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Stochastic Dominance: Cases of Interval and
P-Box Uncertainty

Kittawit Autchariyapanikul, Olga Kosheleva, and Vladik Kreinovich

Abstract Traditional decision theory recommendation about making a decision as-
sume that we know both the probabilities of different outcomes of each possible
decision, and we know the utility function – that describes the decision maker’s
preferences. Sometimes, we can make a recommendation even when we only have
partial information about utility. Such cases are known as cases of stochastic dom-
inance. In other cases, in addition to not knowing the utility function, we also only
have partial information about the probabilities of different outcomes. For exam-
ple, we may only known bounds on the outcomes (case of interval uncertainty) or
bounds on the values of the cumulative distribution function (case of p-box uncer-
tainty). In this paper, we extend known stochastic dominance results to these two
cases.

1 Formulation of the problem

Decision making according to decision theory: a brief reminder. Decision the-
ory (see, e.g., [2, 3, 6, 9, 12, 13, 14]) describes decisions of a rational decision
maker, i.e., of a decision maker whose decisions satisfy commonsense conditions of
rationality. For example, if a rational decision maker prefers A to B and prefers B to
C, then this decision maker should prefer A to C. It is known that preferences of a
rational decision maker can be described by a function u(a) called utility such that:
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• the decision maker prefers a to b if and only if u(a)> u(b), and
• the utility of a situation in which we can get outcome a1 with probability p1,

outcome a2 with probability p2, . . . , and outcome an with probability pn is equal
to p1 ·u(a1)+ . . .+ pn ·u(an).

Stochastic dominance theory (see, e.g., [8, 15]) deals with the case when each out-
come ai is characterized by a numerical value – monetary gain. In this case, each
alternative is described by a probabilistic uncertainty, which means that we have a
probability distribution on the set of all real numbers. For example, in the above
case, we have a probability distribution that is located on the set {a1, . . . ,an} and for
which the probability of each value ai is equal to pi.

In general, we can describe each probability distribution by a cumulative distri-
bution function F(x) = Prob(a ≤ x). In this case, the utility of this alternative is
equal to the expected value

∫
u(x)dF(x) of the utility function with respect to this

probability distribution.

Stochastic dominance: a brief reminder. In some practical situations, we do not
know the decision maker’s utility function, we only have some information about the
utility function. In some such cases, we can sometimes conclude that one alternative
is better than the other one. Such cases are known as cases of stochastic dominance.

In some cases, all we know about the utility function is that this function is (non-
strictly) increasing: if a ≤ b then u(a) ≤ u(b). In this case, the following known
result holds:

Proposition 1. For every two probability distributions F(x) and G(x), the following
two conditions are equivalent:

• for every non-strictly increasing function u(x), the utility corresponding to F(x)
is larger than or equal to the utility corresponding to G(x);

• for all x, we have G(x)≤ F(x).

Sometimes, we also know that the decision maker is risk-averse, i.e., that for
each lottery in which the person gets amounts xi with probabilities pi, the decision
would prefer to receive the expected value p1 · x1 + . . .+ pn · xn than to participate
in this lottery. In view of the above-described relation between expected utility and
decisions, this means that for all such cases, we have

u(p1 · x1 + . . .+ pn · xn)≥ p1 ·u(x1)+ . . .+ pn ·u(xn),

i.e., that the utility function u(x) is concave. In this case, the following known result
holds:

Proposition 2. For every two probability distributions F(x) and G(x), the following
two conditions are equivalent:

• for every non-strictly increasing concave function u(x), the utility corresponding
to F(x) is larger than or equal to the utility corresponding to G(x);

• for all x, we have ∫ x

−∞

G(t)dt ≤
∫ x

−∞

F(t)dt.
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Need to consider interval and p-box uncertainty. The above results assume that
for each possible action, we know the probabilities of different outcomes. In prac-
tice, we often also have only partial information about these probabilities.

Sometimes, we have no information at all about the probabilities, we only know
the range [x,x] of possible values. This case is known as the case of interval uncer-
tainty; see, e.g., [5, 7, 10, 11].

Sometimes, we have partial information about the cumulative distribution func-
tion F(x). Uncertainty usually means that for each x, instead of the exact value
F(x), we only know the range

[
F(x),F(x)

]
of possible values. In this case, for each

tuple of values (x1, . . . ,xn) the set of possible values of the corresponding tuple
(F(x1), . . . ,F(xn)) is a box[

F(x1),F(x1)
]
× . . .×

[
F(xn),F(xn)

]
.

This box is called probability box, or p-box, for short. Because of this, this case is
known as the case of p-box uncertainty; see, e.g., [1].

How to make decisions under interval uncertainty. According to decision theory
[4, 6, 9], to make decisions under interval uncertainty, a decision maker has to select
his/her degree αH of optimism-pessimism – a number from the interval [0,1]. Then,
the utility of an interval [x,x] is determined as

αH ·u(x)+(1−αH) ·u(x).

The name of this degree comes from the fact that when αH = 1, the utility is
equal to u(x). In this case, we only take into account the best-case scenario, and we
ignore the possibility that the outcome can be worse. This is clearly the case of pure
optimism. On the other hand, when αH = 0, the utility is equal to u(x). In this case,
we only take into account the worst-case scenario, and we ignore the possibility that
the outcome can be better. This is clearly the case of pure pessimism. Of course,
these two are extreme cases. In practice, decision makers take both the best-case
and the worst-case scenarios into account, i.e., they select values αH ∈ (0,1).

How to make decisions under p-box uncertainty. As we have mentioned, for a
given probability distribution F(x), the utility is equal to

∫
u(x)dF(x). By using

integration by part, we can reduce this integral to the form

−
∫

u′(x) ·F(x)dx.

Since the function u(x) is non-strictly increasing, we have u′(x)≥ 0. Thus, if F(x)≤
G(x), then we have∫

u(x)dF(x) =−
∫

u′(x) ·F(x)dx ≥−
∫

u′(x) ·G(x)dx =
∫

u(x)dG(x).

As a result, when F(x)≤ F(x)≤ F(x), we have
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u(x)dF(x)≥

∫
u(x)dF(x)≥

∫
u(x)dF(x).

Thus, in the p-box case, possible values of utility form an interval[∫
u(x)dF(x),

∫
u(x)dF(x)

]
.

So, according to decision theory, we need to select an alternative for which the value

αH ·
∫

u(x)dF(x)+(1−αH) ·
∫

u(x)dF(x)

is the largest.

What we do in this paper. In this paper, we extend the known stochastic dominance
results to the cases of interval and p-box uncertainty: namely, we describe all the
case with interval and p-box uncertainty when we can make a decision without
knowing the exact shape of the utility function.

2 Case of interval uncertainty

Proposition 3. Let αH ∈ (0,1) be given. Then, for every two intervals x = [x,x] and
y =

[
y,y

]
, the following two conditions are equivalent:

• for every non-strictly increasing function u(x), the utility corresponding to x is
larger than or equal to the utility corresponding to y;

• we have x ≥ y and x ≥ y.

Proposition 4. Let αH ∈ (0,1) be given. Then, for every two intervals x = [x,x] and
y =

[
y,y

]
, the following two conditions are equivalent:

• for every non-strictly increasing concave function u(x), the utility corresponding
to x is larger than or equal to the utility corresponding to y;

• we have x ≥ y and αH · x+(1−αH) · x ≥ αH · y+(1−αH) · y.

Proof of Proposition 3.

1◦. To prove the desired equivalence, we will prove the following two statements:

• that if the second condition is satisfied, then the first condition is also satisfied,
and

• that if the second condition is not satisfied, then the first condition is also nor
satisfied.

Let us prove them one by one.

2◦. Let us first prove that if the second condition is satisfied, then the first condition
is also satisfied. Indeed, from x ≥ y, we conclude that
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(1−αH) · x ≥ (1−αH) · y.

Similarly, from x ≥ y, we conclude that

αH · x ≥ αH · y.

By adding the two centered inequalities, we conclude that

u(x) = αH · x+(1−αH) · x ≥ αH · y+(1−αH) · y = u(y).

3◦. Let us now prove that if the second condition is not satisfied, then the first con-
dition is also not satisfied. The second condition consists of two inequalities; thus,
the fact that it is not satisfied means that one of these inequalities is false, i.e., either
x < y or x < y. We will consider these two cases one by one.

3.1◦. Let us first consider the case when x < y. In this case, we can consider the
following non-strictly increasing utility function:

• for x < y, we have u(x) = 0, and
• for x ≥ y, we take u(x) = 1.

In this case, since y ≥ y, we have u(y) = u
(

y
)
= 1 and thus,

u(y) = αH ·u(y)+(1−αH) ·u
(

y
)
= αH ·1+(1−αH) ·1 = 1.

On the other hand, since x < y, we have u(x) = 0, thus

(1−αH) ·u(x) = 0.

For our utility function, we have u(x)≤ 1 for all x, in particular, we have u(x)≤ 1,
thus

αH ·u(x)≤ αH < 1.

By adding the two centered inequalities, we conclude that

u(x) = αH ·u(x)+(1−αH) ·u(x)≤ αH < 1 = u(y).

So, in this case, the first condition is also not satisfied.

3.2◦. Let us now consider the case when x < y. In this case, we can consider the
following non-strictly increasing utility function:

• for x < y, we have u(x) = 0, and
• for x ≥ y, we take u(x) = 1.

In this case, we have u(y) = 1 and thus,

αH ·u(y) = αH > 0.

For this utility function, u(x)≥ 0 for all x, in particular, u
(

y
)
≥ 0, thus
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(1−αH) ·u
(

y
)
≥ 0.

By adding the two last centered inequalities, we conclude that

u(y) = αH ·u(y)+(1−αH) ·u
(

y
)
≥ αH > 0.

On the other hand, since x ≤ x < y, we have u(x) = u(x) = 0, thus

u(x) = αH ·u(x)+(1−αH) ·u(x) = 0 < αH ≤ u(y).

So, in this case, the first condition is also not satisfied.

The proposition is proven.

Proof of Proposition 4.

1◦. To prove the desired equivalence, we will prove the following two statements:

• that if the second condition is satisfied, then the first condition is also satisfied,
and

• that if the second condition is not satisfied, then the first condition is also nor
satisfied.

Let us prove them one by one.

2◦. Let us first prove that if the second condition is satisfied, then the first condition
is also satisfied. For this purpose, we will consider two possible cases: when x ≥ y
and when x < y. We will consider these two cases one by one.

2.1◦. If x ≥ y, then, taking into account that x ≥ y and that the utility function u(x) is
non-strictly increasing, we conclude that u(x)≥ u(y) and u(x)≥ u

(
y
)
. Multiplying

the first inequality by αH > 0 and the second one by 1−αH > 0 and adding the
resulting inequalities, we conclude that

αH · x+(1−αH) · x ≥ αH · y+(1−αH) · y,

i.e., indeed, that the utility of the interval x is larger than or equal to the utility of
the interval y.

2.2◦. Let us now consider the case when x < y, i.e., when y ≤ x ≤ x < y and when

αH · x+(1−αH) · x ≥ αH · y+(1−αH) · y.

Here,

x = y+
x− y
y− y

· (y− y) =
x− y
y− y

· y+ y− x
y− y

· y.

Since the utility function is concave, we conclude that

u(x)≥
x− y
y− y

·u(y)+ y− x
y− y

·u
(

y
)
,
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i.e., that

u(x)≥ u
(

y
)
+

x− y
y− y

·
(
u(y)−u

(
y
))

. (1)

Similarly,

x = y+
x− y
y− y

· (y− y) =
x− y
y− y

· y+ y− x
y− y

· y.

Since the utility function is concave, we conclude that

u(x)≥
x− y
y− y

·u(y)+ y− x
y− y

·u
(

y
)
,

i.e., that

u(x)≥ u
(

y
)
+

x− y
y− y

·
(
u(y)−u

(
y
))

. (2)

Multiplying the inequality (2) by αH and the inequality (1) by 1−αH and adding
the resulting inequalities, we conclude that

u(x)≥ u
(

y
)
+

x− y
y− y

·
(
u(y)−u

(
y
))

, (3)

where we denoted x def
= αH · x+(1−αH) · x. We have assumed that

x ≥ y def
= αH · y+(1−αH) · y.

Thus, from (3), we can conclude that

u(x)≥ u
(

y
)
+

y− y
y− y

·
(
u(y)−u

(
y
))

. (4)

Here, by definition of y, we have

y− y
y− y

= αH .

Thus, the inequality (4) takes the form

u(x)≥ u
(

y
)
+αH · (u(y)−u

(
y
)
) = αH ·u(y)+(1−αH) ·u

(
y
)
,

i.e., that indeed u(x)≥ u(y).

3◦. Let us now prove that if the second condition is not satisfied, then the first con-
dition is also not satisfied. The second condition consists of two inequalities; thus,
the fact that it is not satisfied means that one of these inequalities is false, i.e., either
x < y or

αH · x+(1−αH) · x < αH · y+(1−αH) · y.
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We will consider these two cases one by one.

3.1◦. Let us first consider the case when x < y. In this case, we can consider the
following non-strictly increasing concave utility function:

• for x ≤ y, we have u(x) = x, and
• for x ≥ y, we take u(x) = y.

In this case, since y ≥ y, we have u
(

y
)
= u(y) = y and thus,

u(y) = αH ·u(y)+(1−αH) ·u
(

y
)
= αH · y+(1−αH) · y = y.

On the other hand, by definition of our utility function, since x < y, we have u(x) =
x < y. Since αH ∈ (0,1), we have 1−αH > 0 and thus,

(1−αH) ·u(x)< (1−αH) · y.

For our utility function, we have u(x)≤ y for all x, in particular, u(x)≤ y, thus

αH ·u(x)≤ αH · y.

By adding two centered inequalities, we conclude that

u(x) = αH ·u(x)+(1−αH) ·u(x)< αH · y+(1−αH) · y = y = u(y),

i.e., indeed, the first condition is not satisfied.

3.2◦. Let us now consider the case when

αH · x+(1−αH) · x < αH · y+(1−αH) · y.

In this case, we can consider the utility function u(x) = x. This function is increasing
and concave, but for this function, the above inequality means that u(x) < u(y).
Thus, in this case, the first condition is also not satisfied.

The proposition is thus proven.

3 Case of p-box uncertainty

Proposition 5. Let αH ∈ (0,1) be given. Then, for every two p-boxes F(x) =[
F(x),F(x)

]
and G(x) =

[
G(x),G(x)

]
, the following two conditions are equivalent:

• for every non-strictly increasing function u(x), the utility corresponding to F(x)
is larger than or equal to the utility corresponding to G(x);

• for all x, we have G(x)≤ F(x), where

F(x) def
= αH ·F(x)+(1−αH) ·F(x)
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and
G(x) def

= αH ·G(x)+(1−αH) ·G(x).

Proposition 6. Let αH ∈ (0,1)S be given. Then, for every two p-boxes F(x) =[
F(x),F(x)

]
and G(x) =

[
G(x),G(x)

]
, the following two conditions are equivalent:

• for every non-strictly increasing concave function u(x), the utility corresponding
to F(x) is larger than or equal to the utility corresponding to G(x);

• for all x, we have ∫ x

−∞

G(t)dt ≤
∫ x

−∞

F(t)dt,

where
F(x) def

= αH ·F(x)+(1−αH) ·F(x)

and
G(x) def

= αH ·G(x)+(1−αH) ·G(x).

Proof of Propositions 5 and 6. According to decision theory, the utility of a p-box[
F(x),F(x)

]
is equal to

αH ·
∫

u(x)dF(x)+(1−αH) ·
∫

u(x)dF(x).

As we have mentioned earlier, by applying integration by parts, we can transform
each of these integrals into an equivalent form

−
∫

u(x) ·F(x)dx and −
∫

u(x) ·F(x)dx.

Thus, the utility of a p-box takes the form

αH ·
(
−
∫

u(x) ·F(x)dx
)
+(1−αH) ·

(
−
∫

u(x) ·F(x)dx
)
.

Using the fact that the integral of the sum is equal to the sum of the corresponding
integrals, we can conclude that this expression is equal to

−
∫

u(x) · (αH(x) ·F(x)+(1−αH) ·F(x))dx,

i.e., by definition of the combination F(x), the form

−
∫

u(x) ·F(x)dx =
∫

u(x)dF(x).

Thus, the utility of a p-box
[
F(x),F(x)

]
is equal to the utility corresponding to

the probability distribution

F(x) = αH ·F(x)+(1−αH) ·F(x).
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Because of this, Propositions 5 and 6 dealing with p-boxes follow from Propositions
1 and 2 that deal with probability distributions.
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