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If Everything is a Matter of Degree, Why Do
Crisp Techniques Often Work Better?

Miroslav Svítek, Olga Kosheleva, and Vladik Kreinovich

Abstract Numerous examples from different application domain confirm the state-
ment of Lotfi Zadeh – that everything is a matter of degree. Because of this, one
would expect that in most – if not all – practical situations taking these degrees
into account would lead to more effective control, more effective prediction, etc.
In practice, while in many cases, this indeed happens, in many other cases, “crisp”
methods – methods that do not take these degrees into account – work better. In this
paper, we provide two possible explanations for this discrepancy: an objective one
– explaining that the optimal (best-fit) model is indeed often the crisp one, and a
subjective one – that we have to use crisp because of our limited ability to process
information.

1 Formulation of the Problem

On the one hand, everything is a matter of degree. In many application areas,
our knowledge and expertise is described by using imprecise (“fuzzy”) words from
natural language. Financial experts talk about significant decreases or increases of
stock prices, medical doctors talk about high fever and irregular shape of skin
formations, skilled drivers talk about the danger of cars being too close, etc. None of
these terns is precisely defined, and this makes sense – if they were precisely defined,
we would not need these experts, we could simply follow the well-defined rules.
Lotfi Zadeh, the father of fuzzy techniques – that enable us to transform such

imprecise knowledge into computer-understandable mathematical form – formulated
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this as a mantra that he likes to repeat in this talks: Everything is a matter of degree.
This mantra was the foundation of his techniques, where, to describe an imprecise
term like “small” in precise terms, we assign:

• to each possible value 𝑥 of the corresponding quantity,
• the degree 𝜇(𝑥) from the interval [0, 1] to which,in the expert’s opinion, this
value satisfies the given property: e.g., to what extent 𝑥 is small.

The function 𝜇(𝑥) is called a membership function, or a fuzzy set. Here:

• the degree 1 means that this value definitely satisfies this property,
• the degree 0 means that this value definitely does not satisfy this property, and
• values between 0 and 1 correspond to the same when this property is satisfied to
some degree.

In this description, degrees 0 and 1 correspond to the fuzzy case, while degree
intermediate between 0 and 1 correspond to the truly precise (“crisp”) case.

This mantra has been very successful. Zadeh’s general idea had led to many
successful applications of fuzzy techniques and fuzzy ideas; see, e.g., [1, 4, 5, 7, 8,
11].

But why not more applications? One would expect that with this natural idea, the
majority of applications would start using some version of fuzzy techniques and gain
even more successes – but this has not happened.
For example, while fuzzy control – the most well-known applications of fuzzy

techniques – had many impressive successes, the majority of control systems are
“crisp”– they do not take into account imprecise knowledge, and they therefore do
not use fuzzy techniques.

Could the reason be sociological? Maybe the problem is that researchers and
practitioners are too conservative, they stick to their traditional methods, they do not
understand how fuzzy techniques can be helpful – and it is our goal to promote these
techniques?
This sociological argument may have been somewhat convincing in the past,

but nowadays, when everyone use neural techniques – which were, in the past, as
unappreciated as fuzzy one – this is no longer a convincing argument.

Probably in many cases, crisp methods work better. Why is everyone is using
neural techniques? Because in many cases, they have been successful; see, e.g., [2].
Why not everyone uses fuzzy techniques? A natural neural-motivated answer is:
because in many cases, crisp methods work better.
A simple example is current machine learning techniques like deep learning. In

a few cases, researchers added fuzzy information and got better results, but in many
other cases, traditional (crisp) neural networks work so well that adding fuzzy only
decreases their effectiveness.

Resulting puzzle. There is a clear discrepancy:
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• On the one hand, there are convincing arguments that everything is a matter
of degree – which should imply that taking these degrees into account should
improve the effectiveness of data processing, control, predictions, etc.

• On the other hand, in many practical situations, crisp techniques – that do not
take these degrees into account – work better.

How can we explain this discrepancy?

What we do in this paper. In this paper, we provide two explanations:

• an objective one – that crisp methods are indeed often better, and
• a subjective one – that due to our limited perception abilities, we perceive many
situations as crisp, even though in reality they are somewhat fuzzy.

2 An Objective Explanation

It is all optimization. How do we come up with a model of reality? There are
usually several possible models, and we select the one that provides the best fit with
observations and measurements.
In mathematical terms, “the best” means optimal. So, whatever model we use is

the result of optimization.

What do we know about optimization?Optimization is one of themain applications
of calculus – and one of the main reasons why calculus was invented in the first place.
According to calculus, in the ideal situations, when there are no constraints, the

maximum or minimum of a function 𝑓 (𝑥1, . . . , 𝑥𝑛) is attained at a point where all
its partial derivatives are zeros:

𝜕 𝑓

𝜕𝑥1
= . . . =

𝜕 𝑓

𝜕𝑥𝑛
= 0.

There are usually several such “stationary” points: some of them describe the desired
global maximum or minimum, some of them describe local maxima and minima,
some are saddle points – which are neither maxima not minima.
In practice, there are always many constraints. For example, the need to fit the

observations very strongly restricts possible models. As we gather more and more
constraints, the set 𝑆 of possible solutions – that satisfy all the constraints – becomes
smaller and smaller. As a result, in general, this set no longer contains any stationary
points.
In this case, according to calculus, the optimal solution to the corresponding

constrained optimization problem is attained at the boundary of the set 𝑆 of possible
solutions. Indeed, if the maximum or minimum were obtained in the interior of this
set, then, according to calculus, all partial derivatives of the objective function at this
point would be equal to 0, so this would be of the stationary points of the objective
function – and we assumed that the set 𝑆 no longer contains any stationary points.
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Let us apply this idea to our puzzle. We want to find the values of the degree 𝑑𝑖
that provide the best description of the observed phenomena. The set of possible
values of each degree 𝑑𝑖 is the interval [0, 1]. Thus, the boundary of this set consists
of two points – 0 and 1.
So, a simple application of calculus implies that in most case, the most adequate

model is the one in which all the degree are either 0s or 1s – i.e., a crisp model.
This explains why in many case, crisp techniques work better.

Comment. It should be mentioned that this argument is not completely new: we had
a similar argument – for a somewhat different purpose – in [10].

This is not just a theoretical conclusion. One may think that our conclusion is too
abstract and too theoretical to be convincing, but this conclusion is confirmed by
several more down-to-earth examples.
For example, in [3], the authors assumed that the membership functions are trape-

zoidal, and used optimization techniques to find the parameters of these functions
that lead to the best results. Interestingly (and unexpectedly), the optimal member-
ship functions turned out to be crisp ones, where the membership function is always
equal either to 0 or ro 1.

3 A Subjective Explanation

Let us now consider various models – fuzzy or crisp – from the subjective viewpoint.

How subjective knowledge is usually described.Usually, one knowledge about the
control or prediction is described by rules. Namely, if we are interested in predicting
(or determining) the value of the desired quantity 𝑞 based on the values of the known
quantities 𝑞1, . . . , 𝑞𝑚, then we do the following:

• for each of 𝑚 inputs and for the desired output, we select several levels – e.g.,
small, medium, large, somewhat large, etc.;

• for each combination of input levels, we described the expected level of 𝑦.

For example, if we have two levels for each 𝑞𝑖 – small and large – and two variables
(𝑚 = 2), then we can have rules like the following:

if 𝑞1 is small and 𝑞2 is small, then 𝑦 is small,
if 𝑞1 is small and 𝑞2 is large, then 𝑦 is medium, etc.

Our abilities are limited: general fact. It is known – see, e.g., [6, 9] – that we can,
in general, process no more than seven plus minus two objects in our active mind.
Some people can only process 7 − 2 = 5 objects, some can process 7 + 2 = 9, but
practically no one can process more.

Let us apply this general fact to our case. From the viewpoint of the above-
described seven-plus-minus-two law, it makes sense to conclude that to be able to
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meaningfully use the system of rule, we must have no more than seven plus minus
two rules in this sequence:

• at most five rules if we want all people to be able to use these rules, and
• at most nine rules if we want at least some people to be able to use these rules.

What does this imply about the number of levels? For each input, we should have
at least two levels: otherwise, the conclusion does not depend on this input at all.
How many rules can we have? Let 𝐿𝑖 be the number of levels selected for the 𝑖-th

quantity 𝑞𝑖 . Then, we have as many rules as there are combinations of these levels –
i.e., 𝑅 = 𝐿1 · . . . · 𝐿𝑚 rules.
If we have only one input 𝑞1, then we have as many rules as there are levels:

𝑅 = 𝐿1. Thus, the above restriction on the number of rules means that we can have
no more than seven plus minus two levels – and this is what most applications of
fuzzy techniques do.
If we have two inputs 𝑞1 and 𝑞2, then ideally, we should have 𝐿1 · 𝐿2 ≤ 5 rules.

Since each number of levels 𝐿𝑖 is at least two, this means that in this case, we need
to have exactly two levels for each input.
If we want the rules to be usable by some people, then we should have 𝐿1 ·𝐿2 ≤ 9.

Here, we have several choices for the pair (𝐿1, 𝐿2):

(2, 2), (2, 3), (3, 2), (3, 3), (2, 4), (4, 2).

If we have three inputs, then there is no way to make rules usable by everyone.
If we want to have rules that can be used by some people, then we must have
𝐿1 · 𝐿2 · 𝐿2 ≤ 9. Under the condition 𝐿𝑖 ≥ 2, there is only one way to satisfy this
inequality: namely, to have 𝐿1 = 𝐿2 = 𝐿3 = 2.

This is exactly what we wanted to explain. If we have only two levels – e.g., small
or large – this means that we ignore all the nuances and, in effect, consider a crisp
case: either small or not small, either large or not large.
This is what we meant by subjective reason: we may, in principle, have many

possible degrees, but the limitations of our perception and information processing
ability leads to the use of crisp objects.

Comment. If we have more than 3 inputs, we cannot have no more than 9 rules: even
if for each input we have two different levels, with at least 4 inputs we will have at
least 24 = 16 rules. Thus, our intuitive rules are limited to the cases of no more than
three inputs.
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