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Linear Regression under Partial Information

Tho M. Nguyen, Saeid Tizpaz-Niari, and Vladik Kreinovich

Abstract Often, we need to know how to estimate the value of a difficult-to-directly
estimate quantity 𝑦 – e.g., tomorrow’s temperature – based on the known values of
several quantities 𝑥1, . . . , 𝑥𝑛. In many practical situations, we know that the relation
between 𝑦 and 𝑥𝑖 can be accurately described by a linear function. So, to find this
dependence, we need to estimate the coefficients of this linear dependence based
on the known cases in which we know both 𝑦 and 𝑥𝑖; this is known as linear
regression. In the ideal situation, when in each case, we know all the inputs 𝑥𝑖 , the
computationally efficient and well-justified least squares method provides a solution
to this problem. However, in practice, some of the inputs are often missing. There
are heuristic methods for dealing with such missing values, but the problem is that
different methods lead to different results. This is the main problem with which we
deal in this paper. To solve this problem, we propose a new well-justified method
that eliminates this undesirable non-uniqueness.An auxiliary computational problem
emerges if after we get a linear dependence of 𝑦 on 𝑥𝑖 , we learn the values of an
additional variable 𝑥𝑛+1. In this case, in principle, we can simply re-apply the least
square method “from scratch”, but this idea, while feasible, is still somewhat time-
consuming, so it is desirable to come up with a faster algorithm that would utilize
the previous regression result. Such an algorithm is also provided in this paper.
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1 Formulation of the Main Problem

The main objective of this paper is to show how to solve linear regression problem
under partial information. To explain why this is important, we first explain why
linear regression is an important problem, how linear regression problems are solved
now, and why the case of partial information is a challenge.

Why linear regression.One of the main objectives of science is to predict the future
state of the world based on the information about its current state. At any given
moment of time, the state of the world can be described by listing the values of the
quantities 𝑥1, . . . , 𝑥𝑛 that characterize this state. Thus, the objective is to predict the
future value 𝑦 of each quantity of interest based on its current values.
In some cases – e.g., in celestial mechanics – we know how exactly the future

value 𝑦 depends on the available information 𝑥1, . . . , 𝑥𝑛, i.e., we know the function
𝑦 = 𝑓 (𝑥1, . . . , 𝑥𝑛) that computes 𝑦 based on the inputs 𝑥𝑖 . However, in many other
cases, we do not know this function, wemust determine it based on the available data,
namely, based on the previous cases 𝑘 = 1, . . . , 𝐾 in which we knew both the values
𝑥
(𝑘)
𝑖
and the value 𝑦 (𝑘) . In this situation, we need to find a function 𝑓 (𝑥1, . . . , 𝑥𝑛) for

which, for all 𝑘 from 1 to 𝐾 , we have 𝑦 (𝑘) ≈ 𝑓

(
𝑥
(𝑘)
1 , . . . , 𝑥

(𝑘)
𝑛

)
. The procedure of

finding such a function has been traditionally known as regression – and when we
use computers to find this function, this is also known as machine learning.
The dependence of 𝑦 on 𝑥𝑖 is often smooth; see, e.g., [4, 8], and in many practical

situations, the changes are relatively small. In such cases, for each 𝑖, all the values
𝑥
(𝑘)
𝑖
are close to the first value 𝑥 (1)

𝑖
. We can then represent the desired dependence

in terms of the differences Δ𝑥𝑖
def
= 𝑥𝑖 − 𝑥 (1)𝑖 , as

𝑦 = 𝑓

(
𝑥
(1)
1 + Δ𝑥1, . . . , 𝑥

(1)
𝑛 + Δ𝑥𝑛

)
. (1)

Since the differences Δ𝑥𝑖 are small, terms which are quadratic in Δ𝑥𝑖 (or of higher
order) can be safely ignored; see, e.g., [4, 8]. If we expand (1) in Taylor series in
terms of Δ𝑥𝑖 and ignore quadratic and higher order terms in this expansion, we get
a linear dependence

𝑦 = 𝑦0 + 𝑎1 · Δ𝑥1 + . . . + 𝑎𝑛 · Δ𝑥𝑛, (2)

where 𝑦0
def
= 𝑓

(
𝑥
(1)
1 , . . . , 𝑥

(1)
𝑛

)
and

𝑐𝑖
def
=
𝜕 𝑓

𝜕𝑥𝑖 |𝑥1=𝑥 (1)1 ,...,𝑥𝑛=𝑥
(1)
𝑛

.

Substituting the expression Δ𝑥𝑖 = 𝑥𝑖 − 𝑥 (1)𝑖 into the formula (2), we get

𝑦 = 𝑎0 + 𝑎1 · 𝑥1 + . . . + 𝑎𝑛 · 𝑥𝑛, (3)
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where we denoted
𝑎0
def
= 𝑦0 − 𝑎1 · 𝑥 (1)1 − . . . − 𝑎𝑛 · 𝑥 (1)𝑛 .

In this case, regression (or machine learning) means finding the coefficients 𝑎𝑖 of
the linear dependence (3). This task is known as linear regression.

Why least squares: first explanation. In practice, we rarely have full information
about the current state of the world. As a result, we can only make approximate
predictions. In particular, for each 𝑘 , instead of the exact formula (3), we only have
an approximate equality

𝑦 (𝑘) ≈ 𝑎0 + 𝑎1 · 𝑥 (𝑘)1 + . . . + 𝑎𝑛 · 𝑥 (𝑘)𝑛 . (4)

If we denote the difference between the left-hand side and the right-hand side of the
formula (4) by 𝜀 (𝑘) , then this approximate equality takes the form

𝑦 (𝑘) = 𝑎0 + 𝑎1 · 𝑥 (𝑘)1 + . . . + 𝑎𝑛 · 𝑥 (𝑘)𝑛 + 𝜀 (𝑘) . (5)

We do not know the approximation errors

𝜀 (𝑘) = 𝑦 (𝑘) −
(
𝑎0 + 𝑎1 · 𝑥 (𝑘)1 + . . . + 𝑎𝑛 · 𝑥 (𝑘)𝑛

)
. (6)

Such unknown values are usually called random.
Usually, there aremany different factors that contribute to the approximation error.

In this case, according to the Central Limit Theorem (see, e.g., [7]), the probability
distribution of the approximation error is close to Gaussian (normal). Thus, it is
reasonable to conclude that the approximation error (6) is normally distributed. A
normal distribution is uniquely characterized by two parameters: its mean 𝑚 and its
standard deviation 𝜎.
If the mean 𝑚 is different from 0, then we can add this mean to 𝑎0 and subtract it

from 𝜀 (𝑘) , thus getting

𝑦 (𝑘) = 𝑎′0 + 𝑎1 · 𝑥
(𝑘)
1 + . . . + 𝑎𝑛 · 𝑥 (𝑘)𝑛 + 𝜀′(𝑘) ,

where we denoted 𝑎′0
def
= 𝑎0 +𝑚 and 𝜀′(𝑘)

def
= 𝜀 (𝑘) −𝑚. Then, the mean of the values

𝜀′ = 𝜀 −𝑚 is equal to 0. Thus, without loss of generality, we can always assume that
𝑚 = 0. Under this assumption, the normal distribution is uniquely determined by a
single parameter 𝜎.
According to the formula for the normal distribution, the probability density 𝜌

corresponding to all the measurement results is equal to

𝜌 =

𝐾∏
𝑘=1

1
√
2𝜋 · 𝜎

· exp
(
−

(
𝜀 (𝑘)

)2
2𝜎2

)
,

i.e., equivalently, to
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𝜌 =
1

(
√
2𝜋 · 𝜎)𝐾

· exp
©­­­­«
−

𝐾∑
𝑘=1

(
𝜀 (𝑘)

)2
2𝜎2

ª®®®®¬
. (7)

It is reasonable to select the most probable values 𝑎𝑖 , i.e., the values for which the
probability density 𝜌 is the largest. This idea is known as the Maximum Likelihood
approach. Since the function exp(−𝑥) is strictly decreasing, maximizing the expres-
sion (7) is equivalent to minimizing the expression under the exponential function,
i.e., minimizing the sum

𝐾∑︁
𝑘=1

(
𝜀 (𝑘)

)2
, (8)

where 𝜀 (𝑘) is defined by the formula (6). This idea of minimizing the sum of the
squares is known as the least squares approach.

Why least squares: second explanation. For each 𝑘 , we want the left-hand side of
the formula (4) should be close to the right-hand side. In other words, the vector(
𝑦 (1) , . . . , 𝑦 (𝐾) ) formed by the left-hand sides should be as close as possible to the
vector formed by the right-hand sides. A natural way to describe the distance 𝑑 (𝑢, 𝑣)
between two 𝐾-dimensional vectors 𝑢 = (𝑢1, . . . , 𝑢𝐾 ) and 𝑣 = (𝑣1, . . . , 𝑣𝐾 ) – i.e.,
equivalently, between two points in the 𝐾-dimensional space – is to use the usual
Euclidean formula

𝑑2 (𝑢, 𝑣) = (𝑢1 − 𝑣1)2 + . . . + (𝑢𝐾 − 𝑣𝐾 )2.

In our case, for each 𝑘 , the difference 𝑢𝑘 − 𝑣𝑘 between the left-hand side and the
right-hand side is equal to 𝜀 (𝑘) . Thus, the square of the distance between these two
vectors has the form (8). Since for all the values 𝑥 ≥ 0, 𝑥2 is a strictly increasing
function, minimizing the distance is equivalent to minimizing its square. Thus, we
also arrive at the least squares approach.

How the least squares problem is solved now.When we plug in the expression (6)
into the formula (8), we get the expression

𝐾∑︁
𝑘=1

(
𝑦 (𝑘) −

(
𝑎0 + 𝑎1 · 𝑥 (𝑘)1 + . . . + 𝑎𝑛 · 𝑥 (𝑘)𝑛

))2
.

Differentiating this expression with respect to all the unknown 𝑎𝑖 , equating each of
the partial derivatives to 0, and dividing both sides of each equation by 𝐾 , we get
the following system of linear equations (see, e.g., [7]):

𝑎0 +
𝑛∑︁
𝑖=1

𝑎𝑖 · 𝑥𝑖 = 𝑦 (9)

and
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𝑎0 · 𝑥𝑖 +
𝑛∑︁
𝑗=1
𝑎𝑖 · 𝑥𝑖 · 𝑥 𝑗 = 𝑥𝑖 · 𝑦, 𝑖 = 1, . . . , 𝑛, (10)

where we denoted

𝑥𝑖
def
=
1
𝐾

·
𝐾∑︁
𝑘=1

𝑥
(𝑘)
𝑖
, 𝑦
def
=
1
𝐾

·
𝐾∑︁
𝑘=1

𝑦 (𝑘) , 𝑥𝑖 · 𝑥 𝑗
def
=
1
𝐾

·
𝐾∑︁
𝑘=1

(
𝑥
(𝑘)
𝑖

· 𝑥 (𝑘)
𝑗

)
, and

𝑥𝑖 · 𝑦
def
=
1
𝐾

·
𝐾∑︁
𝑘=1

(
𝑥
(𝑘)
𝑖

· 𝑦 (𝑘)
)
. (11)

For each 𝑖, we can multiply both sides of the equation (9) by 𝑥𝑖 and subtract this
result from the corresponding formula (10), then we get the following simplified
equation not containing 𝑎0:

𝑛∑︁
𝑗=1
𝑎𝑖 · 𝐶 (𝑥𝑖 , 𝑥 𝑗 ) = 𝐶 (𝑥𝑖 , 𝑦), (12)

where, for every two quantities 𝑞 and 𝑞′, 𝐶 (𝑞, 𝑞′) denotes the covariance

𝐶 (𝑞, 𝑞′) = 𝑞 · 𝑞′ − 𝑞 · 𝑞′; (13)

(for 𝑞 = 𝑞′, this is simply the variance 𝑉 (𝑞) = 𝑞2 − (𝑞)2 of the quantity 𝑞).
Equations (12) form a system of 𝑛 linear equations

𝐶𝑎 = 𝑏 (14)

to determine the vector 𝑎 = (𝑎1, . . . , 𝑎𝑛) of 𝑛 unknowns, where:

• 𝐶 is the matrix formed by the coefficients 𝐶 (𝑥𝑖 , 𝑥 𝑗 ), and
• 𝑏 = (𝐶 (𝑥1, 𝑦), . . . , 𝐶 (𝑥𝑛, 𝑦)) is the vector formed by the right-hand sides.

A general solution to this linear system has the form

𝑎 = 𝐶−1𝑏, (15)

where 𝐶−1 is the matrix which is inverse to the matrix 𝐶. Once we know the
coefficients 𝑎1, . . . , 𝑎𝑛, we can determine 𝑎0 by using the formula (9):

𝑎0 = 𝑦 −
𝑛∑︁
𝑖=1

𝑎𝑖 · 𝑥𝑖 . (9a)

Case of partial information is a challenge. To use the above formulas, we need to
know, for each 𝑘 , the values 𝑦 (𝑘) and 𝑥 (𝑘)

𝑖
of the output 𝑦 and of all the inputs 𝑥𝑖 . In

many practical situations, however, we only have partial information. For example,
in medical applications, we would like to be able to predict the patient’s progress
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based on the parameters characterizing the state of the patient and on the doses of
the corresponding medicine. Some of these parameters we usually know – e.g., age,
height, weight, etc. However, other parameters are determined by the laboratory tests,
and different patients may take different tests. In economics, we may have different
reporting schedules for different countries and/or different companies, which also
leads to partial information.
In such situations, we often have very few cases 𝑘 in which all the values 𝑥𝑖

are available – not enough to make statistically significant conclusions about the
dependence of the desired output 𝑦 on the inputs 𝑥𝑖 .

How such situations are handled now. The usual way of dealing with situations
with partial information is the missing data approach, when we use reasonable
interpolation techniques to estimate the missing values, and then apply the least
squares approach to such filled-in data; see, e.g., [1, 5, 6, 9].

Limitations of the current approach.While missing data techniques work in many
practical situations, they have two issues:

• first, many interpolation techniques used in the missing data approach are heuris-
tic, and different techniques often lead to different results;

• second, the resulting coefficients 𝑎𝑖 enable us to predict 𝑦 for the case when we
know all the inputs 𝑥𝑖; however, in practice, as we have mentioned, some of the
inputs are often missing; so, to apply the linear formulas in such cases, we need to
perform another interpolation – which also leads to undesirable non-uniqueness.

What we do in this paper. In this paper, we propose an alternative idea that enables
us to make linear regression under partial information well-justified and thus, avoid
the undesired non-uniqueness.

2 First Issue: What We Propose

Main idea. As we have mentioned, the first issue is that often, we have very few
cases when we know the values of all the inputs 𝑥𝑖 – not enough to get statistically
significant estimates for the desired coefficients 𝑎𝑖 .
Our idea comes from the fact that to find the coefficients 𝑎𝑖 , all we need to know

are the mean values 𝑥𝑖 , 𝑦, and the covariances 𝐶 (𝑥𝑖 , 𝑥 𝑗 ) and 𝐶 (𝑥𝑖 , 𝑦). To find these
mean values and covariances, it is not necessary to have all 𝑛 inputs in each case:
it is sufficient to have, for each pair (𝑖, 𝑗), a sufficient number of cases in which we
know the values of these two quantities – which is usually the case. Thus, there is
no need to interpolate – we can simply use the available data. So, we arrive at the
following algorithm.

Resulting algorithm. For each case 𝑘 = 1, . . . , 𝐾 , by 𝐴(𝑘), we will denote the list
of all the quantities 𝑥𝑖 and 𝑦 whose values are available in this case. Then, based
on the available values, we can compute the following estimates for the means and
covariances:
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𝑥𝑖
def
=

1
#{𝑘 : 𝑥𝑖 ∈ 𝐴(𝑘)}

·
∑︁

𝑘: 𝑥𝑖 ∈𝐴(𝑘)
𝑥
(𝑘)
𝑖
, 𝑦
def
=

1
#{𝑘 : 𝑦 ∈ 𝐴(𝑘)} ·

∑︁
𝑘: 𝑦∈𝐴(𝑘)

𝑦 (𝑘) ,

𝑥𝑖 · 𝑥 𝑗
def
=

1
#{𝑘 : 𝑥𝑖 , 𝑥 𝑗 ∈ 𝐴(𝑘)}

·
∑︁

𝑘: 𝑥𝑖 ,𝑥 𝑗 ∈𝐴(𝑘)

(
𝑥
(𝑘)
𝑖

· 𝑥 (𝑘)
𝑗

)
, and

𝑥𝑖 · 𝑦
def
=

1
#{𝑘 : 𝑥𝑖 , 𝑦 ∈ 𝐴(𝑘)}

·
∑︁

𝑘: 𝑥𝑖 ,𝑦∈𝐴(𝑘)

(
𝑥
(𝑘)
𝑖

· 𝑦 (𝑘)
)
. (16)

Then, we can find the covariances 𝐶 (𝑥𝑖 , 𝑥 𝑗 ) and 𝐶 (𝑥𝑖 , 𝑦) by using the formula (13),
and find the coefficients 𝑎1, . . . , 𝑎𝑛 by solving the linear system (14). After that, we
can estimate the remaining coefficient 𝑎0 by using the formula (9a).

3 Second Issue: What We Propose

Discussion. As we have mentioned, another case where heuristic interpolation tech-
niques are used is when we already have estimates for the coefficients 𝑎𝑖 of linear
regression, but we cannot directly use them for prediction, since we do not know all
the inputs 𝑥𝑖 . Strictly speaking, in the case when we only know the values of some
inputs 𝑥𝑖1 , . . . , 𝑥𝑖𝑚 , we need to consider a new linear regression problem: finding the
coefficients 𝑎′0, 𝑎

′
1, . . . , 𝑎

′
𝑚 for which

𝑦 ≈ 𝑎′0 + 𝑎
′
1 · 𝑥𝑖1 + . . . + 𝑎

′
𝑚 · 𝑥𝑖𝑚 . (17)

In principle, we can run the general least-squares-under-partial-information proce-
dure again, but that would be too time-consuming: we would again need to analyze
all the data etc. How can we get well-justified results without starting “from scratch"?
To do that, we can use the fact that all we need to find the new coefficients are the

mean values 𝑥𝑖 𝑗 , 𝑦, and the covariance values𝐶 (𝑥𝑖 𝑗 , 𝑥𝑖ℓ ) and𝐶 (𝑥𝑖 𝑗 , 𝑦) corresponding
to the available variables – but these values we have already computed when we
solved the original linear-regression-under-partial-information problem. Thus, we
arrive at the following algorithm.

Resulting algorithm.When we estimated the coefficients 𝑎𝑖 , we found the values of
all the means 𝑥𝑖 and all the covariances𝐶 (𝑥𝑖 , 𝑥 𝑗 ) and𝐶 (𝑥𝑖 , 𝑦). To find the regression
coefficients 𝑎′1, . . . , 𝑎

′
𝑚 for the case when we only know the values of some inputs

𝑥𝑖1 , . . . , 𝑥𝑖𝑚 , we then solve the linear system

𝐶 ′𝑎′ = 𝑏′, (18)

where:

• 𝐶 ′ is the square submatrix of the matrix 𝐶 obtained by selecting only rows and
columns 𝑖1, . . . , 𝑖𝑚, and

• 𝑏′ is a subvector of the vector 𝑏 corresponding to indices 𝑖1, . . . , 𝑖𝑚.
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Then, we can find 𝑎′0 as

𝑎′0 = 𝑦 −
𝑚∑︁
𝑗=1
𝑎′𝑖 · 𝑥𝑖 𝑗 .

4 Auxiliary Problem

Formulation of the problem. In the previous sections, we considered a typical
situation when some values of the inputs 𝑥1, . . . , 𝑥𝑛 were missing. Of course, the
more data we have, the more accurate will be our predictions. Thus, researchers are
always trying to get more data. In particular, they are trying – and often succeeding
– to find ways to measure new characteristics 𝑥𝑛+1, etc. that could be helpful for
predictions.
Once we have the values of a new quantity 𝑥𝑛+1, we can hopefully get a new linear

formula that uses this new quantity:

𝑦 ≈ 𝑎′0 + 𝑎
′
1 · 𝑥1 + . . . + 𝑎

′
𝑛 · 𝑥𝑛 + 𝑎′𝑛+1 · 𝑥𝑛+1. (19)

One way to find the new values 𝑎′
𝑖
is to repeat the same procedure as before. The

only missing information are the mean values 𝑥𝑛+1 of the new quantity and the
missing correlations 𝐶 (𝑥𝑖 , 𝑥𝑛+1), 𝐶 (𝑥𝑛+1, 𝑥𝑛+1), and 𝐶 (𝑥𝑛+1, 𝑦). Once we compute
these values, we will get the new – extended – matrix𝐶 ′, the new – extended – vector
𝑏′ and we will then be able to solve the new systems of linear equations 𝐶 ′𝑎′ = 𝑏′.
The problem is that while solving a system of linear equations is feasible, it is

still somewhat time-consuming. Is it possible to use the results of the original linear
regression to speed up these computations?

What we propose. Actually, in this section, we do not propose any new algorithm,
our proposal is to use the fact that if we know the inverse 𝐶−1 to a symmetric matrix
𝐶, then we can explicitly compute the inverse of a symmetric matrix obtained by
adding one row and one column (see, e.g., [2]):(

𝐶 𝑒

𝑒𝑇 𝑣

)−1
=

(
𝐶−1 + 𝑧𝐶−1𝑒𝑒𝑇𝐶−1 −𝑧𝐶−1𝑒

−𝑧𝑒𝑇𝐶−1 𝑧

)
,

where
𝑧
def
=

1
𝑣 − 𝑒𝑇𝐶−1𝑒

.

This way, we need 𝑛2 arithmetic operations to compute the new inverse, while even
the asymptotically fastest algorithm for solving systems of linear equations and for
computing the inverse matrix require larger time – namely, time proportional to 𝑛𝑎
for 𝑎 > 2; see, e.g., [3].
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Important case.An important case is when the new quantity 𝑥𝑛+1 has no correlations
with any of the previously available quantities 𝑥1, . . . , 𝑥𝑛. In this case, 𝑒 = 0, so we
have:

• 𝑎′
𝑖
= 𝑎𝑖 for 𝑖 = 1, . . . , 𝑛;

• 𝑎′
𝑛+1 = (𝐶 (𝑥𝑛+1, 𝑥𝑛+1))−1; and

• 𝑎′0 = 𝑎0 − 𝑎
′
𝑛+1 · 𝑥𝑛+1.

5 Experiments

We design two sets of experiments to show the accuracy and run-time efficiency of
proposed algorithms. The first set of experiments is designed to show the precision
loss (predicted vs. actual parameters) as the percentage of missing values are in-
creasing in a linear system. The second set of experiments is designed to show the
run-time efficiency of the proposed algorithm to obtain the missing coefficients in
comparison to the existing least square algorithm from scratch.

5.1 Experiments on Missing Values

We consider a linear system of y = 𝑎 · x + 𝜖 where 𝑎 is a vector of coefficients, 𝑥 is
a vector of variables, and 𝜖 is a random error. We generate 𝑎 and 𝑥 independently
randomly from a normal distribution with mean 0 and standard deviation 1 (the
random error has mean 0 and standard deviation 0.1). We generate 10, 000 samples
from the linear equation (𝑦 (1) . . . 𝑦 (10,000) and 𝑥 (1) . . . 𝑥 (10,000) ) where the number of
attributes (parameters) is 50. Then, we randomly select 𝑘% of the samples and set
95% of their attributes to 𝑁𝐴 (missing values). We repeat this experiment for 𝑘 =

{5, 10, 20, 30, 40, 50, 60, 70, 80, 90}. Table 1 shows the results of the experiments.
We report the average of the absolute error, the maximum absolute error, and the
minimum absolute error for the coefficients 𝑎𝑖 for 𝑖 = {1, . . . , 50}. We separately
report the results for 𝑎0. The results show that the error is generally increasing with
the percentage of missing values. But the amounts of error is negligible for 𝑘 < 80%,
and the error is significant when 𝑘 ≥ 90%.

5.2 Experiments on Missing Attributes

For this set of experiments, we consider the same linear system, however, we ran-
domly remove one of the attributes (coefficients) from the system.We train themodel
without the parameter and then we predict the missing parameter from the set of
observations considering the linear model (the proposed algorithm in Section 3).
We compare the computation times of the proposed algorithm to the brute-force
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Table 1 The average, maximum, and minimum absolute error of the coefficients 𝑎𝑖 as the percent-
age of missing values are increasing.

Missing
𝑎0

𝑎1≤𝑖≤50
Percentage (𝑘) Average Maximum Minimum

5% 0.02 0.00 0.01 0.00
10% 0.06 0.00 0.01 0.00
20% 0.20 0.01 0.03 0.00
30% 0.07 0.01 0.03 0.00
40% 0.00 0.01 0.04 0.00
50% 0.05 0.02 0.04 0.00
60% 0.09 0.02 0.07 0.00
70% 0.20 0.03 0.08 0.01
80% 0.12 0.04 0.14 0.01
90% 0.17 0.13 0.38 0.01

Fig. 1 The computation times (ms) for the proposed algorithm (blue curve) vs. the brute-force
approach (orange curve). (a) The computation times as the number of parameters are increasing
(the number of samples sets to 10,000). (b) The computation times as the number of samples are
increasing (the number of parameters set to 50).

approach when we train the entire model from scratch. In doing so, we vary the num-
ber of parameters from 10 to 100 with the number of observations fixed to 10, 000.
We repeat the experiment where we vary the number of observations from 1, 000 to
100, 000 with the number of parameters fixed to 50. Figure 1 shows the computation
times for these two sets of experiments. The results show that our proposed algorithm
(blue curve) is significantly faster than the brute-force approach (orange curve). The
computation times of proposed algorithm are increasing with the number of param-
eters and the number of observations linearly at the worst-case. On the other hand,
the brute-force approach has exponential growth in the computation times.
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