
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

9-1-2024

Training Neural Networks on Interval Data: Unexpected Results Training Neural Networks on Interval Data: Unexpected Results

and Their Explanation and Their Explanation

Edwin Tomy George
The University of Texas at El Paso, etomygeorg@miners.utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Christoph Lauter
The University of Texas at El Paso, cqlauter@utep.edu

Martine Ceberio
The University of Texas at El Paso, mceberio@utep.edu

Luc Jaulin
Lab-STICC, lucjaulin@gmail.com

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Sciences Commons, and the Mathematics Commons

Comments:

Technical Report: UTEP-CS-24-50

Recommended Citation Recommended Citation
George, Edwin Tomy; Kreinovich, Vladik; Lauter, Christoph; Ceberio, Martine; and Jaulin, Luc, "Training
Neural Networks on Interval Data: Unexpected Results and Their Explanation" (2024). Departmental
Technical Reports (CS). 1906.
https://scholarworks.utep.edu/cs_techrep/1906

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1906?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1906&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Training Neural Networks on Interval Data:
Unexpected Results and Their Explanation

Edwin Tomy George, Luc Jaulin, Vladik Kreinovich,
Christoph Lauter, and Martine Ceberio

Abstract In many practically useful numerical computations, training-and-then-
using a neural network turned out to be a much faster alternative than running the
original computations. When we applied a similar idea to take into account interval
uncertainty, we encountered two unexpected results: (1) that while for numerical
computations, it is usually better to represent an interval by its midpoint and half-
width, for neural networks, it is more efficient to represent an interval by its end-
points, and (2) that while usually, it is better to train a neural network on the whole
data processing algorithm, in our problems, it turned out to be more efficient to train
several subnetworks on subtasks and then combine their results. In this paper, we
provide a theoretical explanation for these unexpected results.

1 Formulation of the Problem

We need faster computations. Modern computers are very fast, but for some practi-
cal problems, they are still not fast enough. For example, modern high-performance
computers provide a reasonable accurate prediction of tomorrow’s weather – a few
hours on a high performance computer, and we have a good understanding of the
next day’s weather.

In principle, similar algorithms can also predict extreme weather – e.g., they can
predict in what direction a tornado will move in the next 15 minutes. However, a
tornado is a very fast process, what usually takes a day to change for the case of
regular weather happens in 15 minutes for a tornado. As a result, we need the same

Edwin Tomy George, Vladik Kreinovich, Christoph Lauter, and Martine Ceberio
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA
e-mail: etomygeorg@miners.utep.edu, vladik@utep.edu, cqlauter@utep.edu, mceberio@utep.edu

Luc Jaulin
Lab-STICC, ENSTA-Bretagne, Brest, 29200, Finisterre, France, e-mail: lucjaulin@gmail.com

1

2 E. Tomy George et al.

few hours on a high performance computer to predict where a tornado will turn in
the next 15 minutes – as to predict next day;s weather. For weather, this prediction
makes sense, we still get the result before the next day. However, for a tornado, such
“predictions” make no sense: in 15 minutes, way before the computations finish, we
will know where the tornado went :-(

There are many practical problems like that, that show that we need faster com-
putations.

A natural idea how to speed up computations. In many engineering situations,
a good idea is to look how nature has solved the corresponding problem. After all,
what we see in life creatures is the result of billions of years of optimizing evolution.
If there was a better solution, in billions of years nature would have found it – and
the corresponding creature would have out-competed everyone else.

So, to see how we can speed up data processing, a natural idea is to look how
living creatures process data. In living creatures, data is usually processed by neu-
rons. The results are not bad. For many practical problems like face recognition, we
human are often as good as (or even better than) modern computers. This may not
sound that unexpected until we realize that a computer consists of components that
perform several billion operations per second, while the fastest neurons (data pro-
cessing cells in the human brain) can perform at most 100 (and usually much fewer)
operations per second.

The reason why human brain, with its relatively very slow components, can com-
pete with computers (whose components are millions times faster) is that data pro-
cessing in a human brain is heavily parallelized, with up to billions of neurons –
each of which performs a very simple operation – working in parallel.

So, a natural idea to speed up computations is to simulate how the brain works.
This is exactly what artificial neural networks – usually called just neural networks –
do; see, e.g., [1]. In the last decades, neural networks achieved enormous successes.
Training them requires a lot of time – this is npt surprising, since training an infant
to recognize faces and to perform other tasks takes several years. However, once the
network is trained, it is usually very fast.

In many case, neural networks are used for situations of machine learning, when
we do not know the data processing algorithm a priori, so we need to reconstruct
this algorithm based on several input-output examples. However, neural networks
have also been very helpful in solving numerical problems for which algorithms are
known. In such cases, we train a neural network on many input-output examples
generated by the known algorithm. This training takes a significant amount of time,
but once the network is trained, it produced the results very fast, usually much faster
then the original numerical algorithm.

Need for uncertainty quantification. In data processing, we inputs some values
x1, . . . ,xn into an algorithm f to compute the desired output

y = f (x1, . . . ,xn).

At first glance, it may seem that this is all we need: e.g., we input the values xi
of today’s temperature, humidity, wind speed at different locations, and we get an

Training Neural Networks on Interval Data 3

estimate y for tomorrow’s weather. But what we also need to know is how accurate
is our estimate.

There are several reasons why our estimate is different from the actual value of
the desired quantity. In many case, the algorithm itself y = f (x1, . . . ,xn) is approxi-
mate. However, even when the algorithm is exactly describing the relation between
the actual values of the corresponding physical quantities xi and y, the result of data
processing is still only approximate – because:

• what we process are not the actual values xi of the physical quantities, but the
results x̃i of measuring these quantities, and

• these results are, in general, somewhat different from the actual values; see, e.g.,
[8].

Thus, the value ỹ = f (x̃1, . . . , x̃n) obtained by processing the measurement results x̃i
is, in general, different from the ideal value y = f (x1, . . . ,xn) that we would have
got if we knew the exact values xi.

It is therefore desirable to analyse how the measurement errors ∆xi
def
= x̃i − xi

affect the result of data processing, i.e., what can we say about the resulting uncer-
tainty ∆y def

= ỹ− y. This analysis is known as uncertainty quantification.

Need for interval computations. In some cases, we know the range of possible
values of each measurement error ∆xi, and we know how frequent are different val-
ues from this range – i.e., we know the probability distribution of each measurement
error. In this case, in principle, we can perform uncertainty quantification by Monte-
Carlo techniques – i.e., by simulating all these probability distributions. However,
there are two important cases when we do not know these probability distributions.

The first such case is state-of-the-art measurements. Indeed, usually, we get the
probability distribution of the measurement error by comparing the results of mea-
suring some quantities by our measuring instrument and by another, much more
accurate measuring instrument – whose measurement error are much smaller than
of our instrument and can, thus, be safely ignored. This process is known as the
calibration of the measureing instrument. However, for the state-of-the art mea-
surements, there is no more accurate instrument – the one we have is the best. In
this case, we cannot determine the probability distribution. The best we can do is
find the upper bound ∆i on the absolute value of the measurement error: |∆xi| ≤ ∆i.

The second case is routine measurements on the shop floor. In principle, we could
calibrate every sensor, every measurement instrument. However, sensors are now
cheap – e.g., school kids use cheap distance-measuring sensors to design robots –
while calibration requires the use of expensive high-accuracy measurement instru-
ments and is, thus, much more expensive than the sensor itself. Because of this cost,
most measuring instruments are not fully calibrated. The best we can do is use the
upper bound ∆i provided by the instrument’s manufacturer. And the manufacturer
has to supply some such bound – otherwise, if there is no guaranteed bounds on the
measurement error, this means that any actual value if possible, so this cannot be
called a measuring instrument.

4 E. Tomy George et al.

In both cases, if all we know about the measurement error is the upper bound
∆xi, then after we get the measurement result x̃i, the only thing we can conclude
about the actual value xi of the corresponding quantity is that it is contained in the
interval [xi,xi], where xi = x̃i −∆i and xi = x̃i +∆i. In this case, all we know about
y = f (x1, . . . ,xn) is that y belongs to the interval

[y,y] def
= { f (x1, . . . ,xn) : xi ∈ [xi,xi]}.

Computing this interval [y,y] is one of the main tasks of interval computations; see,
e.g., [2, 4, 6, 7].

Need for interval computations adds complexity to data processing. It is known
– see, e.g., [3] – that in many cases, interval computations are more computationally
complex than the corresponding data processing. For example, for quadratic func-
tions f (x1, . . . ,xn), computation is straightforward, but the corresponding interval
computation problem is NP-hard; see, e.g., [3]. Thus, for interval-related problems,
there is even more need to speed up computations than for data processing in gen-
eral.

One way to speed up computations is to take into account that the more bits we
process, the more time we need for this processing, Since the measurement error
is usually much smaller than the measurement result, we therefore need fewer bits
to represent the bound ∆i than to represent measurement values. Thus, usually, in
interval computations, an interval is represented by its midpoint x̃i and its half-width
∆i – rather than by its endpoints.

The use the midpoint-half-width speeds up computations somewhat. However, in
many practical situations, the resulting speed up is not sufficient, so using a neural
network to further speed up interval computations is a reasonable idea.

What we did and what were the unexpected results. We did train a neural network
to solve an interval computation problem – namely, a problem of locating a robot
based on distance and angle measurements; see, e.g., [10, 11]. Overall, the results
are good, but some results were unexpected.

First:

• while usually in interval computations, a representation of an interval by its mid-
point and half-width leads to better results,

• for neural networks, we got better results when we represented an interval by its
endpoints.

Second:

• while usually in machine learning, one gets better results training the neural net-
work on the whole algorithm,

• in our case, we got better result when we trained neural networks on some mod-
ules, and then combined the results.

What we do in this paper. In this paper, we provide a theoretical explanation for
both unexpected results.

Training Neural Networks on Interval Data 5

2 Why for Neural Networks, Endpoint Representation Works
Better

Why is there a difference in the first place: question. At first glance, it is not clear
why there is a difference between the two possible interval representations at all.
Indeed, in a usual neural network, the only neurons that process the measurement
results are neurons from the first layer – all other neurons process the output signals
of the neurons from the previous layer.

In general, in a neural network, a neuron that inputs the input values v1, . . . ,vn
produces an output signal z = s(a0 + a1 · v1 + . . .+ aN · vN), for some non-linear
function s(t) – which is called an activation function. So, if we input endpoints of n
intervals, we get

s(a0 +a1 · x1 +b1 · x1 + . . .+an · xn +bn · xn).

If we input midpoint and half-width of each interval, we get a similar expression:

s(a0 + c1 · x̃1 +d1 ·∆1 + . . .+ cn · x̃n +dn ·∆n).

Since xi and xi are linear combinations of the values x̃i and ∆i, the corresponding
classes of functions are the same:

• When we know ai and bi, then we get

ai · xi +bi · xi = ai · (x̃i −∆i)+bi · (x̃i +∆i) = (ai +bi) · x̃i +(bi −ai) ·∆i,

i.e., we have the equivalent second expression with ci = ai +bi and di = bi −ai.
• Vice versa, from xi = x̃i −∆i and xi = x̃i +∆i, we get

x̃i =
xi + xi

2
and ∆i =

xi − xi

2

and thus,

ci · x̃i +di ·∆i = ci ·
xi + xi

2
+di ·

xi − xi

2
=

ci −di

2
· x̃i +

ci +di

2
·∆i,

i.e., we have the equivalent first expression with

ai =
ci −di

2
and bi =

ci +di

2
.

Since we have the same class of approximating functions in both case, why is there
a difference in the training results?

Why is there a difference: explanation. The formulas are the same, so the train-
ing iterations are, in effect, equivalent, but what is different is the initial values of
the corresponding weights. Usually, the initial weights are selected randomly. For
example, we start with the same probability distribution for each weight – usually, a

6 E. Tomy George et al.

normal distribution with 0 mean and standard deviation σ0 – and select each weight
independently. This way, there is a difference between the two representations:

• If we select ai and bi as independent normally distributed random variables with
mean 0 and standard deviation σ0, then, as one can easily check, the combina-
tions ci = ai +bi and di = ai −bi are also independent, normally distributed with
mean 0 and standard deviation

√
2 ·σ0.

• Similarly, if we select ci and di as independent normally distributed random vari-
ables with mean 0 and standard deviation σ0, then, as one can easily check, the
combinations

ai =
ci −di

2
and bi =

ci +di

2
are also independent, normally distributed with mean 0 and standard deviation

1√
2
·σ0.

When standard deviation is smaller, the resulting random number is, on average,
smaller, so we need fewer bits to represent this number. Thus, as we have mentioned
earlier, we need smaller computation time.

This explains why for a neural network, using the endpoints – which corresponds
to using coefficients ai and bi – leads to slightly faster training for the same accuracy
or, equivalently, slightly more accurate training for the same training time. In other
words, this explains the first unexpected result.

3 Why Training for Modules Works Better

In general, the simpler the function, the easier is to train a neural network on this
function, and the fewer parameters we need to approximate this function with a
given accuracy. The complexity of a function is usually measured by the length of
the corresponding program; see, e.g., [5]. Thus, a function obtained by applying
some operation to two equal-size modules is approximately twice more complex
that each of its modules.

For each function, training means finding the values of the weights for which
the values produced by the neural network are approximately equal to the desired
results. In statistics, finding parameters that match the known input-output pairs is
known as regression. It is known – see, e.g., [9] – that for the same level of noise, the
more parameters we need to determine, the less accurate is our estimation of these
parameters. This comes from the fact that in the linear approximation, matching
means solving a system of linear equations Xa = y, where X is a matrix formed by
results of measure xi, and a are the desired weights.

So we need to compute a = X−1y. In the basis formed by eigenvectors of the
matrix X , this means that ai = yi/λi, where λi is the corresponding eigenvalue. For
random matrices, the smallest eigenvalue is close to 0, and it tends to 0 as the matrix

Training Neural Networks on Interval Data 7

size increases. Thus, indeed, the more parameters, the larger the matrix size, the
larger the resulting uncertainty in ai – and thus, the resulting uncertainty in the final
estimate.

Since, as we have mentioned, modules require fewer parameters than the algo-
rithm as a whole, their training leads to more accurate results than training for the
whole algorithm. If we then combine the two more-accurate module estimates, we
thus get a more accurate estimate for the overall result of data processing – this is
exactly what we observed.

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), EAR-
2225395 (Center for Collective Impact in Earthquake Science C-CIES), and by the
AT&T Fellowship in Information Technology.

It was also supported by a grant from the Hungarian National Research, Devel-
opment and Innovation Office (NRDI), and by the Institute for Risk and Reliability,
Leibniz Universitaet Hannover, Germany.

References

1. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, Mas-
sachusetts, 2016.

2. L. Jaulin, M. Kiefer, O. Didrit, and E. Walter, Applied Interval Analysis, with Examples in
Parameter and State Estimation, Robust Control, and Robotics, Springer, London, 2012.

3. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasibility
of Data Processing and Interval Computations, Kluwer, Dordrecht, 1998.

4. B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction, Optimization,
and Similar Problems: from Inequalities Systems to Game Solutions, Springer, Cham, Switzer-
land, 2019.

5. M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications,
Springer, Cham, Switzerland, 2019.

6. G. Mayer, Interval Analysis and Automatic Result Verification, de Gruyter, Berlin, 2017.
7. R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis, SIAM,

Philadelphia, 2009.
8. S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and Practice, Springer Ver-

lag, New York, 2005.
9. D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, Chapman

and Hall/CRC, Boca Raton, Florida, 2011.
10. E. Tomy George, Neural networks for decisions under uncertainty, Master’s Thesis, Depart-

ment of Computer Science, University of Texas at El Paso, El Paso, Texas, USA, 2024.
11. E. Tomy George, L. Jaulin, V. Kreinovich, C. Lauter, and M. Ceberio, “Localizing robots

using neural networks with interval data”, Proceedings of the 10th International Workshop on
Reliable Engineering Computing REC’2024, Beijing, China, October 26–27, 2024.

	Training Neural Networks on Interval Data: Unexpected Results and Their Explanation
	Recommended Citation

	tmp.1729275483.pdf.0j6rB

