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We Can Always Reduce a Non-Linear
Dynamical System to Linear – at Least Locally –
But Does It Help?

Orsolya Csiszár, Gábor Csiszár, Olga Kosheleva, Vladik Kreinovich, and
Nguyen Hoang Phuong

Abstract Many real-life phenomena are described by dynamical systems. Some-
times, these dynamical systems are linear. For such systems, solutions are well
known. In some cases, it is possible to transform a nonlinear system into a linear
one by appropriately transforming its variables, and this helps to solve the original
nonlinear system. For other nonlinear systems – even for the simplest ones – such
transformation is not known. A natural question is: which nonlinear systems allow
such transformations? In this paper, we show that we can always reduce a nonlin-
ear system to a linear one – but, in general, it does not help, since the complexity of
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finding such a reduction is exactly the same as the complexity of solving the original
nonlinear system.

1 Formulation of the problem

Dynamical systems are ubiquitous. One of the main objectives of science is to
predict the future state of different systems. The state of a system can be described
by the values x1, . . . ,xn of different quantities that characterize this system. In many
cases, the current state of the system uniquely determines the rate ẋi with which
each of the values changes:

ẋi = fi(x1, . . . ,xn), 1 ≤ i ≤ n. (1)

Such a system of differential equations is known as a dynamical system.
For a dynamical system, the current state of the system uniquely determines its

state at any future (or past) moment of time; see, e.g., [1, 2]:

In many cases, we have linear dynamical systems. In many practical situations,
the changes are relatively small. In such cases, for all moments of time, the values
xi are close to their initial values x(0)i . In such cases, it is convenient to describe the

state of the system by the differences yi
def
= xi−x(0)i for which xi = x(0)i +yi and, thus,

ẋi = ẏi. In terms of these differences, the equations (1) take the form

ẏi = f
(

x(0)1 + y1, . . . ,x
(0)
n + yn

)
. (2)

Since the values yi are relatively small, we can safely ignore terms that are quadratic
or of higher order in terms of yi. For example, if yi ≈ 10%, then y2

i ≈ 1%, which is
much smaller than yi. Thus, we can expand the right-hand side of the formula (2)
in Taylor series in terms of yi and keep only linear terms in this expansion. In this
case, the right-hand side of the system (2) becomes linear in y1, . . . ,yn;

ẏi = ai +
n

∑
j=1

ai, j · y j, (3)

for some coefficients ai and ai, j. Such dynamical systems are called linear.

Linear systems are easy to solve. There are known formulas for solving linear
systems.

Namely, in the absence of the constant terms ai, the general solution to this sys-
tem is a linear combination of the terms tk · exp(λ · t), where:

• λ is an eigenvalue of the matrix ai, j, and
• k is a non-negative integer which is smaller than the multiplicity of this eigen-

value.
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A simple modification of this formula – in most cases, by adding constants – takes
care of the general case of (3).

Sometimes, we can reduce a non-linear system to a linear one. In some cases, the
differences yi are not small, so we have to consider the original nonlinear dynamical
system (1). For such systems, there is no general way to solve it other than to solve
it numerically. However, in some cases, it is possible to reduce a nonlinear system
to a linear one and thus, to get an explicit solution.

A known example – for which such a reduction is possible – is the following
system:

ẋ1 = a · x1, (4)

ẋ2 = b · (x2 − x2
1). (5)

In this system, the first equation (4) is linear, but the second (5) is nonlinear.
This system can be reduced to a system of linear equations if we add the third

variable x3 = x2
1. In this case, the second equation (5) becomes linear:

ẋ2 = b · x2 −b · x3, (6)

and for the derivative of x3, we have

ẋ3 =
d
dt
(x2

1) = 2 · x1 · ẋ1.

Substituting the expression (4) for ẋ1 into this formula, we get

ẋ3 = 2 · x1 · (b · x1) = 2b · x2
1.

By definition of x3 as x2
1, this implies that for the rate of change of the third variables,

we also have a linear equation
ẋ3 = 2b · x3. (7)

For other nonlinear equations, such a reduction is not known. Let us consider
the simplest possible nonlinear dynamical system.

• The more variables, the more complex the system, so the simplest system should
have a single variable x1 – and thus, the dynamical system consists of a single
differential equation ẋ1 = f1(x1). To find the simplest of such systems, we need
to select the simplest possible nonlinear function f1(x1).

• The simplest possible functions are linear, and the simplest nonlinear functions
are quadratic. The simplest-to-compute quadratic function is simply the expres-
sion x2

1 that can be computed by a single multiplication. So, the simplest possible
nonlinear system is the equation

ẋ1 = x2
1. (8)
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For this system – as well as for other differential equations with quadratic right-hand
sides – no reduction to linear systems is known.

Natural questions. For some nonlinear systems, there is a known reduction to linear
ones, and this reduction helps solve the system. This fact leads to the following two
natural questions:

• which nonlinear systems can be reduced to linear ones? and
• if such a reduction is possible, can it help solve the original nonlinear system?

What we do in this paper. In this paper, we provide answers to both questions.
Namely, we show:

• that every nonlinear system can be reduced to a linear one – at least locally, but
• that this does not help us solve the original nonlinear system – finding this reduc-

tion is as complicated as actually solving the system.

2 Our Answers

Notation. As we have mentioned, in general:

• once we know the equations (1) and we know the state x = (x1, . . . ,xn) of the
system at some moment t0,

• we can uniquely determine its state at any other moment of time (at least locally,
i.e., for times t sufficiently close to t0).

Since the system (1) does not explicitly include time, the transition between the state
at moment t0 and the state at moment t depends only on the difference t − t0. Let us
denote the state at moment t corresponding to the state x at moment t0 by Tt−t0(x).
The components of the state Tt−t0(x) will be denoted by Tt−t0,1(x), . . . ,Tt−t0,n(x). In
these terms, the state x = (x1, . . . ,xn) is transformed into the state

(z1, . . . ,zn) = (Tt−t0,1(x1, . . . ,xn), . . . ,Tt−t0,n(x1, . . . ,xn)).

Clearly, if we let the system evolve for time t and then again for time t ′, this is
equivalent to letting it evolve for time t + t ′, i.e., we have

Tt+t ′(x) = Tt ′(Tt(x)). (8)

How to reduce a nonlinear system to linear: idea. Let us consider the cases when
the values of the last variable xn are close to some number x(0)n . In general, unless the
system is degenerate and the value xn does not change at all, the value xn changes
with time. For each tuple (x1, . . . ,xn−1,xn), we can look for the time τ at which the
value xn is equal to x(0)n , i.e., at which
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Tτ,n(x1, . . . ,xn) = x(0)n . (9)

To find the unknown time τ , we have one equation (9) with one unknown τ . In
general, if the number of equations is equal to the number of unknowns, the system
has a unique solution – at least locally. Thus, we can always find such time τ .

Towards the resulting reduction. Now, instead of the original variables x1, . . . ,xn,
we can use the new variables (y1, . . . ,yn) in which:

• the value yn is equal to the time τ determined by the formula (9), and
• the values y1, . . . ,yi, . . . ,yn−1 are equal to

yi = Tτ,i(x1, . . . ,xn). (10)

How will the variables yi change with time? Due to formulas (9) and (10), we
have (

y1, . . . ,yn−1,x
(0)
n

)
= Tτ(x1, . . . ,xn),

i.e., since τ = yn, we have(
y1, . . . ,yn−1,x

(0)
n

)
= Tyn(x1, . . . ,xn). (11)

Thus, to describe x in terms of y, it is sufficient to trace the changes of the state(
y1, . . . ,yn−1,x

(0)
n

)
back in time for the period τ = yn:

(x1, . . . ,xn) = T−yn

(
y1, . . . ,yn−1,x

(0)
n

)
. (12)

In time t, the state x turns into Tt(x). By applying the transformation Tt to both sides
of the formula (11) and taking into account the formula (8), we get

Tt(x1, . . . ,xn) = T−(yn−t)

(
y1, . . . ,yn−1,x

(0)
n

)
. (13)

Thus, by definition of the y-state, the y-state corresponding to Tt(x) has the form
(y1, . . . ,yn−1,yn − t). Thus, with time:

• the new variables y1, . . . ,yn−1 do not change at all, and
• the variable yn linearly decreases with time.

So, we indeed have the desired reduction. Let us summarize it.

Resulting reduction. For each state x = (x1, . . . ,xn), let us define the new variables
y = (y1, . . . ,yn) as follows: yn is the solution to the equation

Tyn,n(x1, . . . ,xn) = x(0)n , (14)

and for all i < n, we have
yi = Tyn,i(x1, . . . ,xn). (15)
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For the new variables, the dynamical system has the following form:

ẏ1 = . . .= ẏn−1 = 0, ẏn =−1. (16)

From the new variables yi, we can get back to the original variables xi by using the
formula (12).

Example: derivation. Let us illustrate our reduction on the example of the simplest
nonlinear dynamical systems ẋ1 = x2

1. This system is easy to solve. Indeed, we start
with the original equation:

dx1

dt
= x2

1.

We then separate the variables by multiplying both sides by dt and dividing both
sides by x2

1. This results in:
dx1

x2
1

= dt.

If we integrate both sides of this equation, we get

− 1
x1

+C = t,

where C denotes the integration constant. Thus,

1
x1

=C− t,

and so,

x1(t) =
1

C− t
. (17)

Let us describe the corresponding function Tt(x1) that describes the transition
from the state at moment 0 to the state at moment t. At moment 0, the formula (17)
leads to

x1(0) =
1
C
,

so
C =

1
x1(0)

.

Substituting this value C into the formula (17), we conclude that

x1(t) =
1

1
x1(0)

− t
=

x1(0)
1− x1(0) · t

.

Thus,
Tt(x1) =

x1

1− x1 · t
. (18)
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Let us take x(0)1 = 1. Then, the value y1 should be determined by the equation (14)
which, in this case, has the form

x1

1− x1 · y1
= 1,

hence x1 = 1− x1 · y1, so x1 · y1 = 1− x1, and

y1 =
1− x1

x1
=

1
x1

−1. (19)

For the new variable y1, the dynamical system takes a linear form: ẏ1 =−1.
Once we know new state y1, we can reconstruct the original state x1 by using the

formula (12), which in this case takes the form

x1 = T−y1(1) =
1

1−1 · (−y1)
=

1
1+ y1

. (20)

Example: summary. For the nonlinear system ẋ1 = x2
1, we can take the new variable

y1 =
1
x1

−1

for which
x1 =

1
1+ y1

.

For this new variable, the dynamical system has the form ẏ =−1.

Does this reduction help solve the original nonlinear system? Not really, since
the reduction uses the solution Tt(x) of the system.

But can we have a reduction that does help solve the system? Not really:

• if we know the solution, then, as we have shown, we can easily find the appro-
priate reduction;

• vice versa, if we know a reduction to a linear system, then, since solutions to
linear systems are known, we can easily find the solution to the original nonlinear
system.

Because of this, the complexity of finding a reduction to a linear system is exactly
the same as the complexity of solving the original nonlinear system.
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