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From Type-2 Fuzzy to Type-2 Intervals and

Type-2 Probabilities

Vladik Kreinovich[0000−0002−1244−1650], Olga Kosheleva[0000−0003−2587−4209],
and Luc Longpré

University of Texas at El Paso, 500 W. University, El Paso, Texas 79968, USA,
vladik@utep.edu, olgak@utep.edu, longpre@utep.edu

Abstract. Our knowledge comes from observations, measurements, and
expert opinions. Measurements and observations are never 100% accu-
rate, there is always a di�erence between the measurement result and
the actual value of the corresponding quantity. We gauge the resulting
uncertainty either by an interval of possible values, or by a probability
distribution on the set of possible values, or by a membership function
that describes to what extent di�erent values are possible. The infor-
mation about uncertainty also comes either from measurements or from
expert estimates and is, therefore, also uncertain. It is important to take
such �type-2� uncertainty into account. This is a known idea in fuzzy,
where type-2 fuzzy is a well-known e�ective technique. In this paper, we
explain how a similar approach can be applied to type-2 intervals and
type-2 probabilities.

Keywords: Type-2 fuzzy · Type-2 intervals · Type-2 probabilities.

1 Introduction

Uncertainty is ubiquitous. What are the main objectives of science and en-
gineering?

� We want to know the current state of the world.
� We want to predict the future state of the world.
� We want to �nd out how to make the future state of the world better.

To describe the state of the world, we need to describe the values of the cor-
responding physical quantities. For example, in celestial mechanics, we need to
know the positions and velocities of all celestial bodies.

Similarly, to describe appropriate actions, we need to describes the values
of the parameters of these actions. For example, we need to know the initial
velocity and orientation of the spaceship that will lead us to Mars.

Our information about the values of physical quantities come from measure-
ments and from expert estimates.

� Measurements are never 100% accurate, there is always some uncertainty.
For example, Vladik's height is 169.5 cm. This does not mean that it is
exactly 169.5000, it means ±0.5.
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� Expert estimates are usually even less certain.

So, we always have uncertainty.

How can we describe this uncertainty. Uncertainty means that instead of
a single value, we have the whole set of possible values of a quantity. This set is
usually connected, i.e., it is an interval; see, e.g., [4, 6, 9, 11, 14].

In some cases, we also know the frequency with which, in similar situations,
we encounter di�erent values from this interval. This is known as probabilistic

uncertainty.

In many practical cases, we do not know the probabilities. However, an expert
can estimate the degree to which di�erent values are possible. This corresponds
to fuzzy uncertainty; see, e.g., [1, 5, 10, 12, 13, 18].

Need to take uncertainty into account when processing data. We do
not just measure quantities, we perform some computations y = f(x1, . . . , xn)
with the measurement results x1, . . . , xn. Due to uncertainty, the actual values
xi are, in general, di�erent from the measurement results x̃i. Because of this,
the result ỹ = f(x̃1, . . . , x̃n) of processing measurement results is, in general,
di�erent from the value y = f(x1, . . . , xn) that we would have gotten if we knew
the exact values xi. It is important to gauge the resulting uncertainty in y.

For example, if ỹ = 100 million tons is the estimated amount of oil in a given
region, then:

� if it is 100± 20, we should start exploiting, but

� it it is 100±200, maybe there is no oil at all, so we better perform additional
measurement before wasting resources.

For interval, probabilistic, and fuzzy uncertainty there are techniques for prop-
agating uncertainty through computations.

Need for type-2 fuzzy. As we have mentioned, an expert cannot describe
his/her estimate of the quantity of interest by a single number. Instead, the
expert can produce an interval � or an interval with degrees assigned (= a fuzzy
set).

Similarly, the same expert cannot describe his/her degree of con�dence m(x)
that x is possible by a single number. For example:

� an expert can distinguish between degrees of con�dence 0.7 and 0.8,

� but hardly anyone can distinguish between degrees 0.80 and 0.81.

It is more reasonable to expect that m(x) is represented by an interval, or even
by a fuzzy set.

So, for each x from the original interval [x, x]:

� instead of a numerical degree of con�dence m(x),

� we have an interval [m(x),m(x)] � or a fuzzy set.



From Type-2 Fuzzy to Type-2 Intervals and Type-2 Probabilities 3

This situation is known as type-2 fuzzy. Type-2 fuzzy sets � and especially
interval-valued fuzzy sets � are well-studied and used in many applications; see,
e.g., [10].

Need for type-2 intervals and probabilities, both subjective and objec-

tive. Intervals and probabilities also come from observations and measurements.
Observations and measurements always have uncertainty. Thus, we know inter-
vals and probabilities with uncertainty too. Similarly to type-2 fuzzy, we can call
methods that take this uncertainty into account type-2.

Comment. There is an important di�erence between type-2 fuzzy and type-2
probabilities:

� fuzzy (and type-2 fuzzy) information is subjective, while
� interval and probabilistic uncertainty can be both subjective and objective.

2 Subjective and Objective Intervals � and Type-2

Intervals

Subjective vs. objective intervals. In some cases, there exists an exact value,
but we do not know this value, we only know the interval containing this value.
In this case, we have a subjective (epistemic) interval.

In other cases, we have a range of values. E.g., person's height and weight
change during the day. So, the actual answer to the question �What is your
height" is an interval. This is objective (aleatory) interval.

Need for type-2 intervals. Since measurements are not absolutely accurate,
we do not know the exact endpoints ℓ and r of the objective interval. Instead,
we have:

� an interval [ℓ, ℓ] of possible values of ℓ, and
� an interval [r, r] of possible values of r.

This type-2 situation can be described by two nested intervals:

� values from the inner interval [ℓ, r] are actual, while
� values from the outer interval [ℓ, r] may be actual, but we are not sure.

How can we process such type-2 intervals? If we know that y = f(x1, . . . , xn)
and we have such type-2 interval about each xi, what can we say about y? If
all uncertainties are independent, i.e., if all combinations of possible values of xi

are possible, then:

� to �nd the inner interval for y, we apply interval computations to inner
intervals for xi, and

� to �nd the outer interval for y, we apply interval computations to outer
intervals for xi.
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3 Subjective Type-2 Probabilities

What are subjective type-2 probabilities. Subjective type-2 probabilities
mean that we only have partial information about the corresponding probabili-
ties. This is known as imprecise probabilities.

Interval-valued probabilities: the basic case of subjective type-2 prob-

abilities. In general, as we mentioned, the basic type of uncertainty is inter-
val uncertainty. In line with this, the basic type of probabilistic uncertainty is
interval-valued probabilities.

p-boxes: an important case of interval-valued probabilities. One of the
main ways to describe a probability distribution is by a cumulative distribution

function (cdf) F (x)
def
= Prob(X ≤ x). A natural idea is thus to consider, for

each x, an interval [F (x), F (x)] of possible values of F (x). This is is known as
probability box, or p-box, for short. p-boxes have been successfully used in many
applications [2] (as well as fuzzy-valued probabilities).

4 Objective Type-2 Probabilities

Objective type-2 probabilities: what are they? How can we have objec-
tive uncertainty in probability values? To understand this, let us recall what is
probability from the practical viewpoint.

In practice, probability p means, in e�ect, a frequency. We have a large
number N of similar events (e.g., �ipping a coin). These can be similar events
occurring at di�erent location and/or at di�erent times. Probability p of a certain
outcome means that this outcome is observed in ≈ p ·N cases.

An ideal case is when the event settings are absolutely identical. For example:

� we have a large set of identical atoms of a radioactive element, and
� we observe how many of them emit radiation during a given period of time.

In the usual quantum description, all the atoms are identical. However, the
true quantum description is more complex; see, e.g., [3, 16]. In this sense, quan-
tum physics is similar to fuzzy:

� one of the main ideas about fuzzy is Zadeh's statement that �everything is
a matter of degree�;

� in quantum physics, the main idea is that everything is a matter of proba-
bility.

In the �rst approximation � traditional quantum mechanics:

� particle locations and velocities are only known with probabilities, they can
�uctuate around their classical values,

� however, the forces between particles are described by the usual formulas,
e.g., by the Coulomb law

F = −c · q1 · q2
r2

.
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In secondary quantization, we take into account that the forces can also
�uctuate around the classical values. In other words, the �elds � that describe
these forces � are also quantum objects whose values are only known with some
probabilities.

In general, no matter what kind of events we consider, these events are not
identical. There are always quantum �uctuations because of which, for each
event, the probability pi is slightly di�erent from p. Here, the values pi are
randomly �uctuating around the classical value p. In other words, here, we have
objective type-2 probabilities.

What does this mean in terms of observations? Can we experimentally detect
the di�erence between type-1 and type-2 probabilities? To answer this question,
let us recall what randomness means in terms of observations.

What does randomness mean in terms of observations: reminder.What
does randomness mean in terms of observations?

Randomness means more than frequency. For example, according to Central
Limit Theorem (see, e.g., [15]), di�erences between frequency and probability
should be normally distributed.

The general idea is that if a sequence is random, it must satisfy all the
probability laws.

A probability law is something that happens with probability 1. In mathe-
matical terms, it is a set of probability measure 1 � so that its complement has
measure 0.

So, a sequence is random if:

� it does not belong to any de�nable set of probability measure 0,
� or, equivalently, it does not belong to the union of all de�nable sets of mea-
sure 0.

This is Kolmogorov's de�nition of a random sequence; see, e.g., [7]:

De�nition 1. An object x is called de�nable if there is a formula P (y) � built

from the basic constants, objects, functions, and predicates of the corresponding

theory � that is satis�ed if and only if y = x.

Example. For example, the formula y · y = 1 + 1& y > 0 uniquely de�nes the
value

√
2.

Comment. In this sense, every element, every function, every set that we can
de�ne is de�nable.

De�nition 2. Let µ be a probability measure on a set X. An element x ∈ X is

called µ-random if it does not belong to any de�nable set of µ-measure 0.

Comment. The original Kolmogorov's de�nition was proposed for the case when
the measure itself is de�nable. In this paper, we will be also interested in mea-
sures which are not de�nable. For such measures, we need to make a small
modi�cation of this de�nition.

De�nition 3. Let z be an object. An object x is called z-de�nable if there is a

formula P (z, y) that is satis�ed if and only if y = x.
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De�nition 4. Let µ be a probability measure on a set X. An element x ∈ X is

called µ-random if it does not belong to any µ-de�nable set of µ-measure 0.

Comment. We have already mentioned that every element whose de�nition we
can write down is de�nable. From this viewpoint, it is not possible to provide a
speci�c example of an element which is not de�nable � whatever example will
give will be, by de�nition, de�nable. So, a natural question is: are there elements
which are not de�nable? It turns out that not only there are such element, but
also almost all elements are not de�nable.

Proposition 1. For every probability measure µ on a set X, almost all elements

are not µ-de�nable.

Proof. Every de�nable set is described by a �nite text � its de�nition. There
are only countably many texts, so there are only countably many de�nable sets.
The union of countably many sets of measure 0 still has measure 0. So, almost
all sequence are indeed random. The proposition is proven.

So can we experimentally detect the di�erence between type-1 and

type-2 probabilities? We are interested in a sequence of events. Let ni = 1 if
the selected outcome occurred and ni = 0 if it did not.

We compare two cases:

� type-1 case when each ni occurs with probability p, and
� type-2 case when each ni occurs with probability pi.

Here:

� we select some distribution on the set of all probabilities with mean p, and
� then, we take, as pi, a random sequence of independent values corresponding
to these probabilities.

De�nition 5.

� For each value x ∈ (0, 1), let µ(x) denote a probability measure that is located

at 1 with probability x and at 0 with the remaining probability 1− x.
� Let p ∈ (0, 1) be a real number.

� By ν(p), we mean a probability measure µ(p) × µ(p) × . . . that describes an

in�nite sequence of independent random variables n
(1)
i ∈ {0, 1} each of which

is equal to 1 with probability p.
� By a p-random sequence, we mean a sequence which is random with respect

to ν(p).

De�nition 6. We say that the probability measure on the interval [0, 1] is trivial
if it is concentrated at some value p ∈ [0, 1] with probability 1.

De�nition 7.

� Let µ0 be a non-trivial probability measure on the interval [0, 1].
� Let p denote the mean value of the corresponding random variable.



From Type-2 Fuzzy to Type-2 Intervals and Type-2 Probabilities 7

� Let µ∞ = µ0×µ0×. . . be a probability measure describing an in�nite sequence

of independent identically distributed random variables distributed according

to the probability µ0.
� Let p1, p2, . . . be a µ∞-random sequence.
� Let ν(2)(p) = µ(p1)×µ(p2)×. . . be a probability measure describing an in�nite

sequence of independent random variables n
(2)
i ∈ {0, 1} each of which is equal

to 1 with probability pi.
� By a type-2 p-random sequence, we means a sequence which is random with

respect to ν(2)(p).

Discussion. How can we distinguish between p-random sequences and type-
2 p-random sequences? Often, random variables can be distinguished by their
moments. For both sequences, we can compare moments, i.e., averages over i
from 1 to N of products na0

i · na1
i+i1

· . . . · nam
i+im

. For example:

� mean is the average of ni,
� covariance with next neighbor is the average of ni · ni+1, etc.

Our �rst result is that for both sequences, each moment tends to the same limit:
e.g., the mean tends to p.

De�nition 8. By a moment, we mean the expression

m
def
= lim

N→∞

1

N
·

N∑
i=1

na0
i · na1

i+i1
· . . . · nam

i+im

corresponding to some values aj > 0 and ij.

Proposition 2. For any type-2 p-random sequence, the moment is the same as

for any p-random sequence.

Proof. Since ni ∈ {0, 1}, for each power aj > 0, we have n
aj

i+ij
= ni+ij . Thus,

the expression for the moment takes the following simpli�ed form"

m = lim
N→∞

1

N
·

N∑
i=1

ni · ni+i1 · . . . · ni+im .

Due to the Large Numbers Theorem, the limit value m is equal to the expected
value E[·] of the corresponding expression with respect to the measure ν(2)(p),
i.e., to the value

m = lim
N→∞

1

N
·

N∑
i=1

E(2)[ni · ni+i1 · . . . · ni+im ],

where E(2)[·] denotes the corresponding expected value.
Since all the variables ni are independent, the expected values of the product

is equal to the product of the expected values, so

m = lim
N→∞

1

N
·

N∑
i=1

E(2)[ni] · E(2)[ni+i1 ] · . . . · E(2)[ni+im ],
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i.e.,

m = lim
N→∞

1

N
·

N∑
i=1

pi · pi+i1 · . . . · pi+im .

The values pi are themselves random with respect to the probability measure
µ0. Thus, again due to the Large Numbers Theorem, m is equal to the expected
value with respect to the measure µ0:

m = lim
N→∞

1

N
·

N∑
i=1

E0[pi · pi+i1 · . . . · pi+im ],

where E0 denoted the corresponding expected value.
Since all the variables pi are independent, the expected values of the product

is equal to the product of the expected values, so

m = lim
N→∞

1

N
·

N∑
i=1

E0[pi] · E0[pi+i1 ] · . . . · E0[pi+im ].

By the choice of pi, we have E0[pi] = p for all i, thus

m = lim
N→∞

1

N
·

N∑
i=1

p · p · . . . · p = pm+1.

For p-random sequences, we get the exact same moment � so these moments are
indeed equal to each other. The proposition is proven.

Discussion. So does this result mean that we cannot distinguish between p-
random and type-2 p-random sequences? No, our second result is that no se-
quence can be random with respect to both type-1 and type-2 distributions.

Proposition 3.

� No p-random sequence is also type-2 p-random.

� No type-2 p-random sequence is also p-random.

Proof. According to the main result from [17] � which is also mentioned in
[7] and in [8] � for two sequences of probabilities pi and qi, the following two
conditions are equivalent to each other:

� no sequence is random with respect both to probabilities pi and to proba-
bilities qi, and

�
∞∑
i=1

[(√
pi −

√
qi
)2

+
(√

1− pi −
√
1− qi

)2]
= +∞.

In our case, qi = p for all i. So, to prove the proposition, it is su�cient to prove
that

∞∑
i=1

[
(
√
pi −

√
p)

2
+

(√
1− pi −

√
1− p

)2
]
= +∞.
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Due to the Large Numbers Theorem, for N → ∞, we have

lim
N→∞

1

N
·

N∑
i=1

[
(
√
pi −

√
p)

2
+
(√

1− pi −
√
1− p

)2
]
=

v
def
= E0

[
(
√
pi −

√
p)

2
+

(√
1− pi −

√
1− p

)2
]
> 0.

So, asymptotically, we have

N∑
i=1

[
(
√
pi −

√
p)

2
+
(√

1− pi −
√
1− p

)2
]
∼ N · v,

and thus, the limit of this sum is indeed equal to in�nity. The proposition is
proven.

Discussion. This means that there are probability laws that are only true for
type-1 sequences but not for type-2 sequences, and vice versa. So, it is possi-
ble to experimentally detect the di�erence between type-1 and type-2 random
sequences!

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI In-
cludes), EAR-2225395 (Center for Collective Impact in Earthquake Science C-
CIES), and by the AT&T Fellowship in Information Technology.

It was also supported by the program of the development of the Scienti�c-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-
1478, and by a grant from the Hungarian National Research, Development and
Innovation O�ce (NRDI).

The authors are greatly thankful to Janusz Kacprzyk for his encouragement.

References

1. R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A His-

torical Perspective, Oxford University Press, New York, 2017.
2. S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz, Constructing

Probability Boxes and Dempster-Shafer Structures, Sandia National Laboratories,
Report SAND2002-4015, January 2003.

3. R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Ad-
dison Wesley, Boston, Massachusetts, 2005.

4. L. Jaulin, M. Kiefer, O. Didrit, and E. Walter, Applied Interval Analysis, with Ex-

amples in Parameter and State Estimation, Robust Control, and Robotics, Springer,
London, 2012.



10 V. Kreinovich et al.

5. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle
River, New Jersey, 1995.

6. B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction, Op-

timization, and Similar Problems: from Inequalities Systems to Game Solutions,
Springer, Cham, Switzerland, 2019.

7. M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applica-

tions, Springer, Berlin, Heidelberg, New York, 2008.
8. L. Longpré and V. Kreinovich, �When are two wave functions distinguishable: a

new answer to pauli's question, with potential application to quantum cosmology�,
International Journal of Theoretical Physics, 2008, Vol. 47, No. 3, pp. 814�831.

9. G. Mayer, Interval Analysis and Automatic Result Veri�cation, de Gruyter, Berlin,
2017.

10. J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New Direc-

tions, Springer, Cham, Switzerland, 2017.
11. R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis,

SIAM, Philadelphia, 2009.
12. H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy Logic,

Chapman and Hall/CRC, Boca Raton, Florida, 2019.
13. V. Novák, I. Per�lieva, and J. Mo£ko°, Mathematical Principles of Fuzzy Logic,

Kluwer, Boston, Dordrecht, 1999.
14. S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and Practice,

Springer Verlag, New York, 2005.
15. D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,

Chapman and Hall/CRC, Boca Raton, Florida, 2011.
16. K. S. Thorne and R. D. Blandford, Modern Classical Physics: Optics, Fluids,

Plasmas, Elasticity, Relativity, and Statistical Physics, Princeton University Press,
Princeton, New Jersey, 2021.

17. V. G. Vovk, �On a randomness criterion", Soviet Mathematical Doklady, 1987, Vol.
35, pp. 656�660.

18. L. A. Zadeh, �Fuzzy sets�, Information and Control, 1965, Vol. 8, pp. 338�353.


	From Type-2 Fuzzy to Type-2 Intervals and Type-2 Probabilities
	Recommended Citation

	tmp.1704820323.pdf.pgy06

