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Why Empirical Membership Functions Are
Well-Approximated by Piecewise Quadratic
Functions: Theoretical Explanation for
Empirical Formulas of Novak’s Fuzzy Natural
Logic

Olga Kosheleva and Vladik Kreinovich

Abstract Empirical analysis shows that membership functions describing expert
opinions have a shape that is well described by a smooth combination of two
quadratic segments. In this paper, we provide a theoretical explanation for this em-
pirical phenomenon.

1 Formulation of the problem

What we membership functions: a brief reminder. A significant part of hu-
man knowledge is formulate not in precise terms, but by using imprecise (“fuzzy”)
natural-language words. To describe such knowledge in precise terms, Lotfi Zadeh
proposed a technique that he called fuzzy logic; see, e.g., [1, 4, 5, 7, 9, 13].

In this technique, to describe an imprecise property like “small”, we assign:

• to each possible value x of the corresponding quantity,
• a degree m(x) – from the interval [0,1] – to which, in the expert’s opinion, this

value satisfies the given property (e.g., is small).

Such a function m(x) is called a membership function.

What are the shapes of membership functions: a brief history. During the first
few decades of fuzzy research, many researchers tried to empirically capture the
shape of the membership function. However, it turned out that in most practical
applications, the results of using fuzzy techniques do not depend much on this shape.
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2 Olga Kosheleva and Vladik Kreinovich

As a result, most applications of fuzzy techniques use the simplest shapes: triangular
and trapezoid.

However, in some applications, capturing the exact shape is important [8]. Also,
while it may not be very useful in other applications, finding the right shape is
interesting from the viewpoint of understanding human reasoning – an area that has
led to many breakthroughs in computing.

So what are these shapes? So what are the shapes of membership functions? A
large amount of empirical data about shapes of membership function has been sum-
marized in Chapter 5 of [8].

Usually, a membership function consists of segments in which it is either constant
0, or constant 1, or increases from 0 to 1, or decreases from 1 to 0. As we have
mentioned, in most current applications, the behavior of m(x) on each non-constant
segment is described by a linear function. However, empirical shapes are different. It
turns out that empirical shapes are well described by smooth (differentiable) piece-
wise quadratic functions.

In this approximation, on a segment [a,c] on which the function increases from
0 to 1:

• we start with a quadratic function m1(x) for which m1(a) = m′
1(a) = 0, where

m′
1(x), as usual, denotes the derivatives;

• we continue, at some intermediate point b, with a quadratic function m2(x) for
which m2(c) = 1 and m′

2(c) = 0; and
• the transition from m1(x) to m2(x) is smooth: m1(b) =m2(b) and m′

1(b) =m′
2(b).

-

6
m(x)

xcb
a

1

Why these shapes? A natural question is: why these shapes? In this paper, we
provide a possible explanation for these emprical shapes.
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2 Our explanation

Preliminary comment. The numerical values of the quantity x depend on the choice
of the measuring unit and on the choice of the starting point. If we change the
measuring unit to a new one which is λ times smaller and then the starting point to
the one that is v value smaller, we get a new numerical value λ · x+ v. A classical
example of such a transformation is the transformation of temperature from the
metric Celsius scale (C) to the US-used Fahrenheit (F) scale: tF = 1.8 · tC +32.

By using such a linear transformation, we can always transform a given interval
[a,c] into [0,1]: this can be done by the transformation with

λ =
1

c−a
and v =− a

c−a
.

Thus, without losing generality, we can consider only increasing segments m(x)
located in the interval [0,1] for which the membership function increases from
m(0) = 0 to m(1) = 1.

Similarly, decreasing segments can be transformed into increasing ones if we
change the sign of the quantity x. This transformation also makes sense in many
practical situations: e.g., we can consider gain instead of loss and vice versa. Be-
cause of this possibility, in the following text, we will only consider increasing seg-
ments for which m(0) = 0 and m(1) = 1.

From the decision making viewpoint, what is the meaning of m(1) = 1 and
m(0) = 0? The ultimate objective of our knowledge is to make appropriate deci-
sions. From this viewpoint, the fact that for x = 1, we have m(x) = 1, means, in
effect, that for x = 1, we have a decision that perfectly fits this input.

Similarly, the fact that for x = 0, we have m(x) = 0 means that the perfect-for-
(x = 1) decision is absolutely inappropriate for x = 0. This, in turn, usually means
that we have n(x) = 1 for some other membership function, i.e., that there is some
other decision that works perfectly well when x is exactly equal to 0.

From this viewpoint, what is the meaning of m(x) for x between 0 and 1? In
these terms, for each value x from the interval [0,1], the degree m(x) can be viewed
as a degree to which:

• the 1-decision – i.e., the decision that is perfect when the value of the quantity
is 1 – is appropriate for this value x,

• as opposed to the alternative 0-decision, the decision that is perfect when the
value of the quantity is 0.

The value m(x) must be determined by the corresponding losses. When the value
x is different from 0 and 1, neither the 1-decision nor the 0-decision are perfect.
Whichever of these two decisions we pick, there will be losses – in comparison to
the ideal situation when the available decision perfectly fits the value of the corre-
sponding quantity. So, the degree m(x) should be determined by these two losses:

• the loss L0(x) corresponding to using the 0-decision, and
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• the loss L1(x) corresponding to using the 1-decision.

In other words, m(x) = F(L0(x),L1(x)) for some function F(y,z) of two variables.

The degree m(x) should not depend on the measuring unit for losses. Like many
other quantities, we can describe losses in different units. If we are talking about
monetary losses, we can use US dollars, Euros, etc. If we replace the original mon-
etary unit with a new unit which is λ times smaller, then the numerical values of
all the losses will multiply by λ : we will get λ ·L0(x) and λ ·L1(x) instead of the
original values L0(x) and L1(x).

The choice of a monetary unit is a question of convenience. Our decisions –
and related values m(x) – should not depend on the choice of a monetary unit: the
value F(y,z) corresponding to the original monetary unit should be the same as the
decision F(λ · y,λ · z) corresponding to the new units. In other words, for all y, z,
and λ , we shall have

F(y,z) = F(λ · y,λ · z). (1)

So, the value m(x) must depend only on the ratio of the two losses. Let us show
that the equality (1) implies that the value F(y,z) is uniquely determined by the ratio
y/z, i.e., that the value m(x) depends only on the ratio of the two losses.

Indeed, for any y and z, we can take λ = 1/z. For this λ , the formula (1) takes the

form F(y,z) = F(y/z,1), i.e., the form F(y,z) = G(y/z), where we denoted G(t) def
=

F(t,1). For y = L0(x) and z = L1(x), this means that

m(x) = G(t), where t def
=

L0(x)
L1(x)

. (2)

Let us use the fact that we have two meaningful 1-D scales to describe the de-
cision situation. The fact that the value m(x) is uniquely determined by the ratio of
two losses means that we have two 1-D scales to describe the decision situation:

• the scale in which the situation is described by the degree m(x) – that can take
any value from the interval [0,1], and

• the scale in which the situation is described the ratio of two losses – the ratio that
can take value from 0 to infinity.

Both are meaningful scales, with a meaningful transformation between them –
meaningful as opposed to a generic mathematical transformation that may not any
meaningful interpretation with respect to our decision making situation. We may
have other meaningful scales and meaningful transformations. For example, we can
apply a linear transformation and us degrees not from 0 to 1, but from −1 to 1 or
from 0 to 5. Let us consider the class of all possible meaningful transformations.

If we have a meaningful transformation from scale A to scale B, then an inverse
transformation – from scale B to scale A – should also be meaningful. Similarly,
if we have a meaningful transformation from scale A to scale B and a meaningful
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transformation from scale B to scale C, then the composition of these two transfor-
mations is a meaningful transformation from scale A to scale C. Thus, the class of
all possible meaningful transformations should be closed under taking the inverse
and under taking the composition. In mathematics, classes with this property are
known as transformation groups.

Another reasonable requirement on this class is that, since the main objective
of fuzzy techniques in general is to use computers, we want all meaningful trans-
formations to be implementable on a computer. In a single computer, we can only
store finitely many numbers. Thus, the class of all transformations that can be im-
plemented on a computer must depend on finitely many parameters. In mathemati-
cal terms, this means that this class (i.e., this transformation group) must be finite-
dimensional. So, we are looking for finite-dimensional transformation groups that
contain all linear transformations.

Interestingly, there is a full classification of all such transformation groups –
including not only the 1-D case when we are talking about functions from real
numbers to real numbers, but also multi-D case when we are talking about trans-
formations of a multi-D space. This classification result was conjectured by Nor-
bert Wiener, the father of cybernetics (see [12]). Wiener’s conjecture was proven in
[3, 10]. In particular, for 1-D transformations, the classification result says that all
meaningful transformations must be fractional-linear, i.e., they must have the form

m(x) = G(t) =
c0 + c1 · t
c2 + c3 · t

, (3)

for some coefficients ci.

Comment. The proof of the general multi-D classification is lengthy and compli-
cated, but sincd, for our purposes, we are interested only in the 1-D case, it should
be mentioned that for this case, a much shorter and simpler proof is possible; see,
e.g., [6].

So what is the relation between m(x) and the ratio of losses? For x = 0, there is
no loss in using 0-decision, so L0(x) = 0 and the ratio t is equal to 0. In this case,
there is no sense in using 1-decision, so we should have m(0) = 0. So, for t = 0,
the formula (3) should lead to G(0) = 0. Substituting the expression (3) into this
equality, we conclude that c0 = 0, i.e., that

m(x) = G(t) =
c1 · t

c2 + c3 · t
. (4)

For x = 1, there is no loss in using 1-decision, so L1(x) = 0 and thus, the ratio t is
equal to infinity. For x = 1, there is no sense in using 0-decision, so we should have
m(1) = 1. So, for t = ∞, the formula (3) should lead to G(∞) = 1.

Due to G(∞) = 1 ̸= 0, we cannot have c1 = 0, since if c1 = 0, we would have
G(t) = 0 for all t. Since c1 ̸= 0, we can divide both the numerator and the denomi-
nator of the expression (4) by c1 and get a simplified formula
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m(x) = G(t) =
t

c′2 + c′3 · t
, (5)

where we denoted c′i
def
= ci/c1. For t →∞, the expression (5) tends to 1/c′3, so G(∞)=

1 implies that 1/c′3 = 1, i.e., c′3 = 1. Hence, the formula (5) takes the form

m(x) = G(t) =
t

t + c′2
. (6)

Substituting t = L0(x)/L1(x) into this formula and multiplying both the numerator
and the denominator by L1(x), we get the following expression:

m(x) =
L0(x)

L0(x)+ c′2 ·L1(x)
. (7)

How can we estimate the losses? Due to the formula (7), in order to find the exact
expression for the membership function, we need to find out how the losses Li(x)
depend on the value x. A natural idea – which is actively and successfully used in
physics (see, e.g., [2, 11]) is to expand the unknown dependence in Taylor series
and, as a good first approximation, to use the first non-trivial term in this expansion.

Let us first look for the expression for the loss function L0(x) that describes losses
caused by using 0-decision. First we expand this function in Taylor series:

L0(x) = a0 +a1 · x+a2 · x2 + . . . (8)

By the definition of 0-decision, when x is equal to 0, this decision is perfect, there
is no loss. So, we must have L0(0) = 0. For the formula (8), this condition implies
that a0 = 0.

For x = 0, the loss function L0(x) attains its minimum value 0. Thus, for x = 0,
the derivative of this function is equal to 0: L′

0(0) = 0. For the formula (8), we have
L′

0(x) = a1 + 2a2 · x+ . . ., so the fact that L′
0(0) = 0 implies that a1 = 0. Thus, the

first non-zero term in the expansion (8) is quadratic. So, in the above-mentioned first
approximation, we have

L0(x) = a2 · x2, (9)

for some value a2.
Similarly, we can expend the loss function L1(x) (corresponding to using 1-

decision) in Taylor series around the point x = 1:

L1(x) = b0 +b1 · (x−1)+b2 · (x−1)2 + . . . (10)

For x = 1, there is no loss, so L1(1) = 0 and thus, b0 = 0. For x = 1, the loss function
L1(x) attains its minimum value 0. Thus, for x = 1, the derivative of this function
is equal to 0: L′

1(1) = 0. Thus, we get b1 = 0. Thus, the first non-zero term in the
expansion (10) is quadratic. So, in the first approximation, we have
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L1(x) = b2 · (1− x)2, (11)

for some value b2.

Towards the final expression for the membership function. Substituting the ex-
pressions (9) and (11) into the formula (7), we get

m(x) =
a2 · x2

a2 · x2 +a′3 ·b2 · (1− x)2 . (12)

We can simplify this expression if we divide both the numerator and the denominator
of this expression by a2. Then we get

m(x) =
x2

x2 +α · (1− x)2 , (13)

where we denoted c def
= a′3 ·b2/a2.

This expression has the right behavior for x ≈ 0 and x ≈ 1. Let us show that this
expression satisfies the empirical conditions described in [8]. Indeed, this expression
is smooth for all x ∈ (0,1), and satisfies the conditions m(0) = 0 and m(1) = 1.

For small x, this expression has the form

m(x) =
x2

α −2α · x+2 · x2 = α
−1 · x2 +o(x2), (14)

so we have m′(0) = 0.
To describe the asymptotic behavior of the expression (13) for x ≈ 1, we can take

into account that

1−m(x) = 1− x2

x2 +α · (1− x)2 =
α · (1− x)2

x2 +α · (1− x)2 . (15)

Thus, we have

m(x) = 1− (1−m(x)) = 1− α · (1− x)2

x2 +α · (1− x)2 . (16)

For x close to 1, we can reformulate this expression in terms of the difference d def
=

1−x, for which x = 1−d. Substituting x = 1−d into the formula (16), we conclude
that

m(x) = 1− α ·d2

(1−d)2 +α ·d2 = 1− α ·d2

1−2 ·d +(1+α) ·d2 =

1−α ·d2 +o(d2). (17)

So, we have m′(1) = 0 as well.
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What about the general case? The formula (13) corresponds to the interval [0,1]
on which the membership function is increasing. By using the above-mentioned
linear transformation relating the interval [0,1] with a generic interval [a,c], we can
conclude that on an interval [a,c], the increasing membership function takes the
form

m(x) =
(x−a)2

(x−a)2 +β · (c− x)2 (18)

for some value β > 0. Similarly, we can conclude that an increasing membership
function takes the form

m(x) =
(c− x)2

(c− x)2 +β · (x−a)2 . (19)

Conclusion. So, our conclusion is that natural requirements indeed lead to the ex-
pressions (18) and (19) for the membership function, expression that fits very well
with the empirical data.
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