
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

1-1-2024

Every Feasibly Computable Reals-to-Reals Function Is Feasibly Every Feasibly Computable Reals-to-Reals Function Is Feasibly

Uniformly Continuous Uniformly Continuous

Olga Kosheleva
The University of Texas at El Paso, olgak@utep.edu

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Sciences Commons, and the Mathematics Commons

Comments:

Technical Report: UTEP-CS-24-01

Recommended Citation Recommended Citation
Kosheleva, Olga and Kreinovich, Vladik, "Every Feasibly Computable Reals-to-Reals Function Is Feasibly
Uniformly Continuous" (2024). Departmental Technical Reports (CS). 1857.
https://scholarworks.utep.edu/cs_techrep/1857

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1857?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1857&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Every Feasibly Computable Reals-to-Reals
Function Is Feasibly Uniformly Continuous

Olga Kosheleva and Vladik Kreinovich

Abstract It is known that every computable function is continuous; moreover, it is
computably continuous in the sense that for every 𝜀 > 0, we can compute 𝛿 > 0 such
that 𝛿-close inputs lead to 𝜀-close outputs. It is also known that not all functionswhich
are, in principle, computable, can actually be computed: indeed, the computation
sometimes requires more time than the lifetime of the Universe. A natural question
is thus: can the above known result about computable continuity of computable
functions be extended to the case when we limit ourselves to feasible computations?
In this paper, we prove that this extension is indeed possible.

1 What We Do in This Paper

What is known. It is known that every computable reals-to-reals function is con-
tinuous; moreover, it is computably uniformly continuous on each bounded region;
this was first proven in [3, 4] in the late 1950s; see, e.g., [5].

Why do we need to go beyond this result. Since the 1960s, we know that not ev-
erything that is, in principle, computable can actually be computed: if computations
require more time than the lifetime of the Universe, we clearly cannot actually per-
form these computations. A special notion of feasible computations was introduced
to denote computations that are, in principle, practically possible; see, e.g., [1, 2].
At present, the usual formalization of this notion is by equating feasible with poly-

nomial time: an algorithm 𝑌 = 𝑓 (𝑋) is feasible if for each input 𝑋 , its computation
time is bounded by a polynomial 𝑃(len(𝑋)) of the length of the inputs.

Olga Kosheleva
Department of Teacher Education, University of Texas at El Paso
500 W. University, El Paso, Texas 79968, USA, e-mail: olgak@utep.edu

Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso
500 W. University, El Paso, Texas 79968, USA, e-mail: vladik@utep.edu

1

2 Olga Kosheleva and Vladik Kreinovich

It is desirable to see if the above result can be extended to the case when we limit
ourselves to feasible computations.

What we do in this paper. In the paper, we prove that the above continuity result
can indeed be extended to the feasible case.
The structure of this paper is as follows: in Section 2, we provide a brief re-

minder of what are computable functions and how we can formulate and prove
the corresponding result. The desired extension to the feasible case is provided in
Section 3.

2 Computable Reals-to-Reals Functions and Related Result:
A Brief Reminder

What do we mean by a computable reals-to-reals function: towards a natural
definition. By the very meaning of the word “computable", a computable real-
valued function 𝑓 (𝑥1, . . . , 𝑥𝑘) of 𝑘 real-valued inputs is a function whose values can
be computed based on the inputs. Such functions are used to process data 𝑥1, . . . , 𝑥𝑘 .
The goal of this data processing is to estimate the value of some other quantity 𝑦

which is related to the quantities 𝑥1, . . . , 𝑥𝑛 by the formula 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑘). For
example, we want to estimate tomorrow’s temperature 𝑦 at some spatial location
based on the current values 𝑥1, . . . , 𝑥𝑘 of different meteorological quantities at this
and nearby locations.
However, in the ideal world, data are the actual values of the corresponding

physical quantities. Thewaywe learn the values 𝑥𝑖 is bymeasurement: either by direct
measurements, or by processing the results of appropriate auxiliary measurements.
It is therefore important to take into account that measurements are never absolutely
accurate, they always have some accuracy – often described by the number of
digits 𝑚 in the corresponding binary representation, so that the accuracy is 2−𝑚. In
other words, instead of knowing the actual values 𝑎1, . . . , 𝑎𝑘 of the corresponding
quantities, we only know the measurement results 𝑥1, . . . , 𝑥𝑘 which are 2−𝑚-close to
these values, i.e., for which |𝑥𝑖 − 𝑎𝑖 | ≤ 2−𝑚 for all 𝑖 from 1 to 𝑘 . Since the known
values 𝑥𝑖 are only approximations to the actual values 𝑎𝑖 , the result 𝑓 (𝑥1, . . . , 𝑥𝑘) of
data processing is only an approximation to the desired ideal value 𝑓 (𝑎1, . . . , 𝑎𝑘).
We want to make sure that the result 𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑘) of data processing is

close to the desired (ideal) value 𝑏 = 𝑓 (𝑎1, . . . , 𝑎𝑘), and we need to know what is
the accuracy of the estimate 𝑦, i.e., how close is 𝑦 to the desired value 𝑏: if we do
not know this accuracy, i.e., if the difference 𝑦 − 𝑏 can be arbitrarily large, then the
estimate 𝑦 is useless – since it does not impose any restrictions on 𝑎 at all.
In practice, we want to estimate 𝑏 with some given accuracy. For example, for

temperature, with the accuracy of a few degrees. It may be that the existing accuracy
with which we know 𝑥𝑘 is not enough to achieve the desired accuracy of 𝑦 – this
happens when the sensors are not very accurate. In this case, to get the value 𝑏 with
the desired accuracy, we need to perform more accurate measurements – and we

Every Feasibly Computable Function Is Feasibly Continuous 3

need to make sure for some accuracy of measuring the inputs, we will get the desired
accuracy in 𝑦.
Also, it is important to take into account that in practice, all physical quantities are

bounded: speeds are bounded by the speed of light, distances on Earth are bounded
by the size of the Earth, etc. So, it makes sense to consider functions defined on a
box

[𝑎1, 𝑎1] × . . . × [𝑎
𝑘
, 𝑎𝑘] .

Thus, we arrive at the following definition.

What are computable reals-to-reals function: natural definition and the known
result. Let us start with the definition.

Definition 1. We say that a reals-to-reals function 𝑓 (𝑎1, . . . , 𝑎𝑘) defined on a box

[𝑎1, 𝑎1] × . . . × [𝑎
𝑘
, 𝑎𝑘]

is computable if there exists an algorithm that, for each tuple 𝑎 = (𝑎1, . . . , 𝑎𝑘) of
real numbers, given a natural number 𝑛, computes a 2−𝑛-approximation to the value
𝑏 = 𝑓 (𝑎1, . . . , 𝑎𝑘). In addition to the usual computational steps, this algorithm can
ask, for each 𝑖 and for each natural number 𝑗 , for a 2− 𝑗 -approximation to the value
𝑎𝑖 .

Definition 2. We say that a function 𝑓 (𝑎1, . . . , 𝑎𝑘) is computably uniformly con-
tinuous if there is an algorithm that, given a natural number 𝑛, computes a natural
number 𝑚 for which, if |𝑎𝑖 − 𝑎′

𝑖
| ≤ 2−𝑚 of all 𝑖, then

| 𝑓 (𝑎1, . . . , 𝑎𝑘) − 𝑓 (𝑎′1, . . . , 𝑎
′
𝑘) | ≤ 2

−𝑛.

Proposition 1. Every computable function is computably uniformly continuous.

Proof. Let 𝑓 (𝑎1, . . . , 𝑎𝑘) be a computable function, and let 𝑛 be given. Let us show
how we can now compute the desired value 𝑚.
For this purpose, for each 𝑚 = 0, 1, 2, . . ., we consider all possible tuples 𝑎 =

(𝑎1, . . . , 𝑎𝑘) in which each all the values 𝑎𝑖 are proportional to 2−𝑚. To each such
tuple, we apply the algorithm 𝑓 (𝑎1, . . . , 𝑎𝑛). If for one of these tuples, the algorithm
for computing the function 𝑓 (𝑎1, . . . , 𝑎𝑛) asks for a 2− 𝑗 -approximation to one of the
values 𝑎𝑖 with 𝑗 > 𝑚, we stop computations related to this 𝑚, and repeat the same
procedure for the next value 𝑚, etc.
Let us prove that this procedure stops, i.e., that we will get 𝑚 for which computa-

tions for each such tuple will finish without asking for more accurate approximations.
For such 𝑚, the algorithm asks for only 2− 𝑗 -approximations with 𝑗 ≤ 𝑚 – and for
any tuple (𝑎1, . . . , 𝑎𝑘), these approximations can be made proportional to 2−𝑚.
Let us prove the existence of such 𝑚 by contradiction. Let us assume that no such

𝑚 exists. This means that for each 𝑚, there exists a tuple 𝑎(𝑚) for which providing
the 2−𝑚-approximations is not enough. All these tuples 𝑎(𝑚) belong to a bounded
box which is a compact set. It is known that from every sequence in a compact set we

4 Olga Kosheleva and Vladik Kreinovich

can extract a converging subsequence 𝑎(𝑠1), 𝑎(𝑠2), . . . with 𝑠 𝑗 → ∞. For the limit ℓ
of this subsequence, the tuples 𝑎(𝑠 𝑗) form the corresponding approximations. Thus,
for this limit tuple ℓ, the algorithm 𝑓 (𝑎1, . . . , 𝑎𝑚) will never stop:

• by definition of 𝑎(𝑠1), this algorithm cannot stop by using only 2−𝑠1 -
approximations;

• by definition of 𝑎(𝑠2), it cannot stop by using only 2−𝑠2 -approximations, etc.

This contradicts to our definition of a feasibly computable function, according to
which the function should be applicable to any tuple. This contradiction shows that
the desired value 𝑚 does exit. The proposition is proven.

3 New Result

Definition 3. We say that a reals-to-reals function 𝑓 (𝑎1, . . . , 𝑎𝑘) defined on a box

[𝑎1, 𝑎1] × . . . × [𝑎
𝑘
, 𝑎𝑘]

is feasibly computable if there exists an algorithm that, for each tuple (𝑎1, . . . , 𝑎𝑘)
of real numbers, given a natural number 𝑛, computes a 2−𝑛-approximation to the
value 𝑎 = 𝑓 (𝑎1, . . . , 𝑎𝑘) in time bounded by some polynomial of 𝑛. In addition to the
usual computational steps, this algorithm can ask, for each 𝑖 and for each natural
number 𝑗 , for a 2− 𝑗 -approximation to the value 𝑎𝑖 .

Definition 4. We say that a function 𝑓 (𝑎1, . . . , 𝑎𝑘) is feasibly uniformly continuous
if there is a feasible algorithm that, given a natural number 𝑛, computes a natural
number 𝑚 for which, if |𝑎𝑖 − 𝑎′

𝑖
| ≤ 2−𝑚 of all 𝑖, then

| 𝑓 (𝑎1, . . . , 𝑎𝑘) − 𝑓 (𝑎′1, . . . , 𝑎
′
𝑘) | ≤ 2

−𝑛.

Proposition 2. Every feasibly computable function is feasibly uniformly continuous.

Proof. By definition of a feasibly computable function, all the values 𝑗 – for which
the algorithm for computing this function requests for the 2− 𝑗 -approximation to the
inputs – must be computed in time bounded by some polynomial of 𝑛. Generating
each bit in the requested integer 𝑗 requires at least one computational step. This
means that the number of bits in 𝑗 cannot exceed 𝑃(𝑏(𝑛)), where 𝑏(𝑛) ≈ log2 (𝑛)
is the length of the number 𝑛 – i.e., the number of bits in the input 𝑚. Thus, if
for 𝑚 = 2𝑃 (𝑏 (𝑛)) , we know the 2−𝑚-approximation to 𝑎𝑖 , we can get answers to
all such questions and compute the value 𝑓 (𝑎1, . . . , 𝑎𝑘) for all possible inputs. So,
the function 𝑓 (𝑎1, . . . , 𝑎𝑘) is indeed feasibly uniformly continuous, for the value
𝑚 = 2𝑃 (𝑏 (𝑛)) that can be feasibly computed from 𝑛. The proposition is proven.

Every Feasibly Computable Function Is Feasibly Continuous 5

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), EAR-
2225395 (Center for Collective Impact in Earthquake Science C-CIES), and by the
AT&T Fellowship in Information Technology.
It was also supported by the program of the development of the Scientific-

Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478,
and by a grant from the Hungarian National Research, Development and Innovation
Office (NRDI).

References

1. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasibility of
Data Processing and Interval Computations, Kluwer, Dordrecht, 1998.

2. C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Massachusetts, 1994.
3. G. Tseytin, “Algorithmic operators in constructive complete separable metric spaces", Doklady

Akademii Nauk SSSR, 1959, Vol. 128, pp. 49–52 (In Russian).
4. G. Tseytin, “Algorithmic operators in constructive metric spaces", Trudy Matematicheskogo

Instituta im. Steklova, 1962, Vol. 67, pp. 295–361 (In Russian).
5. K. Weihrauch, Computable Analysis, Springer Verlag, Berlin, 2000.

	Every Feasibly Computable Reals-to-Reals Function Is Feasibly Uniformly Continuous
	Recommended Citation

	tmp.1711137604.pdf.eBZKp

