
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

8-1-2023

Why Unit Two-Variable-Per-Inequality (UTVPI) Constraints Are So Why Unit Two-Variable-Per-Inequality (UTVPI) Constraints Are So

Efficient to Handle: Intuitive Explanation Efficient to Handle: Intuitive Explanation

Saeid Tizpaz-Niari
The University of Texas at El Paso, saeid@utep.edu

Martine Ceberio
The University of Texas at El Paso, mceberio@utep.edu

Olga Kosheleva
The University of Texas at El Paso, olgak@utep.edu

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Sciences Commons, and the Mathematics Commons

Comments:

Technical Report: UTEP-CS-23-45

Recommended Citation Recommended Citation
Tizpaz-Niari, Saeid; Ceberio, Martine; Kosheleva, Olga; and Kreinovich, Vladik, "Why Unit Two-Variable-Per-
Inequality (UTVPI) Constraints Are So Efficient to Handle: Intuitive Explanation" (2023). Departmental
Technical Reports (CS). 1830.
https://scholarworks.utep.edu/cs_techrep/1830

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1830?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1830&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Why Unit Two-Variable-Per-Inequality (UTVPI)
Constraints Are So Efficient to Handle: Intuitive
Explanation

Saeid Tizpaz-Niari, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

Abstract In general, integer linear programming is NP-hard. However, there ex-
ists a class of integer linear programming problems for which an efficient algo-
rithm is possible: the class of so-called unit two-variable-per-inequality (UTVPI)
constraints. In this paper, we provide an intuitive explanation for why an efficient
algorithm turned out to be possible for this class. Namely, the smaller the class, the
more probable it is that a feasible algorithm is possible for this class, and the UTVPI
class is indeed the smallest – in some reasonable sense described in this paper.

1 Formulation of the Problem

Linear programming. In many practical situations, we are interested in checking
whether a given system of linear inequalities

a1,1 · x1 + . . .+a1,n · xn ≤ b1,

. . .

am,1 · x1 + . . .+am,n · xn ≤ bm,

with given ai, j and bi, has a solution. For example, linear inequalities correspond to
constraints on an engineering design, and we want to check if it is at all possible to
find a solution that satisfies all these constraints. Such problems are known as prob-

Saeid Tizpaz-Niari, Martine Ceberio, and Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: saeid@utep.edu, mceberio@utep.edu, vladik@utep.edu

Olga Kosheleva
Department of Teacher Education, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: olgak@utep.edu

1

2 Saeid Tizpaz-Niari, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

lems of linear programming. There exist efficient – polynomial time – algorithms
for solving these problems; see, e.g., [5].

Integer linear programming. In the usual formulation of linear programming, vari-
ables xi can take any real values. However, in some practical applications, they can
only take integer values. For example, xi may be the number of workers that need to
be added to (or subtracted from) a task. In such cases, usually, it also makes sense to
assume that the coefficients ai, j and bi are integers. Problems under such restriction
are known as problems of integer linear programming.

It is known that, in general, these problems are NP-hard; see, e.g., [1].

Feasibly solvable classes of integer linear programming problems. There ex-
ist classes of integer linear programming problems for which there is a feasible
algorithm for checking consistency. One of such classes is the class of Unit Two-
Variable-Per-Inequality (UTVPI) constraints; see, e.g., [3, 4]. In this class, each in-
equality has one of the following forms:

xi ≤ b, −xi ≤ b, xi + x j ≤ b, xi − x j ≤ b, −xi − x j ≤ b. (1)

Interestingly, if we allow slightly more general inequalities of the type

ai · xi +a j · x j ≤ b,

with arbitrary integer ai, then the problem of checking consistency becomes NP-
hard; see, e.g., [2].

Natural question. Technically, proofs are there, but it would be nice to have, in
addition to the proofs, an intuitive explanation of these results: why inequalities of
type (1) allow a feasible algorithm while other types of inequalities don’t?

What we do in this paper. In this paper, we provide a possible intuitive explanation
that answers at least some of these questions.

2 Towards an Intuitive Explanation

General idea. As we have mentioned, for the class L of all possible linear integer
inequalities

a1 · x1 + . . .+an · xn ≤ b, (2)

with integer ai and b (and xi), the problem of checking whether the system is con-
sistent is NP-hard. We are interesting in finding subclasses of this class for which:

• if we only allow inequalities from this subclass,
• then consistency checking becomes feasible.

In general, if a class of problem allows a feasible algorithm, then this same algorithm
works for all subclasses of this class. On the other hand, if we keep increasing the

Why Unit Two-Variable-Per-Inequality (UTVPI) Constraints Are So Efficient to Handle 3

size of the class, then eventually, we may reach a class for which the corresponding
problem is NP-hard. So, sufficiently small classes allow feasible algorithms, while
for sufficiently large algorithms, the problem becomes NP-hard. From this view-
point, the smaller the class, the larger the chances that this class allows a feasible
algorithm.

Thus, if we want to find a subclass of the class L for which we a feasible algo-
rithm is possible, our best chance is to look for the smallest subclasses, i.e., for the
subclasses with the smallest number of elements.

Two properties of a natural subclass. Which subclasses are natural?
First, let us recall that the ordering of the variables xi is usually absolutely arbi-

trary. Because of this, whether an inequality belongs to this subclass or not should
not depend on this ordering. In other words, for any permutation π : {1, . . . ,n} 7→
{1, . . . ,n}:

• if the inequality (2) belongs to this subclass,
• then the permuted inequality

a1 · xπ(1)+ . . .+an · xπ(n) ≤ b (3)

should also belong to this class.

Second, in many occasions, the sign of each variable xi is chosen arbitrary. For
example:

• We can interpret xi as the number of workers that need to be added to the task.
In this case, if we do need to add workers, then xi is positive, and if we need to
move some workers to other tasks, the value xi should be negative.

• Alternatively, we can interpret xi as the number of workers that need to be re-
moved from the task. In this case, if we need to add workers, the value xi be-
comes negative, but if we need to move some workers to other tasks, the value xi
should be positive.

In precise terms, what was xi in the first interpretation becomes −xi in the second
one, and vice versa. If we replace xi with −x′i in inequality (2), then the sign at the
i-th variable changes: ai · xi becomes (−ai) · x′i. Since, as we have mentioned, the
sign of each variable is chosen arbitrarily, it makes sense to require that:

• if an inequality (2) belongs to this subclass,
• then, for each i, an inequality obtained from (2) by changing the sign of the i-th

variable

a1 · x1 + . . .+ai−1 · xi−1 +(−ai) · xi +ai+1 · xi+1 + . . .+an · xn ≤ b (4)

should also belong to this class.

So, we arrive at the following definition.

Definition 1. A non-empty subclass of the class L of all integer inequalities (2) is
called natural if it is closed under any permutation (3) and under changing the sign
of each variable (4).

4 Saeid Tizpaz-Niari, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

Since we are looking for the smallest possible natural subclasses, it makes sense
to consider natural subclasses for which no proper subclass is natural.

Definition 2. We say that a natural subclass S is basic if no proper subclass of S is
natural.

Let us describe all possible natural subclasses. The following result describes all
possible natural subclasses.

Proposition 1. Each basic natural subclass S is described by:

• a positive integer k ≤ n,
• positive integers k1, . . . ,km for which k1 + . . .+ km = k, and
• m different positive integers p1, . . . , pm.

Elements of this class are obtained by permutation from inequalities of the type

ε1 · p1 · x1 + . . .+ εk1 · p1 · xk1+

εk1+1 · p2 · xk1+1 + . . .+ εk1+k2 · p2 · xk1+k2+

. . .+

εk1+...+km−1+1 · pm · xk1+...+km−1+1 + . . .+

εk1+...+km−1+(km−1) · pm · xk1+...+km−1+(km−1)+ εk · pm · xk ≤ b, (5)

where ε j ∈ {−1,1}.

Proof. Indeed, let S be any basic natural subclass, and let us pick any inequality
from this class.

• Let k denote the number of non-zero coefficients ai in this inequality.
• Let m denote the number of different absolute values of the non-zero coefficients.
• Let p1, . . . , pm denote these different absolute values.
• For each j from 1 to m, let k j denote the number of variables for which |ai|= p j.

Then, we can perform the following permutation:

• first, we place all k1 indices for which |ai|= p1,
• then, we place all k2 indices for which |ai|= p2, etc.,
• finally, we place all km indices for which |ai|= pm,
• and after that, we place all indices (if any) for which ai = 0.

Since the class S is natural, after this permutation, we still get an inequality from the
class S. This permuted inequality has exactly the representation (5), with εi

def
= ai/p j,

where j is the index for which |ai|= p j.
Since the original class S was natural, all inequalities obtained from (5) by per-

mutations also belong to the class S. So, the class S′ of all these inequalities is a
subclass of the class S. One can easily check that this class S′ is indeed closed un-
der permutations and under changing signs. So, by Definition 1, the class S′ ⊆ S is
natural. Since the class S is basic, this means that S′ cannot be a proper subclass of
the class S. Thus, we have S′ = S. The proposition is proven.

Why Unit Two-Variable-Per-Inequality (UTVPI) Constraints Are So Efficient to Handle 5

How many elements are in each basic natural class. Since we are interested in
finding basic natural classes with the smallest number of elements, let us find out
what is the size of each such class.

Proposition 2. Each basic natural class has

2k · n!
k1! · . . . · km! · (n− k)!

(6)

elements.

Proof. To count number of elements in the class, let us first count the number of
elements in which all the coefficients are positive. For each such element, we can
select one of the two signs for each of the k non-zero coefficients, so we get 2k

different inequalities.
To get one of the all-positive elements, we need to enumerate all possible permu-

tations. To describe such a permutation, first, we need to select k1 out of n elements
for which we will have ai = p1. According to basic combinatorics, the number of
such elements is equal to:

n!
k1! · (n− k1)!

. (7)

For each such selection, we need to select k2 out of the not-yet–assigned n− k1
variables. This leads to the following number of choices

(n− k1)!
k2! · (n− k1 − k2)!

, (8)

etc. As a result, we get the following number of permutations:

n!
k1! · (n− k1)!

· (n− k1)!
k2! · (n− k1 − k2)!

· . . . · (n− k1 − . . .− km−1)!
km! · (n− k1 − . . .− km)!

. (9)

One can see that all the terms (n− k1)!, (n− k1 − k2)!, . . . , (n− k1 − . . .− km−1)!
appear both in the numerator and in the denominator of the product (9) and thus,
cancel each other. So, the only remaining terms in the formula (9) are:

n!
k1! · . . . · km! · (n− k1 − . . .− km)!

.

Since k1 + . . .+ km = k, this number is equal to

n!
k1! · . . . · km! · (n− k)!

.

As we have mentioned, for each such permutation, we have 2k inequalities cor-
responding to different combinations of signs, so overall we get exactly the for-
mula (6).

The proposition is proven.

6 Saeid Tizpaz-Niari, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

Now, we can find out which class has the smallest number of elements. We need
to take into account that since the complexity of the problem increases with n, we
are mainly interested in cases when n is sufficiently large.

Proposition 3. When n > 5, in a basic natural class with the smallest number of
elements, all inequalities have the form εi · p1 · xi ≤ b.

Proof. For each k, the number of different elements in a basic natural class is de-
scribed by the formula (6). Similar to our argument in the proof of Proposition 2,
the ratio

k!
k1! · . . .km!

represents the number of ways we can divide k indices into groups of k1, . . . ,km.
This number is always greater than or equal to 1, and it is only equal to 1 when we
do not have any such division, i.e., when m = 1 and k1 = k. Thus, for each k, we
have

2k · n!
k1! · . . . · km! · (n− k)!

≥ 2k · n!
k! · (n− k)!

,

and when m > 1, it is a strict inequality. Thus, for each k, the smallest possible size
if when m = 1. In this case, the number (6) of elements in a class is described by the
formula

2k · n!
k! · (n− k)!

. (10)

It is known that the factor
n!

k! · (n− k)!

strictly increases for k ≤ n/2 and strictly decreases for k ≥ n/2. For k ≤ n/2, the
factor 2k also increases. So, the product of these factors also increases, and thus, out
of all values k ≤ n/2, the smallest value is attained for k = 1, it is equal to 2n.

For k ≥ n/2, the smallest value of the second factor is attained when k = n, in
which case this factor is 1. In this case, the product is equal to 2n which, for n > 5,
is always larger that 2n. Thus, the case k = n cannot correspond to the smallest
subclass size. The next smallest value of the second factor is when k = n− 1, in
this case the second factor is equal to n. In this case, the product is equal to 2n−1 ·n
which, for n > 5, is also larger than 2n.

For k = n−2, the second factor is equal to

n · (n−1)
2

.

When n > 5, we have
n−1

2
> 2

and thus,
n · (n−1)

2
> 2n.

Why Unit Two-Variable-Per-Inequality (UTVPI) Constraints Are So Efficient to Handle 7

Thus, this case also cannot be the smallest. For k between n/2 and n−2, the second
factor is even larger, so we also have more elements than in the case of k = 1. The
description of each such class provided in Proposition 1 leads to the conclusion that
its inequalities indeed have the desired type. The proposition is proven.

From the viewpoint of checking consistency, this smallest class is trivial. Our
objective is to check consistency. From this viewpoint, the above class is not in-
teresting: if each inequality is about only one variable, then checking consistency
simply means checking that inequalities corresponding to each variable are consis-
tent. This is trivial, since each inequality of the type a · xi ≤ b is equivalent:

• to xi ≤ ⌊b/p1⌋ is εi = 1, and
• to ⌊b/p1⌋ ≤ xi if εi =−1.

Let us look for the smallest non-trivial class. It therefore makes sense to looks for
the smallest non-trivial class.

Definition 3. We say that a class of inequalities is non-trivial if at least one of its
inequalities contains at least two variables with non-zero coefficients.

Proposition 4. For sufficiently large n, in a non-trivial basic natural class with the
smallest number of elements, all inequalities have the form

εi · p1 · xi + ε j · p1 · x j ≤ b. (11)

Proof. Non-trivial means that we cannot have k = 1, so we must have k/ge2. As in
the proof of Proposition 3, we can conclude that the smallest number of elements is
when m = 1. In this case, as in the previous proof, for k ≤ n/2, the smallest number
corresponds to k = 2, when we have

22 · n · (n−1)
2

= 2 ·n · (n−1)

elements. For k ≥ n/2, the first factor is at least 2n/2, and for large n, this is larger
than 2 ·n · (n−1), since exponential function grows faster than a polynomial. Thus,
the smallest number of elements is indeed attained when k = 2. The use of Proposi-
tion 1 completes the proof.

This leads to the desired explanation. Each inequality (11) is equivalent to

εi · xi + ε j · x j ≤ ⌊b/p1⌋,

i.e., to two-variable inequalities of type (1). Thus, the class of inequalities (1) –
for which a feasible consistency-checking algorithm is possible – can be easily ex-
plained. Namely, in (1), we consider:

• inequalities from the trivial basic natural classes, and
• inequalities form the smallest non-trivial basic natural classes.

8 Saeid Tizpaz-Niari, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

Comment. Of course, our discussions do not provide a proof that a feasible algorithm
is possible for inequalities of type (1), it just provides the following explanation of
why a feasible algorithm turned out to exist for this particular class:

• it is reasonable to expect that the smaller the class, the more probable it is that a
feasible algorithm is possible for this class, and

• the class (1) is indeed the smallest – in some reasonable sense described in this
paper.

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), EAR-
2225395, and by the AT&T Fellowship in Information Technology.

It was also supported by the program of the development of the Scientific-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478,
and by a grant from the Hungarian National Research, Development and Innovation
Office (NRDI).

References

1. Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT
Press, Cambridge, Massachusetts, 2022.

2. D. S. Hochbaum and J. Naor, “Simple and fast algorithms for linear and integer programs with
two variables per inequality”, SIAM Journal of Computing, 1994, Vol. 23, No. 6, pp. 1179–
1192.

3. S. K. Lahiri and M. Musuvathi, “An efficient decision procedure for UTVPI constraints”,
Proceedings of the International Workshop on Frontiers of Computing Systems ProCos 2005,
Springer Lecture Notes in Artificial Intelligence, 2005, Vol. 3717, pp. 168–183.

4. K. Subramani1 and P. Wojciechowski, “Integer feasibility and refutations in UTVPI constraints
using bit-scaling”, Algorithmica, 2023, Vol. 85, pp. 610–637.

5. R. J. Vanderbei, Linear Programming: Foundations and Extensions, Springer, New York, 2014

	Why Unit Two-Variable-Per-Inequality (UTVPI) Constraints Are So Efficient to Handle: Intuitive Explanation
	Recommended Citation

	tmp.1693589763.pdf.Wuw0s

