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How to Gauge Inequality and Fairness:
A Complete Description of All Decomposable
Versions of Theil Index

Saeid Tizpaz-Niari, Olga Kosheleva, and Vladik Kreinovich

Abstract In general, in statistics, the most widely used way to describe the differ-
ence between different elements of a sample if by using standard deviation. This
characteristic has a nice property of being decomposable: e.g., to compute the mean
and standard deviation of the income overall the whole US, it is sufficient to com-
pute the number of people, the mean, and the standard deviation over each state; this
state-by-state information is sufficient to uniquely reconstruct the overall standard
deviation. However, e.g., for gauging income inequality, standard deviation is not
very adequate: it provides too much weight to outliers like billionaires, and thus,
does not provide us with a good understanding of how unequal are incomes of the
majority of folks. For this purpose, Theil introduced decomposable modifications of
the standard deviation that is now called Theil indices. Crudely speaking, these in-
dices are based on using the logarithm instead of the square. Other researchers found
other decomposable modifications that use power law. In this paper, we provide a
complete description of all decomposable versions of the Theil index. Specifically,
we prove that the currently known functions are the only ones for which the corre-
sponding versions of the Theil index are decomposable – so no other decomposable
versions are possible. A similar result was previously proven under the additional
assumption of linearity; our proof shows that this result is also true in the general
case, without assuming linearity.
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1 Formulation of the Problem

Need to gauge inequality and fairness: a general problem. While more and more
decisions are made using AI, it becomes more and more important to make sure
that these decisions are fair, and that these decisions do not result in an increase in
inequality. To be able to do that, we need to gauge inequality and fairness.

In general, if we have n people with incomes x1, . . . ,xn, then, based of these
values, we can find the average income

x def
=

x1 + . . .+ xn

n
.

How can we gauge the inequality, the fact that some incomes differ from the aver-
age: some are larger and some are smaller?

Statistics’ answer to this question. In statistics, the usual way to measure the de-
viation from the mean is by using sample variance

V =
1
n
·

n

∑
i=1

(xi − x)2

or its square root, standard deviation σ
def
=

√
V ; see, e.g., [3].

The standard deviation σ provides the absolute value of the deviation, in the same
monetary units as the income itself. To get the relative values – e.g., in percents –
we can divide σ by the mean x. The resulting ratio is known as the coefficient of
variation

CV def
=

σ

x
=

√
1
n
·

n

∑
i=1

(xi − x)2

x
.

We can somewhat simplify this expression if we divide both the numerator and the
denominator by the mean x. Then we get the following simpler expression:

CV =

√
1
n
·

n

∑
i=1

(ri −1)2,

where we denoted
ri

def
=

xi

x
.

Good news: standard deviation is decomposable. Often – e.g., after each census
– we need to process a lot of information. Nowadays, it is possible – and done –
to move the information about all 300 million people to a single location and to
process this information. But even now, this is not computationally easy. In the past,
it was not possible.
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However, it was always possible to compute the mean and the standard devia-
tion for income – and for all other characteristics – since these characteristics are
decomposable in the following sense.

Suppose that the sample N = {1, . . . ,n} is divided into several disjoint sub-
samples N = N1 ∪ . . .∪Nm, so that N j ∩N j′ = /0 for all j ̸= j′. Suppose that for
each sub-sample N j, we know the number of elements n j and the mean

x j =
1
n j

· ∑
i∈N j

xi.

Then this information is sufficient to compute the overall mean, there is no need to
also use the original values xi. Indeed, the overall mean is the ratio of the overall sum
and the overall size n of the sample. The overall size n of the sample can be obtained
by adding the numbers of elements in each sub-sample: n = n1 + . . .+nm. The sum
of all xi’s can be obtained by adding the sums corresponding to all sub-samples:

n

∑
i=1

xi =
m

∑
j=1

∑
i∈N j

xi.

Each such sub-sample sum is equal to n j · x j. Thus, we have

n

∑
i=1

xi =
m

∑
j=1

n j · x j,

and so:
x =

n1 · x1 + . . .+nm · xm

n1 + . . .+nm
.

Similarly, if for each sub-sample, we know the number of elements, the mean,
and the variance over each sub-sample, then we can reconstruct the overall num-
ber of elements, mean, and the variance. Indeed, it is known that the variance can
be represented in the equivalent form V = M − (x)2, where M denotes the second
sample moment

M def
=

n

∑
i=1

x2
i .

If we know the mean x and the variance V , we can therefore reconstruct the second
moment as M =V +(x)2. Similarly, if we know the variance Vj and mean x j for each
sub-sample, we can reconstruct each sub-sample second moment as M j =Vj+(x j)

2.
Similarly to the case of the mean, we can reconstruct the overall second moment by
using the following formula:

M =
n1 ·M1 + . . .+nm ·Mm

n1 + . . .+nm
.

Then, we can reconstruct V as M+(x)2.
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Because of the decomposability property, it is possible to easily process the cen-
sus results as follows:

• for each town, we compute the three values – the number of people, the mean,
and the variance – over this town;

• then, for each state, we take the three values corresponding to each town from
this state, and combine them into the three values corresponding to the state;

• finally, we take the three values corresponding to each state, and combine them
into the desired three values describing the overall census results.

Limitations of variance. The problem with variance – or, equivalently, with coeffi-
cient of variation – is that it places too much weight on huge differences xi − x. For
example, for incomes, it provides a good understanding of how many billionaires
and multi-millionaires we have, but their contribution hides an important informa-
tion of how equal (or how unequal) are the incomes of the vast majority of people.

It is therefore desirable to come up with decomposable measures that are less
dependent on the some outliers.

Theil index: original forms. Computation of the coefficient of variation is based
on computing the sample mean and the value

I def
=

1
n
·

n

∑
i=1

f (ri), (1)

for a smooth function f (r) = (r−1)2. A natural idea is to use the same formula (1),
but with some other smooth – e.g., twice differentiable – function f (r).

In the 1960s, a Dutch econometrician Henri Theil noticed that if we choose
f (r) = ln(r) or f (r) = r · ln(r), then we still get decomposable indices: in the sense
that:

• if we know the number of elements n j, the mean x j, and the value I j of the index
(1) for each sub-sample,

• then, based on this information, we can uniquely reconstruct the number of el-
ements n, the mean x, and the index I corresponding the whole sample; see,
e.g., [6].

Comment. Similar formulas – with a properly defined individual discrimination in-
stead of the income – have been successfully used to detect (and debug) fairness
defects in socioeconomic applications of deep neural networks [2].

Other decomposable versions of the Theil index. Other decomposable versions
of the Theil index were described in the paper [5]: they correspond to f (r) = rα for
any a (or, to be more precise, to f (r) = rα −1).

Natural question. A natural question is: to provide a complete description of all
smooth functions f (r) for which the index (1) is decomposable.

What is known. A partial answer to this question was given in [4] – under an ad-
ditional condition that the formula describing of the index of the sample in terms
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of indices of sub-samples is linear. It turns out that, under this assumption, the al-
ready proposed functions ln(r), r · ln(r), and ra are the only ones for which the
corresponding index is decomposable.

The remaining question. The remaining question is: what will happen in the gen-
eral case, when we do not make this linearity assumption?

What we do in this paper. In this paper, we provide a complete description of func-
tions f (r) for which the index (1) is decomposable – without making an additional
assumption that decomposability is described by a linear formula. It turns out that
even without this assumption, no other cases of decomposability appear. In other
words, the already proposed functions ln(r), r · ln(r), and ra are the only ones for
which the corresponding index is decomposable.

To summarize:

• it is known that these functions lead to a decomposable index;
• we prove that, vice versa, if a function leads to a decomposable index, then this

function is of one of the three above types – and thus, no other function leads to
a decomposable index.

2 Main result

Definition 1. We say that a twice differentiable function f (r) is decomposable if the
following property holds: For each tuple x1, . . . ,xn of positive real numbers, and for
each subdivision of the set N = {1, . . . ,n} into disjoint subsets N = N1 ∪ . . .∪Nm
(i.e., subsets for which N j ∩N j′ = /0 for all j ̸= j′):

• if for each subset j, we know the number of elements n j in this subset, the mean
x j over this subset, and the corresponding value I j of the index (1):

I j =
1
n j

· ∑
i∈N j

f
(

xi

x j

)
,

• then, based on this information, we can uniquely reconstruct the overall number
of elements n, the overall mean x, and the overall value I of the index (1):

I =
1
n
·

n

∑
i=1

f
(xi

x

)
.

Our main result is to describe all decomposable functions. To formulate our result,
we need the following auxiliary definition.

Definition 2. We say that two functions f (r) and g(r) are equivalent if there exist
real numbers a ̸= 0, b and c for which, for all r, we have g(r) = a · f (r)+b · x+ c.

Comment. If two functions are equivalent, then the corresponding indices I(g) and
I( f ) are related as follows:
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I(g) =
1
n
·

n

∑
i=1

g(ri) = a · 1
n
·

n

∑
i=1

f (ri)+b ·
n

∑
i=1

ri + c ·
n

∑
i=1

1,

where we denoted
ri

def
=

xi

x
.

Here,
n

∑
i=1

ri =
n

∑
i=1

xi

x
=

1
x
·

n

∑
i=1

xi =
x1 + . . .+ xn
x1 + . . .+ xn

n

= n,

and
n

∑
i=1

1 = n.

Thus,
Ig = a · I f +b ·n+ c ·n.

So, if we know I f , we can uniquely reconstruct Ig, and vice versa. In this sense, the
indices corresponding to functions f (r) and g(r) are indeed equivalent.

Now, we are ready to formulate our main result.

Theorem. A function f (r) is decomposable if and only if it is equivalent to one of
the following functions: ln(r), r · ln(r), and rα for some α .

3 Proof

1◦. It is known that functions from all the three types are decomposable. So, to
complete our proof, we need to prove that if a function f (r) is decomposable, then it
is indeed equivalent to one of the functions listed in the formulation of out theorem.

Comment. In this proof, we use several mathematical ideas from [1].

2◦. If a subset N j consists of a single element x, then its number of elements is
n j = 1, its mean is x j = x, and – since here xi = x – its index (1) is equal to f (1).

3◦. Let us pick some natural number n ≥ 4, and let us consider a tuple (x1, . . . ,xn,x)
consisting of n+ 1 positive numbers for which the sum of the first n elements is
equal to n. For this tuple, the mean value is equal to

x =
x1 + . . .+ xn + x

n+1
=

n+ x
n+1

. (2)

Let us denote
λ

def
=

1
x
=

n+1
n+ x

. (3)

Then, by definition of λ , we have ri = λ · xi and thus, the index (1) is equal to
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I =
1

n+1
·

(
n

∑
i=1

f (λ · xi)+ f (λ · x)

)
. (4)

Let us consider a subdivision of this tuple into two subsets: N1 = {1, . . . ,n} and
N2 = {n+ 1}. For the subset N1, the mean x1 is equal to 1, so we have ri = xi and
thus, the index (1) is described by the formula

I1 =
1
n
·

n

∑
i=1

f (xi). (5)

For the subset N2, according to Part 2 of this proof, the mean is x2 = x and the index
is I2 = f (1).

For this subdivision, decomposability means that the value I – as described by
the formula (4) – is uniquely determined if we know I1 the sample size n, the mean
x1, and the values λ and x. The value

Sλ

def
=

n

∑
i=1

f (λ · xi), (6)

is equal to (n+1) ·I− f (λ ·x). Since x is uniquely determines by λ , we can conclude
that the value Sλ is also uniquely determined by values λ , I1, n, and x1. One can
check that, once we know n, then knowing I1 is equivalent to knowing

S1
def
=

n

∑
i=1

f (xi), (7)

since S1 is equal to n · I1. Similarly, once we know n, knowing x1 is equivalent to
knowing the sum x1 + . . .+ xn = n.

In other words, decomposability means that if for some other tuple y1, . . . ,yn, we
have the same values of the sum S1 and of the sum of n elements yi, we should have
the same value of the quantity Sλ . So, the following property must be satisfied:

• if we have
f (y1)+ . . .+ f (yn) = f (x1)+ . . .+ f (xn) (8)

and
y1 + . . .+ yn = x1 + . . .+ xn = n, (9)

• then we should have

f (λ · y1)+ . . .+ f (λ · yn) = f (λ · x1)+ . . .+ f (λ · xn). (10)

This property must hold for any λ that can be obtained by formula (3). For every
positive λ < 1+1/n, we can find an x > 0 for which the formula (3) holds: namely,
we can take

x =
n+1

λ
−n.
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Thus, the above property must be satisfied for all λ between 0 and 1+ 1/n. Let us
use this property to describe the function f (r).

4◦. Let us consider the values yi that are close to xi, i.e., for which, for some values
di, we have yi = xi + s ·di for some small s. For such yi, we have

f (yi) = f (xi + s ·di) = f (xi)+ f ′(xi) · s ·di +o(s).

Thus, the equality (8) takes the form

f ′(x1) · s ·d1 + . . .+ f ′(xn) · s ·dn +o(s) = 0.

If we divide both sides by s, by get an equivalent equality

f ′(x1) ·d1 + . . .+ f ′(xn) ·dn +o(1) = 0. (11)

Similarly, the equalities (9) and (10) take the form

d1 + . . .+dn +o(1) = 0, (12)

and
f ′(λ · x1) ·d1 + . . .+ f ′(λ · xn) ·dn +o(1) = 0. (13)

So, in the limit s → 0, we conclude that for each vector d = (d1, . . . ,dn), if we have

f ′(x1) ·d1 + . . .+ f ′(xn) ·dn = 0 (14)

and
d1 + . . .+dn = 0, (15)

then we should have

f ′(λ · x1) ·d1 + . . .+ f ′(λ · xn) ·dn = 0. (16)

Each of the expressions (14)-(16) is a scalar (dot) product of the vector d with,
correspondingly, vectors a def

= ( f ′(x1), . . . , f ′(xn)), e def
= (1, . . . ,1), and

b def
= ( f ′(λ · x1), . . . , f ′(λ · xn)).

The scalar product of two vectors is 0 if and only if these two vectors are or-
thogonal. Thus, we conclude that every vector d which is orthogonal to both a and
e is also orthogonal to b. This means that the vector b must belong to the plane
generated by a and e – otherwise, we can decompose b it into its projection pra,e(b)
to this plane and the remainder R = b− pra,e(b) which is orthogonal to this plane.
This remainder is orthogonal to a and e but not to b – which would contradict to the
property described in the beginning of this paragraph.

The fact that b belongs to the plane generated by the vector a and b means that,
for some real numbers A and B, we have b = A · a+B · e, i.e., in terms of vector
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components, that
f ′(λ · xi) = A · f ′(xi)+B. (17)

5◦. In general, the coefficient A and B depend on λ and on the initial tuple
(x1, . . . ,xn). So, strictly speaking, we should write

f ′(λ · xi) = A(λ ,x1, . . . ,xn) · f ′(xi)+B(λ ,x1, . . . ,xn). (18)

Let us show that A and B do not depend on x1. Indeed, for i = 2 and i = 3, we get

f ′(λ · x2) = A(λ ,x1, . . . ,xn) · f ′(x2)+B(λ ,x1, . . . ,xn); (19)

f ′(λ · x3) = A(λ ,x1, . . . ,xn) · f ′(x3)+B(λ ,x1, . . . ,xn). (20)

Subtracting (20) from (19) and dividing both sides of the resulting equation by the
coefficient at A(λ ,x1, . . . ,xn), we conclude that

A(λ ,x1, . . . ,xn) =
f ′(λ · x2)− f ′(λ · x3)

f ′(x2)− f ′(x3)
. (21)

So, unless the derivative is a constant – and thus, the function f (x) is linear – the
right-hand side depends only on λ , x2, and x3 (and does not depend on x1) and thus,
the left-hand side – i.e., the value A(λ ,x1, . . . ,xn) – should also only depend on x2
and x3. So, we will write A(λ ,x1, . . . ,xn) = A(λ ,x2,x3).

From (19), we can now conclude that

B(λ ,x1, . . . ,xn) = f ′(λ · x2)−A(λ ,x2,x3) · f ′(x2). (22)

Here too, the right-hand side does not depend on x1, so the left-hand side – which
is B(λ ,x1, . . . ,xn) – also should not depend on x1. Thus, indeed, neither A nor B
depend on x1. Similarly, we can conclude that A and B cannot depend on x2, on x3,
etc. – i.e., that A and B only depend on λ . So, the formula (18) takes the following
form:

F(λ · r) = A(λ ) ·F(r)+B(λ ), (23)

where we denoted F(r) def
= f ′(r), and the formulas (21) and (22) take the form

A(λ ) =
f ′(λ · x2)− f ′(λ · x3)

f ′(x2)− f ′(x3)
(24)

and
B(λ ) = f ′(λ · x2)−A(λ ) · f ′(x2). (25)

6◦. We assumed that the function f (r) is twice differentiable. Thus, its derivative
F(r) = f ′(r) is differentiable and so, due to formulas (24) and (25), the functions
A(λ ) and B(λ ) are differentiable too. So, we can differentiate both sides of (23) by
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λ , and get x ·F ′(λ · r) = A′(λ ) ·F(r)+B′(λ ). In particular, for λ = 1, we get

r · dF
dr

= a0 ·F +b0.

We can separate the variables if we multiply both sides by dr and divide both sides
by r and a0 ·F +b0. Then, we get

dF
a0 ·F +b0

=
dr
r
. (26)

7◦. If a0 = 0, then, integrating both sides, we get b−1
0 ·F = ln(r)+C, where C is

an integration constant, i.e., F(x) = f ′(r) = b0 · ln(r) + b0 ·C. Integrating again,
we conclude that f (r) = b0 · r · ln(r)+ const · x+ const, i.e., that f (r) is equivalent
to r · ln(r).

8◦. If a0 ̸= 0, then for G def
= F +b0/a0, we get

dG
a0 ·G

=
dr
r
.

Integrating both sides, we get a−1
0 · ln(G) = ln(r)+C, so ln(G) = a0 · ln(r)+a0 ·C.

Applying exp(x) to both sides, we conclude that G(r) = const · ra0 , thus F(r) =
G(r)−b0/a0 has the form f ′(r) = F(r) = const · ra0 + const.

To get f (r), we need to integrate one more time. When a0 =−1, we get f (r) =
const · ln(r)+const ·r+const, i.e., we get a function equivalent to ln(r). When a0 ̸=
−1, we get f (r) = const · ra0+1 + const · x+ const, i.e., we get a function equivalent
to rα for α = a0 +1.

The theorem is proven.
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