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How to Best Retrain a Neural Network If We
Added One More Input Variable

Saeid Tizpaz-Niari and Vladik Kreinovich

Abstract Often, once we have trained a neural network to estimate the value of a
quantity y based on the available values of inputs x1, . . . ,xn, we learn to measure the
values of an additional quantity that have some influence on y. In such situations, it
is desirable to re-train the neural network, so that it will be able to take this extra
value into account. A straightforward idea is to add a new input to the first layer and
to update all the weights based on the patterns that include the values of the new
input. The problem with this straightforward idea is that while the result is a minor
improvement, such re-training will take a lot of time, almost as much as the original
training. In this paper, we show, both theoretically and experimentally, that in such
situations, we can speed up re-training – practically without decreasing resulting
accuracy – if we only update some weights.

1 Formulation of the Problem

Need for machine learning: a brief reminder. In many real-life situations, the
value of a quantity y is, to a large extent, determined by the values of related quan-
tities x1, . . . ,xn. This situation is typical for predictions, where the future value y
of some quantity (e.g., tomorrow’s temperature) is largely determined by today’s
values of temperature, wind speed, humidity, etc., at this location and at nearby
locations.

In some cases, we know explicit formulas – or at least effective algorithms –
for determining y based on x1, . . . ,xn; this is, e.g., the case of celestial mechanics,
where we can predict solar eclipses hundreds of years ahead. However, in many
other cases, no such formula or algorithm is known. In such cases, all we have is
many (P) cases when we know both the values x(p)

1 , . . . ,x(p)
n of the input and the
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value y(p) of the output. Based on these patterns
(

x(p)
1 , . . . ,x(p)

n ,y(p)
)

, we need to
find an algorithm f (x1, . . . ,xn) for which, for each of these patterns p = 1, . . . ,P, we
have

y(p) ≈ f
(

x(p)
1 , . . . ,x(p)

n

)
.

Finding such algorithm based on the given patterns is known as regression in statis-
tics and as machine learning in computer science.

Deep learning: a brief reminder. At present, one of the most effective machine
learning tools is deep learning that uses deep (multi-layer) networks of (artificial)
neurons. In general, in a neural network, each neuron – except for the very last one
– transforms its inputs z1, . . . ,zm into the output

t = s(w1 · z1 + . . .+wm · zm +w0),

where:

• s(z) is a given nonlinear function called activation function, and
• wi are numerical parameters called weights.

The last neuron simply returns the value y = w1 ·z1+ . . .+wm ·zm+w0, without any
additional nonlinear transformation.

Neurons are usually divided into layers:

• Neurons from the first layer process the original data x1, . . . ,xn (e.g., the original
measurement results).

• Neurons from the second layer use, as inputs, outputs of the neurons from the
first layer.

• In general, neurons from the (ℓ+1)-st layer use, as inputs, outputs of the neurons
from the ℓ-th layer.

The output(s) of the neuron(s) of the last layer is the final answer that is returned to
the user.

• In some cases, there are only two layers; such neural networks are called shal-
low. This was a traditional way neural networks were used in the past, see,
e.g., [3]. Shallow neural networks usually use the activation function s(z) =
1/(1+ exp(−z)) called sigmoid.

• When a neural network contains a reasonably large number of layers, it is called
deep. In deep learning, the neurons use the activation function s(z) = max(0,z).
This function is known as rectified linear unit, or ReLU, for short.

The weights wi are selected so as to minimize, for each of the given patterns p,
some measure of difference between the desired output y(p) and the result of apply-
ing the network with current weights to this pattern’s inputs x(p)

1 , . . . ,x(p)
n . This min-

imization is usually performed by gradient descent, with a special algorithm called
backpropagation that speed up the computation of the corresponding gradients.
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Terminological comment. The only layer whose results are visible to the user is the
last layer. Because of this, all other layers are known as hidden layers. In these
terms:

• a shallow neural network contains only one hidden layer, while
• a deep neural network contains a reasonable large number of hidden layers.

Computational comment. Usually, as we have mentioned, the inputs to each neuron
on the (ℓ+ 1)-st layer comes from outputs of the neurons on the previous level ℓ.
However, sometimes, it is convenient to add, as additional inputs for this neuron,
some outputs from the previous layers ℓ−1, ℓ−2, all the way to (some of the) input
signals x1, . . . ,xn. Such neural networks are called residual. A simple explanation of
why residual networks are sometimes more effective is given, e.g., in [6].

Often, we need to add an extra variable. The list of inputs x1, . . . ,xn is usually
limited to quantities whose values are available – and about which we know that
they affect the value of the quantity y. This list may miss some quantities whose use
may lead to a better prediction of y:

• either because we do not know that the use of this extra variable will be useful,
• or because we do not know how to measure the corresponding quantity.

Later on, we may learn that this new variable is useful – e.g., we may learn that one
of the obscure numbers included in a routin blood test may help to better diagnose
some disease.

In such situation, we face the following problem:

• we already have a neural network trained to predict the desired value y based on
the values of the quantities x1, . . . ,xn;

• we also have some patterns
(

x(p)
1 , . . . ,x(p)

n ,x(p)
n+1,y

(p)
)

that include the values of
the new variable xn+1;

• we would like to have a neural network trained to predict y based on the values
of all available quantities x1, . . . ,xn,xn+1, including the new quantity xn+1.

A straightforward idea, its limitations, and the resulting problem. A natural idea
is to start with the current trained neural network (with n inputs):

• we add a new input to the first layer, with (e.g.) random weights from xn+1 to all
the neurons in the first layer, and then

• we use backpropagation to train the resulting network based on the newly avail-
able patterns.

The problem is that, in general, training takes a long time. There is not much that we
can do in general, when we start “from scratch”. However, in our situation, we are
not starting from scratch, we start with the model that already has good predictions,
we are just making small improvements to these predictions.
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In general, in numerical computations, the knowledge of an approximate solution
enables us to speed up computations in comparison with situations when no approx-
imate solution is known and we need to start from scratch. A natural question is: can
we speed up this re-training?

What we do in this paper. In this paper, we show that it is indeed possible to speed
up the re-training caused by adding an extra quantity.

2 Analysis of the Problem

Main idea. The only way to speed up re-training is not to perform the full backprop-
agation, i.e., in effect, not to reach the absolute minimum of the objective function.
In other words, if we do not use full re-training, the resulting network may be not as
accurate as it could be.

This may not be so bad if we take into account that neural networks provide, in
general, only an approximate description of the actual dependence. So:

• if the inaccuracy caused by not doing the full re-training is comparable with the
usual approximation errors of the usual neural networks,

• then this minor inaccuracy is quite acceptable.

This acceptability can be explained on a simple example:

• if we measure the car’s weight with an accuracy of 1 kg, and
• then we add load to it to find the total weight of the loaded car,

it does not make sense to measure the weight of the load with a 1 gram accuracy:
when we weigh the load, the accuracy of 1 kg is quite sufficient.

To use this idea, let us analyze how accurately can a generic function be approx-
imated by a neural network. For this purpose, let us first analyze how accurately a
function can be approximated in general.

How accurately can a function be approximated in general? In real life, most
dependencies are analytical – or at least well described by analytical functions; see,
e.g., [4, 7]. A natural way to approximate such functions is to expand the corre-
sponding expression into Taylor series and to keep the first few terms in this ex-
pansion. If we keep only linear terns, we get an expression with n+ 1 parameters
ai:

f (x1, . . . ,xn) = a0 + ∑
1≤i≤n

ai · xi.

If we also retain quadratic terms, then we get an expression with O(n2) parameters:

f (x1, . . . ,xn) = a0 + ∑
1≤i≤n

ai · xi + ∑
1≤i≤ j≤n

ai, j · xi · x j,

If we also retain cubic terms, we need O(n3) parameters:
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f (x1, . . . ,xn) = a0 + ∑
1≤i≤n

ai · xi + ∑
1≤i≤ j≤n

ai, j · xi · x j+

∑
1≤i≤ j≤k≤n

ai, j,k · xi · x j · xk. (1)

To get a more accurate representation, we can also retain 4th order terms, this will
require O(n4) parameters:

f (x1, . . . ,xn) = a0 + ∑
1≤i≤n

ai · xi + ∑
1≤i≤ j≤n

ai, j · xi · x j+

∑
1≤i≤ j≤k≤n

ai, j,k · xi · x j · xk + ∑
1≤i≤ j≤k≤ℓ≤n

ai, j,k,ℓ · xi · x j · xk · xℓ.

How much accuracy can we attain with different approximation schemes? We
would like to know how accurate is the approximation provided by a deep neural
network. To answer this question, let us analyze the general situation: what accuracy
can we attain if we a general approximation scheme

F(x1, . . . ,xn,c1, . . . ,cN)

with N parameters?
Clearly, potential accuracy depends on the number of parameters: the larger the

number of parameters, the more accurately we can approximate different functions.
To analyze how exactly the approximation accuracy depends on the number of pa-
rameters, let us take into account that we described approximation accuracy in terms
of the numbers of terms in the Taylor expansion that are accurately reproduced.
From this viewpoint, a natural idea is to also expand the general approximating
expression in Taylor series:

F(x1, . . . ,xn,c1, . . . ,cN) = A0(c1, . . . ,cN)+ ∑
1≤i≤n

Ai(c1, . . . ,cN) · xi + . . .

If we have N = n+ 1, then, in principle, we can perfectly fit all linear terms in the
Taylor expansion of the function f (x1, . . . ,xn) that we want to approximate. Indeed,
for this to be possible, we need to satisfy the following n+1 equations:

A0(c1, . . . ,cN) = a0, A1(c1, . . . ,cN) = a1, . . . , An(c1, . . . ,cN) = an.

Here, we have N = n+1 equations to determine N = n+1 unknowns c1, . . . ,cN . In
general:

• If the number of equations is equal to (or smaller than) the number of unknowns,
the system has a solution. This is true in the generic case of a linear system, and
– due to the possibility of linearization – it is usually true for nonlinear systems
as well.
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• On the other hand, if we have more equations than unknowns, then, in general,
the corresponding system does not have a solution – even in the general case of
linear equations.

In our case, the number of equations is equal to the number of unknowns. Thus,
the above system of equations has a solution. Hence, in principle, with an approxi-
mating scheme with N = n+1 parameters, we can accurately fit linear terms in the
expansion of the function f (x1, . . . ,xn).

On the other hand, with this approximation scheme, we cannot, in general, fit
all quadratic terms as well. Indeed, exactly fit all these terms, we will also need to
satisfy additional equations Ai, j(c1, . . . ,cN) = ai, j for all i and j for which 1 ≤ i ≤
j ≤ n – to the total of c ·n2 equations. So, to find the coefficients ci, we would need
to satisfy c · n2 equations. But since we only have n+ 1 unknowns, the number of
equations is much larger than the number of unknowns – so this system does not
have a solution.

So, if we use an approximating scheme with N = n+ 1 parameters, we fit all
linear terms, but this approximation ignores quadratic (and higher order) terms.

Similarly, if we use an approximation scheme with N = n2 parameters ci, then
we can always have a solution to O(n2) equations corresponding to matching all
the O(n2) coefficients a0, ai, and ai, j: since in this case, the number of equations is
smaller than the number of unknowns. However, in this case, we cannot exactly fit
cubic terms – this would mean satisfying c ·n3 equations, and we have much fewer
unknown than that: n2 ≪ c ·n3. So, with N = n2 parameters:

• we can fit all quadratic terms, and
• the largest ignored terms are cubic terms.

Same arguments show that if we use an approximation scheme with N = n3 pa-
rameters, then:

• we can perfectly fit all cubic terms, and
• the largest ignored terms are 4th order terms, etc.

From this viewpoint, to find out how accurate is the approximation provided by
a deep neural network, it is necessary to analyze how many parameters this approx-
imation scheme has.

How many parameters does the deep learning approximation has: a rough es-
timate. In general, in a deep neural network, to process a reasonably large number
n of inputs, we use a reasonably large number of layers, with each layer containing
a reasonably large number of neurons. In this phrase, we use the term “reasonably
large” three times:

• to describe the number of inputs,
• to describe the number of layers, and
• yo describe the number of neurons in each layer.

In general, these numbers may be different. However, for the purpose of providing
a rough estimate, let us assume that these numbers are equal. In other words, we
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assume that we have n layers, each of which has exactly n neurons in this layer.
(The only exception of the last layer: since we want to output a single number y, the
last layer contains only one neuron.)

How many parameters do we have here? In a deep neural networks, parameters
are weights. Each of n inputs xi can becomes an input to each of n neurons j in
the first layer, with some weight w j,i. Thus, to fully describe all the weights of the
first layer, we need to describe n · n = n2 parameters. Similarly, for each layer k,
the output of each of n neurons i from this layer can serve as the input to each
of n neurons j in the next layer, with some weights w j,i – so, again, we have n2

parameters. (Here too, the exception is the last layer – it only has n parameters.)
So, we have n layers, and to describe each layer, we need n2 parameters. Thus,

overall, we need n ·n2 = n3 parameters to describe a deep neural network.

So what is the resulting accuracy. We know that deep neural network contains
about n3 parameters. Thus, based on our general analysis of approximation schemes,
we can conclude that:

• a deep neural network can perfectly describe all cubic terms in the expansion of
the desired function f (x1, . . . ,xn),

• while the 4th order terms will be ignored.

In other words, we get an approximate expression of the type (1).

Comment. If, instead of a deep neural network, we had a “shallow” network, with
only one hidden layer, with n neurons in this layer, then this network would contain:

• n2 parameters relating each of n inputs with each of n neurons in the hidden layer,
• n free terms w0 of n neurons in the hidden layer,
• n parameters relating each neuron from the hidden later to the output neuron, and
• a free term of the output neuron,

to the total of n2 + 2n+ 1 = (n+ 1)2 parameters. This number is larger than the
number of coefficient in the general quadratic expression, but much smaller than the
number of coefficients in the general cubic expression. Thus, this shallow network
would be able to fit quadratic terms – but already cubic terms will not be covered.

What if we add an extra variable xn+1? If we add an extra variable xn+1, then,
instead of the original expression (1), we have a similar expression, but with n+ 1
variables instead of the original n ones:

f (x1, . . . ,xn,xn+1) = a0 + ∑
1≤i≤n+1

ai · xi + ∑
1≤i≤ j≤n+1

ai, j · xi · x j+

∑
1≤i≤ j≤k≤n+1

ai, j,k · xi · x j · xk, (2)

i.e., if we separate the dependence on xn+1:

f (x1, . . . ,xn,xn+1 = a0 + ∑
1≤i≤n

ai · xi +an+1 · xn+1 + ∑
1≤i≤ j≤n

ai, j · xi · x j+
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∑
1≤i≤n

ai,n+1 · xi · xn+1 +an+1,n+1 · x2
n+1 + ∑

1≤i≤ j≤k≤n
ai, j,k · xi · x j · xk+

∑
1≤i≤ j≤n

ai, j,n+1 · xi · x j · xn+1+

∑
1≤i≤n

ai,n+1,n+1 · xi · x2
n+1 +an+1,n+1,n+1 · x3

n+1.

What does the neural network learn if it can only use the first n inputs? Let us
analyze what exactly the original neural network learns when it only uses the first n
inputs x1, . . . ,xn during training.

If the neural network could use all n+ 1 inputs, then, for each combination of
inputs (x1, . . . ,xn,xn+1), the neural network would see the corresponding value (2).
Thus, if we had a sufficient number of patterns and spend sufficient time on training,
we would have the network learning this expression (2).

In situations when the neural network does not have access to the value xn+1,
then, for each combination of inputs (x1, . . . ,xn), the neural network will have sev-
eral slightly different outputs

y(p) = f
(

x1, . . . ,xn,x
(p)
n+1

)
(4)

corresponding to different values x(p)
n+1 (1 ≤ p ≤ P0) of the extra quantity xn+1. The

result F(x1, . . . ,xn) of the training is determined by the condition that an appropri-
ate quantity Q(y(1), . . . ,y(P0),F(x1, . . . ,xn)) – that describes how close is the value
F(x1, . . . ,xn) to all the observed outputs y(1), . . . ,y(P0) – should be minimized. For
example, if we minimize the least squares difference – as was typical for shallow
neural networks, i.e., minimize the expression

Q(y(1), . . . ,y(P0),F(x1, . . . ,xn)) = ∑
1≤p≤P0

(
y(p)−F(x1, . . . ,xn)

)2
,

then we get

F(x1, . . . ,xn) =
1
P0

· ∑
1≤p≤P0

y(p).

In general, if we use a generic minimized expression Q, then we get a more complex
expression of F(x1, . . . ,xn) as a function of the values y(p):

F(x1, . . . ,xn) = J
(

y(1), . . . ,y(P0)
)
.

If it so happens that for some tuple (x1, . . . ,xn), the dependence on xn+1 is
negligible, i.e., if for all possible values of the extra variable xn+1, we have
f (x1, . . . ,xn+1) = f (x1, . . . ,xn,xn+1), where by x̃n+1 denotes a “typical” (e.g., av-
erage) value of xn+1, then we will have y(1) = . . . = y(P0). In this case, the best fit
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is attained when F(x1, . . . ,xn) is equal to all these values, i.e., when F(x1, . . . ,xn) =
f (x1, . . . ,xn,xn+1).

It is therefore reasonable to expand the dependence J of the optimal value
F(x1, . . . ,xn) on the values y(p) in Taylor series around the point(

y(1), . . . ,y(P0)
)
= ( f (x1, . . . ,xn,xn+1), . . . , f (x1, . . . ,xn,xn+1)).

This way, we get

F(x1, . . . ,xn) = f (x1, . . . ,xn,xn+1)+ ∑
1≤p≤P0

Jp ·∆y(p)+

∑
1≤p≤p′≤P0

Jp,p′ ·∆y(p) ·∆y(p′)+

∑
1≤p≤p′≤p′′≤P0

Jp,p′,p′′ ·∆y(p) ·∆y(p′) ·∆y(p′′), (5)

where we denoted
∆y(p) def

= y(p′′)− f (x1, . . . ,xn,xn+1).

Since we are interested only in the terms up to the third order – as we have found
out, higher order terms are ignored anyway – it is sufficient to only consider terms
up to this order in the expression (5).

Here, due to (4), we have

y(p)− f (x1, . . . ,xn,xn+1) = f
(

x1, . . . ,xn,x
(p)
n+1

)
− f (x1, . . . ,xn,xn+1).

In general, substituting the explicit expression (3) for the function f (x1, . . . ,xn,xn+1)
into the expression for the difference

f (x1, . . . ,xn,xn+1)− f (x1, . . . ,xn,xn+1),

and taking into account that terms not depending on xn+1 cancel each other, we
conclude that

f (x1, . . . ,xn,xn+1)− f (x1, . . . ,xn,xn+1) = an+1 · (xn+1 − xn+1)+

∑
1≤i≤n

ai,n+1 · xi · (xn+1 − xn+1)+an+1,n+1 ·
(

x2
n+1 − (xn+1)

2
)
+

∑
1≤i≤ j≤n

ai, j,n+1 · xi · x j · (xn+1 − xn+1)+ ∑
1≤i≤n

ai,n+1,n+1 · xi ·
(

x2
n+1 − (xn+1)

2
)
+

an+1,n+1,n+1 ·
(

x3
n+1 − (xn+1)

3
)
. (6)

In particular, the case when xn+1 = x(p)
n+1, we get
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y(p)− f (x1, . . . ,xn,xn+1) = an+1 ·
(

x(p)
n+1 − xn+1

)
+

∑
1≤i≤n

ai,n+1 · xi ·
(

x(p)
n+1 − xn+1

)
+an+1,n+1 ·

((
x(p)

n+1

)2
− (xn+1)

2
)
+

∑
1≤i≤ j≤n

ai, j,n+1 · xi · x j ·
(

x(p)
n+1 − xn+1

)
+

∑
1≤i≤n

ai,n+1,n+1 · xi ·
((

x(p)
n+1

)2
− (xn+1)

2
)
+

an+1,n+1,n+1 ·
((

x(p)
n+1

)3
− (xn+1)

3
)
. (7)

We can see that in this expression, all the terms are proportional to the difference
x(p)

n+1 − xn+1. Thus, terms in (5) which are quadratic or of third order with respect
to the difference y(p) − f (x1, . . . ,xn,xn+1) are also proportional to the difference
x(p)

n+1 − xn+1. Thus, since we are only interested in terms which are at most cubic
in terms of all the variables x1, . . . ,xn,xn+1, and each of these terms contains some
value of xn+1, all these terms are at most quadratic in terms of x1, . . . ,xn. So, from
the formula (5), we conclude that the difference F(x1, . . . ,xn)− f (x1, . . . ,xn,xn+1)
is a quadratic function of x1, . . . ,xn, i.e., that

F(x1, . . . ,xn)− f (x1, . . . ,xn,xn+1) = b0 + ∑
1≤i≤n

bi · xi + ∑
1≤i≤ j≤n

bi, j · xi · x j (8)

for some coefficients b0, bi, and bi, j. From the formulas (6) and (8), we conclude
that the difference

∆ f (x1, . . . ,xn+1
def
= f (x1, . . . ,xn,xn+1)−F(x1, . . . ,xn) =

( f (x1, . . . ,xn,xn+1)− f (x1, . . . ,xn,xn+1))− (F(x1, . . . ,xn)− f (x1, . . . ,xn,xn+1))

has the form

∆ f (x1, . . . ,xn,xn+1) = an+1 · (xn+1 − xn+1)+ ∑
1≤i≤n

ai,n+1 · xi · (xn+1 − xn+1)+

an+1,n+1 ·
(

x2
n+1 − (xn+1)

2
)
+ ∑

1≤i≤ j≤n
ai, j,n+1 · xi · x j · (xn+1 − xn+1)+

∑
1≤i≤n

ai,n+1,n+1 · xi ·
(

x2
n+1 − (xn+1)

2
)
+an+1,n+1,n+1 ·

(
x3

n+1 − (xn+1)
3
)
−

b0 − ∑
1≤i≤n

bi · xi − ∑
1≤i≤ j≤n

bi, j · xi · x j. (9)

This expression contains the following unknowns:

• on parameter an+1,
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• n parameters ai,n+1,
• one parameter an+1,n+1,

•
n · (n+1)

2
parameters ai, j,n+1,

• n parameters ai,n+1,n+1,
• one parameter an+1,n+1,n+1,
• one parameter b0,
• n parameters bi, and

•
n · (n+1)

2
parameters bi, j.

to the total of

1+n+1+
n · (n+1)

2
+n+1+1+

n · (n+1)
2

= n2 +3 ·n+2 parameters.

Let us recall that a shallow network with n+ 1 inputs and n+ 1 neurons in the
hidden layer, we have (n+2)2 = n2 +4 ·n+4 parameters, and

n2 +4 ·n+4 > n2 +3 ·n+2.

Thus, we can fit all the new cubic terms if we train a shallow neural network to
recognize the difference between:

• the actual values y(p) of the output, and
• the values F

(
x(p)

1 , . . . ,x(p)
n

)
produced by the pre-trained neural network (that

does not take the new quantity xn+1 into account).

Then, the result of this training should be simply added to the result of pre-trained
neural network.

Discussion. Specifically, the output of the shallow network should be added, to the
pre-trained neural network, as an extra neuron in the penultimate layer, with weight
1 from this neuron to the final output neuron of the whole neural network. (Strictly
speaking, this will make the resulting network residual.)

This will save time, since:

• training time is, crudely speaking, proportional to the number of parameters that
we need to determine, and

• in our case, we decrease this number from n3 – for the straightforward re-training
– to the value n2 needed to train the shallow network.

This way, we will cover all linear, quadratic, and cubic terms in the dependence of
the output on all n+1 quantities x1, . . . ,xn,xn+1. This will not cover 4th order terms
– but these terms, as we have mentioned, are not covered by deep learning anyway.

Let us describe our proposal in precise terms.
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3 Resulting Proposal

Formulation of the problem: reminder.

• What we have: We have a neural network pre-trained to describe the dependence
of a quantity y on quantities x1, . . . ,xn. We will denote the result of applying this
trained network to the inputs x1, . . . ,xn by F(x1, . . . ,xn).

• What we want: We would like to modify this network, so that it will take into
account dependence on an additional quantity xn+1 as well.

A straightforward way to do it is to add one more input xn+1, and to re-train all the
weights of the whole original network by using all the patterns that contain the value
of this input. The problem is that this would take a long time, so a question is: can
we do it faster?

Specific recommendation. We can speed up the process if we do the following:

• First, we train a shallow neural network with n intermediate neurons to describe
the dependence of the difference Y (p) = y(p) −F

(
x(p)

1 , . . . ,x(p)
n

)
on all the in-

puts x(p)
1 , . . . ,x(p)

n ,x(p)
n+1 for which we know the value of the extra variable. Let us

denote the result of applying the resulting trained shallow neural network to the
inputs x1, . . . ,xn,xn+1 by S(x1, . . . ,xn,xn+1).

• Then, as a re-trained neural network, we take the network that computes the value
F(x1, . . . ,xn)+S(x1, . . . ,xn,xn+1). For this purpose, we:

– add the output neuron of the shallow network to the penultimate layer of the
original network, and

– set the weight connecting this new neuron to the output layer of the original
network to 1.

Further discussion. The above recommendation is the one that is formally justified
by our analysis. However, less formally, we can say that the above specific scheme
encourages us to use similar simplified re-training schemes. Indeed, our main idea
was that:

• since we need to determine n2 new parameters,
• we should not re-train all n3 weights, it is most probably sufficient to only change

n2 weights.

How can we find a part of the network that contains exactly n2 weights? This is
easy: as we have mentioned earlier, each layer of a deep neural network contains n2

weights. Thus, a reasonable idea is to re-train only one layer, while leaving all other
weights unchanged (“frozen”).

Which layer should we choose? We need to involve an additional input xn+1.

Resulting idea. So, a reasonable idea is to train only the weights of the first layer
– the layer that (directly) processes the inputs – while keeping all other weights
unchanged. This general idea is what we tried.
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4 Experiments

Our preliminary results show that this faster training indeed leads to results which
are as accurate as the full training. For this testing, we use the following example
from pavement engineering, where the goal is to estimate the value of the failure
function – that gauges the stability f of an untreated pavement layer [1, 2]. Tradi-
tionally, this function is estimated based on four inputs: the three principal stresses
σ1, σ2, and σ3, and the angle of internal friction ϕ . The algorithm for estimating f
based these four values consists of the following steps:

• First, we compute the first two invariants of the stress tensor:

I1 = σ1 +σ2 +σ3, and J2 =
1
6
·
[
(σ1 −σ2)

2 +(σ1 −σ3)
2 +(σ2 −σ3)

2] .
• Based on the inputs σi and on the first invariant I1, we compute the value of the

third invariant:

J3 =

[
σ1 −

I1

3

]
·
[

σ2 −
I1

3

][
σ3 −

I1

3

]
.

• Then, we compute the angle θ based on the formula

cos(3 ·θ) = 3 ·
√

3
2

· J3

J3/2
2

.

• Finally, we estimate the value of the failure function f as

f0 =
I3

2
· sin(ϕ)+

√
J2 · sin

(
θ +

π

2

)
+

√
J3

3
· cos

(
θ +

π

2

)
· sin(ϕ). (10)

A slightly more accurate estimate can be obtained if we take into account the value
of an additional quantity: cohesion c. The corresponding formula has the form

f = f0 − c · cos(ϕ). (11)

To test our idea, for a large number of randomly selected tuples
(σ

(p)
1 ,σ

(p)
2 ,σ

(p)
3 ,ϕ(p),c(p)). For each of these tuples, we used the formula (11) to

computed the corresponding value f (p) of the failure function. In line with the above
idea:

• Task 1 (Without c): We trained the neural network on the patterns
(σ

(p)
1 ,σ

(p)
2 ,σ

(p)
3 ,ϕ(p),y(p)) that only included the values of the four original in-

puts.
• Task 2 (1 layer training): We added an extra input corresponding to the ex-

tra variable c, froze the weights of all the layers except for the first one –
so that only weights in the first layer that connects the input variable c to
the next layer are changed – and trained these weights on the full tuples
(σ

(p)
1 ,σ

(p)
2 ,σ

(p)
3 ,ϕ(p),c(p),y(p)), including the values of the extra variable c.
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• Task 3 (full network training): For comparison, we performed a similar re-
training without freezing, when the weights in all the layers were allowed to
change during training.

For each of the three training tasks, we used a feedforward neural network with four
internal layers [128× 64× 32× 16] using the Adam optimizer with a learning rate
of 0.001, a batch size of 64, and mean squared error as the loss function. To froze
the weights, we customized PyTorch library to define layers, linear operators, and
ReLU non-linear activation function. We used torch.no grad() option to froze
every weights and layers except ones that connect the new variable to the next layer.
Upon acceptance, we will release the source code of our implementations.

# of iterations 500 1,000 1,500 2,000
Loss (without c) 4.2 0.2 0.2 0.2

Accuracy (without c) 47.0% 97.0% 98.0% 99.0%
R-Regression (without c) 0.82 0.99 0.99 0.99
Training Time (without c) 147(s) 314(s) 436(s) 600(s)

Loss (1-layer training) 0.4 0.6 0.9 0.1
Accuracy (1-layer training) 85.6% 83.0% 81.4% 99.9%

R-Regression (1-layer training) 0.98 0.98 0.97 0.99
Training Time (1-layer training) 148(s) 292(s) 405(s) 552(s)

Loss (full training) 2.8 1.3 0.2 0.4
Accuracy (full training) 53.0% 72.2% 97.0% 86.0%

R-Regression (full training) 0.91 0.95 0.99 0.98
Training Time (full training) 164(s) 300(s) 410(s) 555(s)

Table 1 Experimental results.

Table 1 shows the results of our experiments. For each training, we ran 2,000
iterations and recorded the results after 500, 1000, 1500, and 2000 iterations (first
row). The first part of table (rows 2 to 5) shows the results without having the vari-
able c (Task 1), the second part of table (rows 6 to 9) shows the results with adaptive
training of first layer after adding the variable c, and the third part of table (rows
10 to 13) shows the results of full network training after adding the variable c. We
reported the loss, the accuracy that measure how many predictions were within the
unit distance of ground truth, the R2 metric that measures the correlations between
predictions and ground truth, and the computation times of training in seconds. We
fixed the seed to minimize the randomness of functional outcomes (loss, accuracy,
and R2). To control the noise of environment for time measurements, we used an
isolated server computer with Intel Xeon CPU with 2 vCPUs (virtual CPUs) and
13GB of RAM.

We observed that the proposed approach of adaptive training of first layer
achieves better computation times where the differences in the computation times
are reduced as the number of iterations increase. Within 2,000 iterations, the three
approaches (without c, first layer training, and full training) achieve 99.0%, 99.9%,
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and 97% accuracy, respectively. Since, there are fluctuations in the accuracy, one
can use an early stop in training the network, and the highest accuracy shows the
best results that can be achieved in each approach.
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