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Abstract

At present, the most successful AI technique is deep learning – the use
of neural networks that consist of multiple layers. Interestingly, it is well
known that neural networks with two data processing layers are sufficient
– in the sense that they can approximate any function with any given
accuracy. Because of this, until reasonably recently, researchers and prac-
titioners used such networks. However, recently it turned out, somewhat
unexpectedly, that using three or more data processing layers – i.e., using
what is called deep learning – makes the neural networks much more effi-
cient. In this paper, on numerous examples from AI and from beyond AI,
we show that this is a general phenomenon: two is enough but three or
more is better. In many examples, there is a specific explanation for this
phenomenon. However, the fact that this phenomenon is universal makes
us conjecture that there is a general explanation for this phenomenon –
and we provide a possible explanation.

1 Deep learning vs. traditional shallow neural
networks

What is a neural network: a brief reminder. Artificial neural networks
consists of neurons, computational units that crudely emulate biological neurons
in our brain. A neuron takes several inputs s1, . . . , sm, and outputs the value
s = a(w0 + w1 · s1 + . . . wm · sm), where:
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� wi are constants called weights and

� a(z) is a function called activation function;

see, e.g., [3, 9].
In a neural network for processing data x1, . . . , xn:

� some neurons directly process the data – these neurons form the first data
processing layer, while

� other neurons process the results of the previous layer(s).

Neural networks with two data processing layers are universal ap-
proximators. It is well known that neural networks with two data processing
layers are universal approximators – in the sense that:

� for each continuous function f(x1, . . . , xn) on a bounded domain D and
for every ε > 0,

� there exists a neural network that, for each (x1, . . . , xn) ∈ D, produces a
value which is ε-close to f(x1, . . . , xn);

see, e.g., [3, 9, 14].
Because of this, until reasonably recently, researchers and practitioners used

such networks.

Enter deep learning. Recently, it turned out, somewhat unexpectedly, that
neural networks with three or more data processing layers – called deep neural
networks – are much more efficient [9]. Everyone knows spectacular successes
of deep learning.

How can we explain this success? A possible explanation for this phe-
nomenon was proposed in [1]. This explanation is based on the need for the
most efficient universal approximation.

While from the purely mathematical viewpoint, the weights can be any real
numbers, in practice, we need to store these numbers in a computer, and we
have a limited number of bits that we can store. We have a limited number of
bits available – let us denote this number by B. So, we can have no more than
2B different combinations of bits – and thus, we can represent no more than 2B

different functions.
The more different functions we can represent, the more accurate is the

resulting approximation. For example:

� If we can only use one number to approximate all the numbers from the
interval [0, 1], then the best we can do is select the number 0.5 – that
approximates all numbers from this interval with accuracy [0, 1].

� If we are allowed to use two numbers, then we can use 1/4 and 3/4 and
get the approximation accuracy 0.25, etc.
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If we have K neurons in a layer, then each of K! permutations of these
K neurons creates a different binary sequence – but all these binary sequences
represent the same function. Thus, instead of 2B possible functions, we can only
represent 2B/K! different function. To represent more functions – and thus, to
make approximations more accurate – we need to decrease K, i.e., decrease
the number of neurons in each layer. So, instead of placing all data processing
neurons in a single layer, a better idea is to have several layers – which is exactly
what deep learning does.

2 Why neural networks in the first place?

Functions of two variables are sufficient. It is know that any continuous
function can be represented as a superposition of functions of two variables. This
well-known result by the famous Russian mathematician Andrei Kolmogorov
solved one of the 23 challenges that the 19 century mathematicians, under the
leadership of David Hilbert, provided to the 20 century mathematics [13].

In line with this result, most modern computers directly support functions of
one or two variables – such as min, max, addition, subtraction, multiplication,
division, etc. – and all other functions have to be computed as a composition
of these operations.

However, supporting functions of many variables makes computations
more efficient. The relative efficiency of supporting operations with more than
two inputs can be illustrated by the fact that most computer chips now support
a three-input multiply-and-add operation a+ b · c.

However, the most impressive jump in efficiency can be observed when we
switch to multi-variable neural operations.

How can we explain this efficiency. A possible explanation was given in
[8, 15]. One of the main objectives of a computer is to compute as fast as
possible. We can speed up computations by performing several operations in
parallel – and nowadays, even the cheapest computers have several processors
working in parallel. Parallelization reduced the overall time of several paral-
lelized elementary operation to the time for performing one of them. So, to
make parallelization as efficient as possible, we need to make these elementary
operations as fast as possible.

In general, the fastest-to-compute are linear functions. However, we cannot
limit ourselves only to linear functions. Indeed:

� by combining linear functions, we will only get linear functions, and

� many real-life phenomena are nonlinear.

So, in addition to linear functions, we also need to use some nonlinear ones. In
general, the more inputs a nonlinear function has, the longer it takes to compute
this function. Thus, if we want to minimize computation time, we should limit
ourselves to fastest-to-compute nonlinear functions, i.e., to nonlinear function
of one variable.
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In a sequence of computations, it makes no sense to follow a linear operation
with a linear one, since the resulting composition of linear function is also linear
and thus, can be computed in a single linear stage. Similarly, it makes no
sense to follow a nonlinear operation with another nonlinear operation, since
the resulting composition of two functions of one variable is also a function of
one variable and thus, can be computed in a single nonlinear stage. Thus, a
linear stage – of computing a linear combination z = w0+w1 · · · s1+. . .+wm ·sm
– should always be followed by a stage at which a function a(z) is applied to
this linear combination. The result is exactly what the usual artificial neuron
computes – which explains why neural networks are so efficient in the first place.

3 From binary logic to multiple-valued logics

Traditional two-valued logic is sufficient. Everything can be represented
in a computer, and everything in a computer is represented as a sequence of 0s
and 1s. So, if we use the usual interpretation of 1 as true and 0 as false, we can
represent all our knowledge by using a logic that uses only two values: true and
false.

Because of this, until 1960s, most computer applications used the two-valued
logic.

However, multiple-valued logics are often more efficient. Starting with
1960s, it was discovered that multiple-valued logics such as fuzzy logic (see, e.g.,
[2, 11, 19, 20, 21, 33]) often lead to successful practical applications.

In particular, we can make computations more efficient if we represent dif-
ferent truth values as combinations of optical beams of three basic colors; see,
e.g., [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

How this can be explained. Knuth’s fundamental book on foundations of
computing [12] contains a result that while binary representation are sufficient,
multiple-valued (e.g., ternary) representations are more efficient.

4 From traditional fuzzy logic to higher-order
fuzzy logic

Traditional fuzzy logic: a brief reminder. Fuzzy logic was invented by
Lotfi Zadeh to describe imprecise (“fuzzy”) expert statements like “x is small”
in precise computer-understandable terms. For this purpose, Zadeh suggested
to ask an expert:

� for each possible value x of the corresponding quantity,

� to mark, on the scale from 0 to 1, a degree which this value is consistent
with the statement – e.g., to which this value is small.
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The resulting function that assigns, to each possible value x, the corresponding
degree µ(x) is known as a membership function, or, alternatively, a fuzzy set.

Need for higher-order fuzzy logic. The very need for fuzzy logic comes
from the fact that the expert is often unable to provide an exact estimate for
a quantity. Instead, he/she provides a fuzzy estimate like “x is close to 1”.
However:

� just like the expert cannot provide the exact value of the physical quantity,

� the same expert is similarly unable to describe his/her degree of confidence
by a precise number.

What the expert can do is describe this degree by a fuzzy word. If we use
Zadeh’s idea to transform this word into a fuzzy set, then:

� instead of assigning, to each value x, a degree µ(x),

� we assign, to each value x, a fuzzy set.

This construction is known as type-2 fuzzy logic; see, e.g., [19].
In a type-2 fuzzy set, we assign:

� to each value x and to each possible fuzzy truth value d,

� a degree µ(x, d) to which d adequately describes the expert’s opinion.

Comment. Of course, instead of providing the exact value µ(x, d), the expert
may also provide an imprecise estimate – and describing this estimate as a fuzzy
set leads to type-3 fuzzy logic, etc.

In principle, type-2 is sufficient. It can proven (see, e.g., [18]) that from the
purely mathematical viewpoint, type-2 description is sufficient. Indeed, for each
possible value x, the expert provides a word w describing his/her degree that
x is the actual value. The expert’s meaning of this word is fully described by
asking the expert to provide, for each possible degree d, a word a describing to
what extent d is an adequate description of w. In other words, a full description
of this degree is provided by a function of one variable.

A type-1 single value µ(x) is not sufficient to uniquely determine such a
function. However, in type-2, we already have such a function – namely, the
function d 7→ µ(x, d). So, we have enough information to determine the desired
function s 7→ a. (Of course, what we just described is just an idea; see [18] for
the full proof.)

Because of this and similar results, most higher-order fuzzy techniques limit
themselves to type-2.

However, sometimes, type-3 fuzzy techniques are more efficient. How-
ever, interestingly, in some cases, type-3 techniques turn out to be more efficient,
see, e.g., [4, 5, 6, 7, 17].
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5 Computability

Which computational devices are sufficient: a brief reminder. Before
we start thinking of an algorithm for solving a general problem, it is important
to first figure out whether this problem is algorithmically solvable in the first
place. Some problems are not algorithmically solvable. For example, it is not
possible to always predict whether a given computer program will halt on a
given data. For such problems, it is desirable to avoid wasting time trying to
find a general solution.

Analysis of computability is one of the main subjects of theory of compu-
tation. Courses on theory of computing (see, e.g., [22]) usually start with the
simplest possible computational device – a finite automaton. For this device, we
have a finite number of possible states q1, . . . , qn. One of these states is marked
as a starting state, and a subset of the states are marked as final states. We fix
a finite set of possible symbols s1, . . . , sm.

To complete the description of a finite automaton, we need to describe, for
each state qi and for each symbol sj read by the automaton, what will be the
next state. Then, to check whether a word (i.e., a sequence of symbols) is
accepted by this automaton, we:

� start in the starting state, and

� read the symbols from this word one by one – and each time move to a
new state in accordance with the automaton’s description.

If at the end, after reading all the symbols from the given word, we end up in
a final state, the word is accepted; otherwise, the word is not accepted.

Many properties can be detected by finite automata, but it is proven that
finite automata are not sufficient. For example, finite automata cannot detect
words of the type anbn in which:

� first a symbol a is repeated some number of times, and

� then another symbol b is repeated the exact same number of times.

This detection is important for computing, since, e.g., we need to make sure
that the number of opening curly brackets is exactly the same as number of
closing curly brackets.

The main reason why finite automata cannot detect such words that is that
they do not have memory. So, a natural idea is to provide them with some
data type that would enable us to store information. There are many possible
data types – lists, queues, etc., but the most natural to a computer (and thus
the fastest to implement) is stack, last-come-first-served, since stack is how
computer memory is operated.

In a stack, we have two main operations:

� push, when we place a new element on top of the stack, and

� pop, when we delete the top element from the stack.
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So, the natural next computational device is an finite automaton equipped with
a stack; this combination is called a pushdown automaton. For pushdown au-
tomata, for each state qi and for each read symbol sj :

� we can pop the top symbol from the stack, and,

� depending on which symbol pops out, go to a different state and/or push
another symbol into the stack.

We start at the starting state with an empty stack. If we end up in the final
state with an empty stack, the word is accepted.

Pushdown automata can detect many properties, but some properties cannot
be detected by them. For example, pushdown automata cannot detect words of
the type anbncn in which:

� first a symbol a is repeated some number of times,

� then another symbol b is repeated the exact same number of times, and

� then yet another symbol c is repeated the same number of time.

Textbooks usually explain that we need a Turing machine to recognize such
properties. A Turing machine consists of:

� a tape consisting of cells and

� a head – which is a finite automaton.

The tape is infinite in one direction: it has a starting state, and potentially
infinitely many following states. Initially, the head points at a starting state.
The input word is written in the tape. Upon reading a symbol, depending on
what symbol it sees and on what is the head’s state, the head can do some (or
all) of the following three things:

� it can change its state,

� it can overwrite the symbol in the cell to which it points, and/or

� it can move one step to the left or one step to the right.

Again, two are sufficient. What the textbooks usually do not mention is
that a Turing machine can be equivalently represented as a finite automaton
with two stacks [16]:

� the first stack contains all the symbols on the tape from the head location
to the left, with the symbol to which the head points at the top, while

� the second stack contains all the other symbols, which the symbol to the
direct right of the head at the top.
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One can show that one step of a Turing machine can be described in terms of
pushing and popping with these two stacks.

Two stacks are sufficient, because Turing machine can compute anything
that can be done by a finite automaton with many stacks.

Again, more than two are sometimes more efficient. There are many
problems for which a Turing machine with several tapes – corresponding to more
than more than stacks – is more efficient that the basic Turing machine with a
single tape (that corresponds to two stacks).

6 Is there a general explanation for this phe-
nomenon?

There probably is a general explanation. In this paper, we provided several
examples of the phenomenon. In many cases, we have a specific explanation.
However, the very fact that this phenomenon is universal makes us conjecture
that there is a general explanation for this phenomenon.

So what is a possible explanation? To come up with such an explanation,
let us look into the most fundamental level of the physical world – the level of
quantum physics. On this level, there is a following fundamental result [10]:
that algebras used in quantum physics can be determined by their lowest 2
levels:

� level of “atoms” (i.e., basic building blocks), and

� level of combinations of two “atoms”.

This is exactly what we observe – that in many cases, two levels are sufficient.
So this is probably the general explanation for all the above phenomena.
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Logic, Kluwer, Boston, Dordrecht, 1999.

[22] M. Sipser, Introduction to the Theory of Computation, 3rd edition, Course
Technology Inc., Boston, Massacusetts, USA, 2021.

[23] V. Timchenko, Y. Kondratenko, O. Kozlov, and V. Kreinovich, “Fuzzy
Color Computing Based on Optical Logical Architecture”, In: C. Kahra-
man, I. U. Sari, B. Oztaysi, S. Cebi, S. C. Onar, and A. C. Tolga (eds.),
Intelligent and Fuzzy Systems: Intelligence and Sustainable Future, Pro-
ceedings of the International Conference on Intelligent and Fuzzy Sys-
tems INFUS’2023, Istanbul, Turkey, August 22–24, 2023, Vol. 1, Springer
Lecture Notes in Networks and Systems, 2023, Vol. 758, pp. 491–499,
https://doi.org/10.1007/978-3-031-39774-5 55

[24] V. L. Timchenko, Y. P. Kondratenko, and V. Kreinovich, “Why Color
Optical Computing”, In: N. H. Phuong and V. Kreinovich (eds.), Deep
Learning and Other Soft Computing Techniques: Biomedical and Related
Applications, Studies in Computational Intelligence, Vol. 1097, Springer,
Cham, Switzerland, 2023, pp. 227–233, https://doi.org/10.1007/978-3-031-
29447-1 20

[25] V. L. Timchenko, Y. P. Kondratenko, and V. Kreinovich, “Logical De-
cision Networks Based on the Optical Coloroids”, Proceedings of the
12th IEEE International Conference on Intelligent Data Acquisition and

10



Advanced Computing Systems: Technology and Applications IDAACS
2023, Dortmund, Germany, September 7–9, 2023, pp. 1194–1199, DOI:
10.1109/IDAACS58523.2023.10348692.

[26] V. L. Timchenko, Y. P. Kondratenko, and V. Kreinovich, “Interval-Valued
and Set-Valued Extensions of Discrete Fuzzy Logics, Belnap Logic, and
Color Optical Computing”, In: Sebastia Massanet, Susana Montes, Daniel
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