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Why Bump Reward Function Works Well In
Training Insulin Delivery Systems

Lehel Dénes-Fazakas, László Szilágyi, Gyorgy Eigner, Olga Kosheleva,
Vladik Kreinovich, and Nguyen Hoang Phuong

Abstract Diabetes is a disease when the body can no longer properly regulate blood
glucose level, which can lead to life-threatening situations. To avoid such situa-
tions and regulate blood glucose level, patients with severe form of diabetes need
insulin injections. Ideally, the system should automatically decide when best to in-
ject insulin and how much to inject. To find the optimal control, researchers applied
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2 L. Dénes-Fazakas et al.

machine learning with different reward functions. It turns out that the most effective
learning occurred when they used the so-called bump function. In this paper, we
provide a possible explanation for this empirical result.

1 Formulation of the problem

What is diabetes. All living creatures need energy to function. To many cells in a
human body, energy comes from glucose that is delivered to these cells by the blood
flow. The absorption of glucose into the cells is regulated by a special hormone
called insulin.

When the body does not produce enough insulin – the illness know as diabetes –
it hinders the ability of cells to get energy and can lead to life-threatening situations.

Need for insulin injections. To avoid dangerous situations, a natural idea is to inject
insulin into the body when the insulin level becomes dangerously low – and we can
detect that, since in this case the cells do not absorb the glucose and thus, the blood
glucose level becomes too high.

It is desirable to have automatic insulin injections. In healthy patients, the body
itself decides how much insulin is needed. In the absence of such an automatic
biologic regulation, at present, the patients themselves decide when to inject insulin
and how much to inject, based on some general recommendations.

The effectiveness of these general recommendations is different for different pa-
tients. It is therefore desirable to have automatic systems individually trained to be-
comes maximally effective for each patient. Such systems are indeed being actively
developed, trained, and tested all over the world.

Empirical fact: bump reward function works the best. The purpose of the system
is to keep the patient’s blood sugar level x within the desired interval [x,x]. For train-
ing the automatic insulin delivery system, we can, in principle, use different reward
functions. In [2], researchers compared the results of using different reward func-
tions, and found out that the most effective is the so-called bump reward function
that is equal to 0 outside the desired interval and to

b(x) = exp
(
− c
(x− x) · (x− x)

)
for values x within this interval.

Natural question. A natural question is: why the bump functions works best?

What we do in this paper. In this paper, we provide a possible explanation for the
effectiveness of the bump function.
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2 Analysis of the Problem and the Resulting Explanation

What is a natural reward function? We want the patient to feel healthy. At each
moment of time, the only information that we have about the patient is the patient’s
blood glucose level x. Based on this level, we can only determine the probability
p(x) that the patient feels healthy. This probability is what we want to maximize,
i.e., that should be our reward function.

Clearly, when the value x is outside the given interval, something is wrong, so
the corresponding probability is 0 (or close to 0). So, to find an appropriate reward
function, we need to find the probabilities p(x) corresponding to values x from the
given interval.

We need to select probabilities based on partial information. In many practical
situations, probabilities are determined experimentally, as corresponding frequen-
cies; see, e.g., [5]. However, in our case, we do not have enough statistics, so we
need to select the probability distribution based on whatever information we have.
For this purpose, let us recall how, in general, a probability distribution is determined
based on partial information.

How probability distribution is determined based on partial information: re-
minder. In many practical situations, we only have partial information about prob-
abilities.

For example, we may know that there are two possible situations, but we have
no information which of the two situations is more probable. In such situations,
a reasonable idea is to assign equal probability to both situations. Similarly, if we
have n possible situations, and we have no reason to believe that one of them is more
probable, a reasonable idea is to assign, to all of them, equal probability 1/n. This
natural idea is known as Laplace Indeterminacy Principle.

This principle can be described in a slightly different way. If we have two alter-
natives, we have an uncertainty, in which to determine which is a correct one, we
need to ask one binary (= “yes”-“no”) question. If we have 2n alternatives, then we
need n binary questions to uniquely determine the alternative.

• When we select equal probabilities, the average number of questions needed to
determine the situation remains the same.

• However, if we selected unequal probabilities, then, on average, the number of
questions becomes smaller.

For example, if we assign probability 1 to one of the alternatives and 0 to all others,
we need 0 questions to find the alternative – it is the one whose probability is 1. So,
in this case we kind of cheat, we insert artificial certainty where there was none.

Similarly, if we have partial information about probabilities, i.e., if there is a
whole set of probability distributions that is consistent with available information,
then a reasonable idea is not to cheat, not to add artificial certainty, but to preserve
the original uncertainty.

• In the discrete case, a natural measure of uncertainty is the average number of
binary questions that is needed to uniquely determine the alternative.
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• In the continuous case, a similar natural measure is the average number of binary
question that is needed to determine the unknown value x with a given accuracy
ε > 0.

In both cases, there are distributions for which this average number of questions
is smaller – but selecting them would be artificially adding certainty. What we need
is the distribution that best reflects the original uncertainty, i.e., for which the av-
erage number of questions is as large as possible. It turns out that the average of
question is described by Shannon’s entropy

S =−
∫

f (x) · ln( f (x))dx, (1)

where f (x) is the corresponding probability density function; see, e.g., [1, 4]. Thus,
a reasonable idea is to select, from each class of probability distributions, the dis-
tribution with the largest possible entropy. This Maximum Entropy approach has
indeed led to many successful applications; see, e.g., [3].

Let us apply this general idea to our case: first idea. We have a class of probability
distributions located on the interval [x,x]. If we do not make any assumptions about
the distribution, then the only constraint on the probability density function is that
the overall probability is 1: ∫

f (x)dx = 1. (2)

To maximize entropy under this constraint, it is natural to use Lagrange multiplier
method, i.e., to reduce the corresponding constraint optimization problem to an
equivalent unconstrained optimization problem of maximizing the function

−
∫

f (x) · ln( f (x))dx+λ ·
(∫

f (x)dx−1
)
,(3)

for an appropriate value λ . This value – known as Lagrange multiplier – is deter-
mine by the condition that the optimal function f (x) satisfies the constraint (1).

The solution to this unconstrained optimization problem can be obtained by using
the known fact from calculus – that the maximum of an expression is attained when
all its derivatives are equal to 0. Differentiating the expression (3) with respect to
each unknown f (x) and equating the derivative to 0, we conclude that

− ln( f (x))−1+λ = 0,

i.e., that f (x) = exp(λ − 1) = const. So, we get a uniform distribution on the de-
sired interval – in perfect accordance with the above argument (that used Laplace
Indeterminacy Principle).

Limitations of the first idea. From the mathematical viewpoint, this is reasonable,
but from the viewpoint of our problem, it is not reasonable at all:
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• For the uniform distribution, the probability of being healthy is exactly the same
whether we are in the middle of the desired interval or close to one of its end-
points.

• However, in practice, if the value of the blood glucose level start getting closer
to the threshold, this should be a sign to be alarmed – so the probability of being
healthy should be smaller close to the endpoints.

This means that we cannot get a reasonable distribution if we do not impose any
constraints. We need to impose some constraints if we want a reasonable result.

Second idea. We need to add constraints, and constraints reflect partial information
that we have. What do we know about the probability distribution? We rarely know
individual characteristic, but often, from observations, we know averages.

So, a seemingly natural idea is to add a constraint that we know the average value
x̃ of the quantity x: ∫

x · f (x)dx = x̃. (4)

By applying the same Lagrange multiplier method to the problem of maximizing
entropy (1) under constraints (2) and (3), we arrive at the problem of optimizing the
following expression:

−
∫

f (x) · ln( f (x))dx+λ1 ·
(∫

f (x)dx−1
)
+λ2 ·

(∫
x · f (x)dx− x̃

)
,

for which equating derivatives to 0 leads to

− ln( f (x)) = 1+λ1 +λ2 · x = 0,

i.e., to f (x) = exp((λ1 −1)+λ2 · x).

Limitations of the second idea. The resulting formula has the same limitations as
the first idea:

• we want the probability of healthiness to tend to 0 as approach the endpoints,
• but this is not happening here.

How can we modify the second idea? Let us take into account that the same phys-
ical quantity can be described by different numerical values. First, we can select a
different measuring unit: e.g., the height of 2 m becomes 200 if we use centimeters.
Second, we can select a different starting point: the current year 2023 can become
year 2014 in Ethiopian calendar that uses a different starting date.

Finally, many quantities are ratios – e.g., blood glucose level is the ratio of the
amount of glucose in blood to the corresponding amount of blood. In such cases, we
can reverse the ratio and also get a meaningful description of the same quantity; for
example:

• we can have velocity v = d/t – which is the ratio of distance to time – and we
can have slowness 1/v = t/d;
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• we can have resistance R = V/I – which is the ratio of voltage to current – and
we can have conductivity 1/R = I.V , etc.

First try. If we simply change the measuring unit or the starting point, the situation
does not change: fixing the mean value of the re-scaled quantity k · x or x+ x0 is
equivalent to fixing the mean value of the quantity x itself.

What is we reverse the formula for the blood sugar level and consider the mean
value of this reverse ∫ 1

x
· f (x)dx = r̃.

then the corresponding constraint optimization leads to

− ln( f (x))−1+λ1 +λ2 ·
1
x
= 0,

i.e., to

f (x) = exp
(
(λ1 −1)+

λ2

x

)
.

This is still not exactly we want.

Second try leads to the desired explanation. What if we take into account both the
possibility of taking a reverse and the probability of changing the starting points. It
is reasionable to use both endpoints x and x as starting points. Thus:

• we get the re-scaled values x− x and x− x (or, better, x− x, to keep the values
non-negative), and

• reversing these re-scaled values leads to the following two constraints:∫ 1
x− x

· f (x)dx = r̃− (5)

and ∫ 1
x− x

· f (x)dx = r̃+. (6)

Maximizing the expression (1) under constraints (5) and (6) leads to the following
unconstrained optimization problem:

−
∫

f (x) · ln( f (x))dx+λ1 ·
(∫

f (x)−1
)
+

λ− ·
(∫ 1

x− x
· f (x)dx− r̃−

)
+λ+ ·

(∫ 1
x− x

· f (x)dx− r̃+

)
.

For this expression, equating its derivatives to 0 leads to

ln( f (x)) =−1+λ1 +
λ−

x− x
+

λ+

x− x
. (7)

Here:
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• the value λ− reflects the importance of the left endpoint of the desired interval,
• while the value λ+ reflects the uncertainty of the right endpoint.

Both endpoints are important. Going beyond each of these two endpoints can be
life-threatening, and we have no reason to assume that one of the endpoints is more
important. Thus, in line with the Laplace Indeterminacy Principle, it makes sense to
assume that these two values are equal: λ− = λ+. In this case, the formula (7) takes
the form

ln( f (x)) = const+
const

(x− x) · (x− x)
.

So, we get exactly the bump function expression for the probability values f (x)!

Conclusion. Thus, we have indeed explained the effectiveness of the bump reward
function: the explanation is that this function naturally follows from first principles.
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