0.25 Bad Train 

1.03333 0.38889 0.38889 0.31111 0.1 0.38333 Bad Train 

1.01111 1.1 0.87778 0.37778 0.3 0.01667 Bad Train 

0.32222 0.41111 0.3 1.08889 0.2 0.25 Bad Train 

1.1 1.05556 0.41111 0.33333 0.2 0.18333 Bad Train 

0.98889 1.07778 0.38889 0.44444 0.2 0.31667 Bad Test 

0.36667 0.23333 0.36667 0.88889 0.2 0.15 Rework Test 

0.38889 0.45556 0.18889 1.08889 0.4 0.31667 Bad Test 

1.03333 1.07778 0.3 0.28889 0.16667 0.01667 Bad Test 

0.36667 0.41111 1.05556 0.42222 0.86667 0.08333 Bad Test 

0.38889 0.43333 1.05556 1.06667 0.06667 0.21667 Bad Test 

0.3 0.21111 0.43333 0.95556 0.06667 0.11667 Rework Test 

0.32222 0.3 0.27778 0.88889 0.06667 0.15 Rework Test 

0.34444 0.25556 0.32222 1.06667 0.03333 0.21667 Bad Test 

0.27778 0.25556 0.34444 1.04444 0.06667 0.21667 Bad Test 

0.3 0.25556 0.16667 1 0.1 0.21667 Rework Test 
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