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How to Select A Model If We Know

Probabilities with Interval Uncertainty

Vladik Kreinovich

Department of Computer Science

University of Texas at El Paso, 500 W. University

El Paso, Texas 79968, USA, vladik@utep.edu

Abstract

Purpose: When we know the probability of each model, a natural

idea is to select the most probable model. However, in many practical

situations, we do not know the exact values of these probabilities, we

only know intervals that contain these values. In such situations, a

natural idea is to select some probabilities from these intervals and

to select a model with the largest selected probabilities. The pur-

pose of this study is to decide how to most adequately select these

probabilities.

Design/methodology/approach: We want the probability-

selection method to preserve independence: If, according to the prob-

ability intervals, the two events were independent, then the selection

of probabilities within the intervals should preserve this independence.

Findings: We describe all techniques for decision making under

interval uncertainty about probabilities that are consistent with inde-

pendence. We prove that these techniques form a 1-parametric family,

a family that has already been successfully used in such decision prob-

lems.
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Originality/value: We provide a theoretical explanation of an

empirically successful technique for decision making under interval un-

certainty about probabilities. This explanation is based on the natural

idea that the method for selecting probabilities from the corresponding

intervals should preserve independence.

Keywords: Decision making under uncertainty; Interval uncer-

tainty about probabilities; Independent events; Maximum likelihood

approach.

1 Formulation of the Problem

Need for indirect measurements and data processing. In many prac-

tical situations, we are interested in the quantity y that is difficult – or even

impossible to measure directly. For example, we may be interested in tomor-

row’s temperature or in next year’s Gross Domestoc Product (GDP). Since

we cannot measure the quantity y directly, we need to measure it indirectly,

i.e.:

� find easier-to-measure quantities x1, . . . , xn which are related to y by a

known dependence y = f (x1, . . . , xn),

� measure the values of these quantities, resulting in measurement results

x̃1, . . . , x̃n, and

� compute the desired estimate ỹ = f (x̃1, . . . , x̃n) by applying the algo-

rithm f to the results x̃i of measuring xi.

Computing ỹ is an important particular case of data processing.

Need to find a model. In many practical situations, we know the function

f (x1, . . . , xn). For example, in celestial mechanics, we know how the future

location y of a celestial body depends on the current location and velocity of

this and other bodies. However, in many other practical situations, we do nor

know this dependence. In such cases, we need to determine this dependence

from the experiments and/or observations. Specifically;
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� in several (K) cases, we know both the values x
(k)
i of the inputs xi and

the value y(k) of the desired quantity y, and

� we need to find the dependence f (x1, . . . , xn) that is consistent with

all these observations, i.e., for which, for all k from 1 to K, we have

y(k) = f
(
x
(k)
1 , . . . , x(k)

n

)
. (1)

Terminological comment.

� The resulting function y = f (x1, . . . , xn) serves as a model of the cor-

responding situation.

� In statistics, the problem of finding a model is known as regression.

� In computer science, the same problem – when solved by an algorithm

– is known was machine learning.

� In this paper, we use the word “model” in the general scientific sense

– as a description of a real-life process, i.e., in this case, as a function

f(x1, . . . , xn) that estimates the desired quantity y. To avoid possi-

ble confusion, it should be mentioned that in statistics, sometimes, a

“model” means a family of such functions – e.g., all linear functions or

all linear functions that depend only on the first k variables x1, . . . , xk.

Need to select a model.

� To describe a general function f (x1, . . . , xn), we need to describe in-

finitely many parameters – e.g., the values of the function at all the

tuples (x1, . . . , xn) for which all the values xi are rational.

� Our on;y requirement on possible functions is to satisfyK equations (1).

Here, the number of parameters much larger than the number of equations.

Thus, there are, in general, many different functions that fits all the obser-

vations.
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We therefore need to select one of these functions, i.e., we need to select

a model.

How a model is selected now: case when we know probabilities. In

some cases, we know the probabilities pi of different models. In this case, a

reasonable idea is to select the most probable model, i.e., the model whose

probability is the largest: pi = max
j

pj.

Such a selection is, e.g., one of the main ideas behind the maximum

likelihood approach to model selection; see, e.g., (Sheskin, 2011). In this

method, usually, we maximize the probability p by solving the equivalent

problem of minimizing the quantity

L
def
= − ln (p) .

Comment. It should be mentioned that, strictly speaking, likelihood is not

the probability of a model, it is the probability of the data according to

this model. To come up with the probability of the model, we need to use

Bayesian approach. In this approach, if we assume that a priori all models are

equally probable – i.e., that prior distribution is uniform – then likelihood

becomes proportional to the probability of the model, so that maximizing

likelihood is equivalent to maximizing the model’s probability.

What if we only have partial information about probabilities: de-

scription of the situation. Often, we only have partial information about

the probabilities. For example, instead of the exact values pi of each proba-

bility, we only know the lower bound p
i
and the upper bound pi: pi ≤ pi ≤ pi.

In this case, the only information that we have about the probability pi is

that this probability is contained on the interval
[
p
i
, pi

]
. Thus, this situation

is known as interval uncertainty.

How to make a decision under such interval uncertainty: a natural

idea. in situations with interval uncertainty, it is desirable to apply well-

traditional probability-based decision making technique. To do this, we need

to select, within each of the intervals
[
p
i
, pi

]
, one of the values pi, and then
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select the model with the largest value of this selected probability pi.

Resulting challenge. How do we select a value pi in each interval? There

are many different ways to select, which one should we choose?

What we do in this paper. In this paper, we show that a natural condi-

tion on the selection of the probability values from the corresponding inter-

vals uniquely determine a 1-parametric family of such selections – the only

selections that satisfy this natural condition.

2 Main Result

Natural condition: informal description. We want to find a mapping

that assigns, to each interval of probability values, a number from this in-

terval. It is desirable to select this mapping so that it preserves important

properties of the situation.

In probabilistic techniques, one of the most important notions is the

notion of independence. It is therefore reasonable to require that the de-

sired intervals-to-numbers mapping satisfy the following condition: If the

two events were independent, then this mapping should preserve this inde-

pendence.

Let us formalize this natural condition. If two events with probabilities

p1 and p2 are independent, then the probability of them occurring at same

time is equal to the product p1 · p2 of the corresponding probabilities. If for

each of these events, we only know the interval
[
p
i
, pi

]
of possible values of

its probability, then possible values of the probability that both events occur

is equal to the set of possible values{
p1 · p2 : p1 ∈

[
p
1
, p1

]
and p2 ∈

[
p
2
, p2

]}
.

One can easily check that this set is equal to the interval
[
p
1
· p

2
, p1 · p2

]
; see,

e.g., (Jaulin at al., 2012), (Kubica, 2019), (Mayer, 2017), (Moore, Kearfott,

and Cloud, 2009). Indeed, for non-negative values pi, the product function
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p1, p2 7→ p1 ·p2 is (non-strictly) increasing with respect to each of its variables.

Thus:

� the smallest possible value of this function when pi ∈
[
p
i
, pi

]
is attained

when both inputs are the smallest possible, i.e., when pi = p
i
for both

i, and

� the largest possible value of this function when pi ∈
[
p
i
, pi

]
is attained

when both inputs are the largest possible, i.e., when pi = pi for both i.

Thus, we arrive at the following definition.

Definition. We say that a mapping f that maps each subinterval
[
p, p

]
of

the interval [0, 1] into a number f
(
p, p

)
from this interval is natural if it

satisfies the following condition: for all values p
1
≤ p1 and p

2
≤ p2, we have

f
(
p
1
· p

2
, p1 · p2

)
= f

(
p
1
, p1

)
· f

(
p
2
, p2

)
.

Proposition. A mapping is natural if and only if, for some α ∈ [0, 1], it has

the form

f
(
p, p

)
= pα · p1−α.

Discussion. The function L = − ln (p) is decreasing with respect to p.

Thus, when p ∈
[
p, p

]
, then:

� the smallest value L of L = − ln (p) is attained when p is the largest,

i.e., when p = p:

L = − ln (p) ;

� the largest value L of L is attained when p is the smallest, i.e., when

p = p:

L = − ln
(
p
)
.

For the values L = − ln (p), L = − ln (p), and L = − ln
(
p
)
, the above

formula takes the form L = α · L + (1− α) · L. Interestingly, this is exactly
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Hurwicz optimism-pessimism criterion that is used for decision making under

interval uncertainty; see, e.g., (Hurwicz, 1951), (Kreinovich, 2014), (Luce and

Raiffa, 1989).

This model selection has been successfully used; see, e.g., (Denoeux,

2023).

Proof of the Proposition.

1◦. It is easy to prove that the above formula leads to a natural mapping.

So, to complete the proof, it is sufficient to prove that every natural mapping

has this form.

Let f
(
p, p

)
be a natural mapping. Let is prove that it has the desired

form.

2◦. For each p, by definition of a natural mapping, the value f (p, p) belongs

to the interval [p, p] and is, thus, equal to p. In particular, for p = 0, we get

f (0, 0) = 0.

3◦. Let us first take p
1
= p

1
= 0 and p2 = p2 = 1. In this case, the naturalness

condition implies that f (0, 1) · f (0, 1) = f (0, 1). Thus, either f (0, 1) = 1 or

f (0, 1) = 0. Let us consider these two possible cases one by one.

4◦. Let us first consider the case when f (0, 1) = 1.

4.1◦. In this case, for every a ∈ [0, 1], for p
1
= 0, p1 = 1, p

2
= 1, and

p2 = 1, we get f (0, 1) · f (a, 1) = f (0, 1). Since f (0, 1) = 1, this means that

f (a, 1) = 1 for all a.

4.2◦. Now, for all possible p ≤ p for which p > 0, naturalness leads to

f
(
p, p

)
= f (p, p) · f

(
p/p, 1

)
.

As we have proven in Section 4.1 of this proof, the second factor f
(
p/p, 1

)
is equal to 1. The first factor f (p, p) is, by Part 2 of this proof, equal to p.

So, for all cases when p > 0, we have f
(
p, p

)
= p.
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4.3◦. For p = 0, the formula f
(
p, p

)
= p is also true – by Part 2 of this proof.

Thus, this formula holds for all p ≤ p. This corresponds to α = 0.

5◦. Let us now consider the case when f (0, 1) = 0.

In this case, naturalness implies that, for all p, we have

f (0, p) = f (0, 1) · f (0, p)

and hence f (0, p) = 0. Let us now consider intervals for which p > 0.

5.1◦. Let us first consider the values f (a, 1) corresponding to a > 0. When

a < b, then we have f (a, 1) = f (a/b, 1) · f (b, 1). Since f (a/b, 1) is a proba-

bility, it is smaller than or equal to 1, thus, f (a, 1) ≤ f (b, 1), i.e., f (a, 1) is

a non-strictly increasing function of a.

5.2◦. Each value a > 0 can be represented as exp (−A) for A = − ln (a).

By definition of the natural mapping, each such value f (a, 1) for a > 0 is

greater than or equal to a > 0 and thus, f (a, 1) > 0. So, we can take loga-

rithm of these values as well. Let us denote F (A)
def
= − ln (f (exp (−A) , 1)).

Probabilities f (exp (−A) , 1) are smaller than or equal to 1, so

ln (f (exp (−A) , 1)) ≤ 1 = 0

and thus, for F (A)
def
= − ln (f (exp (−A) , 1)), we always have F (A) ≥ 0. In

particular, F (1) ≥ 0.

5.3◦. Let us prove that F (A) is a (non-strictly) increasing function.

Indeed, if A < B, then −A > −B. Since exp (x) is an increasing function,

we get exp (−A) > exp (−B). Since f (a, 1) is a non-strictly increasing func-

tion of a, we conclude that f (exp (−A) , 1) ≥ f (exp (−B) , 1). Since ln (x)

is an increasing function, we conclude that

ln (f (exp (−A) , 1)) ≥ ln (f (exp (−B) , 1)) .

Multiplying both sides by −1, we get

− ln (f (exp (−A) , 1)) ≤ − ln (f (exp (−B) , 1)) ,
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i.e., F (A) ≤ F (B). The statement is proven.

5.4◦. For values f (a, 1), naturalness implies that f (a · b, 1) = f (a, 1)·f (b, 1).

For a = exp (−A) and b = exp (−B), we have a · b = exp (− (A+B)), thus,

f (exp (− (A+B)) , 1) = f (exp (−A) , 1) · f (exp (−B) , 1) .

By taking negative logarithms of both sides, we get

F (A+B) = F (A) + F (B) . (2)

5.5◦. For every integer m, the formula (2) implies that

F (m · A) = F (A+ . . .+ A (m times)) =

F (A) + . . .+ F (A) (m times) = m · F (A) . (3)

In particular, for m = n and A = 1/n, we get F (1) = n · F (1/n), hence

F (1/n) = (1/n) · F (1) . (4)

For a general m and A = 1/n, we get F (m/n) = m ·F (1/n). Due to (4), we

get F (m/n) = (m/n) ·F (1), i.e., F (r) = r ·F (1) for all rational number r.

5.6◦. For every real number x and for every positive integer n, we can take,

as mn, an integer part of n · x, so that mn ≤ n · x < mn + 1. By dividing all

parts of this inequality by n, we get mn/n ≤ x < (mn + 1) /n. In the limit

n → ∞, we get mn/n → x and (mn + 1) /n → x.

By Part 5.3 of this proof, the function F (A) is non-strictly increasing,

thus F (mn/n) ≤ F (x) ≤ F ((mn + 1) /n). Due to Part 5.5, this means that

(mn/n) · F (1) ≤ F (x) ≤ ((mn + 1) /n) · F (1) .

In the limit n → ∞, we have

(mn/n) · F (1) → x · F (1) and ((mn + 1) /n) · F (1) → x · F (1) .
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Thus, in the limit, we get x ·F (1) ≤ F (x) ≤ x ·F (1), i.e., F (x) = x ·F (1).

5.7◦. By definition, F (A) = − ln (f (exp (−A) , 1)), thus,

f (exp (−A) , 1) = exp (−F (A)) = exp (−A · F (1)) .

Substituting A = − ln (a) into this expression, we get

f (a, 1) = eln(a)·F (1) =
(
eln(a)

)F (1)
= aF (1).

The condition that f (a, 1) ≥ a implies that F (1) ≤ 1, thus F (1) ∈ [0, 1].

5.8◦. For every pair 0 < p ≤ p, naturalness implies that

f
(
p, p

)
= f (p, p) · f

(
p/p

)
.

By Part 2 of this proof, the first factor in this product is equal to p. Due to

Part 5.7, we get the expression for the second factor, thus we get

f
(
p, p

)
= p ·

(
p/p

)F (1)
= pF (1) · p1−F (1).

This is exactly the desired formula, for α = F (1) – limited to the case when

p > 0. Then:

� If α = 0, we get the case considered in Part 4 of this proof.

� For α > 0 and p = 0, we have 0α · p1−α = 0, and f (0, p) = 0 by Part 5,

so the desired equality holds for all p ≤ p.

The proposition is proven.
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