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Why Deep Learning Is Under-Determined? Why
Usual Numerical Methods for Solving Partial
Differential Equations Do Not Preserve Energy?
The Answers May Be Related to
Chevalley-Warning Theorem (and Thus to
Fermat Last Theorem)

Julio C. Urenda, Olga Kosheleva, and Vladik Kreinovich

Abstract In this paper, we provide a possible explanation to two seemingly unre-
lated phenomena: (1) that in deep learning, under-determined systems of equations
perform much better than the over-determined one – which are typical in data pro-
cessing, and that (2) usual numerical methods for solving partial differential equa-
tions do not preserve energy. Our explanation is related to the intuition of Fermat
behind his Last Theorem and of Euler about more general statements, intuition that
led to the proof of Chevalley-Warning Theorem in number theory.

1 Two Challenges: Formulation of the Problem

1.1 First challenge: why deep learning is under-determined?

Need for machine learning. In many practical situations:

• we know that quantity y depends on the quantities x1, . . . ,xn – i.e., that the values
x1, . . . ,xn uniquely determine the value y,

• but we do not know the exact expression for this dependence y = f (x1, . . . ,xn).

To find this dependence, we can use our knowledge of a large number (K) situations
k = 1, . . . ,K, in each of which we know both:
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• the values x(k)i of the inputs xi and
• the value y(k) of the output y.

The problem of determining the dependence y = f (x1, . . . ,xn) based on such pat-

terns
(

x(k)1 , . . . ,x(k)n ,y(k)
)

is known as machine learning.

Usual way to solve machine learning problems. To find the desired dependence,
we usually:

• select a finite-parametric family of functions

y = f (x1, . . . ,xn,c1, . . . ,cm)

and then
• use the known patterns

(
x(k)1 , . . . ,x(k)n ,y(k)

)
to find the values of the parameters

c j that fit this data, i.e., for which

f
(

x(k)1 , . . . ,x(k)n ,c1, . . . ,cm

)
≈ y(k). (1)

Regression vs. general machine learning. In traditional statistical data processing
(see, e.g., [8]), this problem is called regression. In most of these methods, we have
an explicit formula describing the dependence

f (x1, . . . ,xn,c1, . . . ,cm).

For example, we can have linear regression

f (x1, . . . ,xn) = c1 · x1 + . . .+ cn · xn + cn+1.

Alternatively, we can have quadratic regression, etc.
In other machine learning techniques – e.g., in neural networks – the dependence

on c j is not given explicitly. For example, in neural networks, the values c j corre-
spond to the “weights” of the corresponding neurons. To be more precise:

• for each neuron, the dependence of its output signal Y on its inputs X1, . . . ,Xℓ is
described by an explicit formula

Y = s(w1 ·X1 + . . .+wℓ ·Xℓ+wℓ+1)

for some given non-linear function known as the activation function;
• however, the input-output relation of the whole neural network – in which some

neurons process the inputs while the others process the neuron’s outputs – is
a composition of many neuron-related functions, a composition so complicated
that it is not feasible to provide its explicit expression.

Our experience with regression: under- and over-determined systems of equa-
tions. In statistical regression, to determine m parameters c1, . . . ,cm, we have K
equations (1) – corresponding to K available patters.
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In the idealized situation, when all the values are known exactly, we need m equa-
tions to determine m unknowns, i.e., we need exactly m patterns. If we have fewer
than m patterns – and thus, fewer equations – the corresponding system of equa-
tions (1) has, in general, many possible solutions. In this case, we cannot uniquely
determine the values of the parameters c j and thus, we cannot determine the desired
function: the system of equations is under-determined.

In practice, the values xi and y are always known with uncertainty – be it mea-
surement error or inaccuracy of expert’s estimates. As a result, if we have exactly
as many equations as unknown, the coefficients ci will also be determined with un-
certainty. To decreases this uncertainty, we can use additional measurements – i.e.,
we can use more patterns than unknowns. In this case, the system of equations is
over-determined, and this over-determination helps improve the accuracy.

Because of the measurement errors, if we use exactly as many unknowns as there
are patterns, we fit exactly the values containing actual measurement errors. This
over-fitting decreases the prediction accuracy,

For example, suppose that we consider a linear dependence y = c1 · x1 + c2, in
which the actual dependence is y = x, corresponding to c1 = 1 and c2 = 0. Due to
measurement errors, we may have:

• y(1) =−0.1 for x(1)1 = 0 and
• y(2) = 1.1 for x(1)1 = 1.

If we exactly fit a linear dependence to these two patterns, we get y = 1.2 · x1 −0.1.

• For x1 = 10, the predicted value is y = 1.2 ·10−0.1 = 11.9 while the actual value
is y = 10 – the difference is 1.9.

• For x1 = 100, the difference between prediction and actual value will be 19.9,
etc.

Paradoxical situation with deep learning. With deep learning, when we first in-
crease the number of unknowns to be equal to the number of patterns, we observe
the exact same over-fitting. However, interestingly, when we further increase the
number of parameters c j, the prediction error decreases. This is what leads to spec-
tacular successes of deep learning – that when we use a network with billions of
parameters to fit millions (or even thousands) of patterns, we get an almost perfect
prediction. How to explain this is the first challenge that we consider in this paper.

1.2 Second challenge: why usual numerical methods for solving
partial differential equations do not preserve energy

Physical equations and how we solve them: reminder. Many physical processes
are described by partial differential equations (PDEs); see,e.g., [3, 9]. In some spe-
cial cases, these equation have an explicit solution. In most cases, the only way to
solve these equations it to use numerical methods.
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Numerical methods provide only an approximate solution to the actual equation.
The tighter the grid we get or the smaller the finite elements we take, the more
accurate this approximation – but for any given grid size or finite element size, there
is a non-zero approximation error.

Usual numerical methods for solving PDEs do not preserve energy: a challenge.
In most physical situations, there are quantities such as energy that get preserved
with time. However, for the approximate solutions, energy is usually not exactly
preserved, it is preserved only approximately. This leads to non-physical solutions
where the energy, instead of being constant, starts growing or decreasing.

At first glance, why cannot we have a numerical method in which energy is pre-
served? Energy conservation follows from the differential equations, so, in principle,
if we replace one of the numerical equations with the energy conservation law, we
should get the equivalent system of numerical equations in which energy is auto-
matically preserved – but this is not happening. Why?

1.3 What we do in this paper

In this paper, we provide a possible explanation of these two challenges.

2 Possible Explanation

Commonsense intuition that makes the two above-described phenomena para-
doxical. The reason why we consider both above-described phenomena counter-
intuitive is because we are using the intuitive idea that for the system of equations
to have a unique solution, in general, the number of equations should be equal to the
number of unknowns.

This intuition is based on – and confirmed by – our study of systems of linear
equations, where indeed, this is, in general, true. For example, in general, if we have
fewer equations than unknowns, then the system has multiple solutions – and, in
particular, if the corresponding system has a zero solution, it must have a non-zero
solution as well.

But is this intuition correct for nonlinear equations? In contrast to well-studied
systems of linear equations, systems of non-linear equations are not so easy to ana-
lyze and are, therefore, not as well-studied, even when these systems consist of the
next simplest – quadratic (or, more generally, polynomial) equations.

However, there is a similar problem for which a lot is known: namely, the so-
lutions of system of polynomial equations, in which the unknowns are not real
numbers, but elements of a finite field. A finite field is a finite set with addition
and multiplication that satisfy the usual properties like commutativity, associativity,
and distributivity, and in which each non-zero element has an inverse. The sim-
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plest finite fields can be obtained if we take a prime number p, and consider the set
{0,1, . . . , p−1} of all possible remainders when we divide by p. On this set, we can
define addition and multiplication as addition and multiplication modulo p.

For such fields, there is also a result that – under certain condition – if a system
of polynomial equations has a zero solution, then it must have a non-zero solution.
However, the difference from the linear case is that this condition is, in general,
different from a simple inequality m > K between the number of unknowns m and
the number K of equations. Instead, this condition takes a more complex form

m >
K

∑
k=1

dk, (2)

where dk is the degree of the polynomial in the k-th equation.

• For a system of linear equations, when d1 = . . .= dK = 1, the condition (2) leads
exactly to the usual condition m > K.

• However, when some of these equations are non-linear, with dk > 1, the right-
hand side of the inequality (2) becomes larger than K – so we need more un-
knowns to guarantee the existence of a non-zero solution.

In general, due to the formula (2), the smallest value m for which we have more
than one solution is the value ∑dk + 1. Thus, similarly to the linear case, it is rea-
sonable to conclude that the value m for which we have exactly one solution is the
next smallest value, i.e., ∑dk.

Historical comment and how this is related to Fermat last theorem. The above
result is known as Chevalley-Warning Theorem; see, e.g., [1, 10]. This result has
been motivated by many specific example, one of which is Fermat Last Theorem,
according to which:

• while we can have x2
1 + x2

2 = x2
3 for many triples of positive integers – starting

with x1 = 3, x2 = 4, and x3 = 5,
• for any integer degree d ≥ 3, a similar equation xd

1 + xd
2 = xd

3 has no solution in
which all xi are positive integers.

Indeed, in all these cases, we have m = 3 unknown and a single equation of degree
d1 = d, so that ∑d j = d. Here:

• for the degree d = 2, we have m = 3 > d = 2, in line with the fact that the
equation x2

1 + x2
2 = x2

3 has a positive integer solution – actually, it has infinitely
many solutions;

• in contrast, for degrees d ≥ 3, the inequality m > d is no longer satisfied, in line
with the fact that the corresponding equations hve no solutions.

(Of course, this is by no mean a proof of Fermat Last Theorem – Chevalley-Warning
Theorem does not prevent the existence of non-zero solutions for some systems with
n ≤ ∑dk – but it was, as we have mentioned, one of the motivations behind this
mathematical result.)
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Similar ideas were discussed by Euler, who conjectured that for any degree
d, it is only possible to have a more general equality xd

1 + . . .+ xd
k = xd

k+1 when
k > d; see, e.g., [2, 5]. Clearly, Euler had an inequality like (2) in mind. By
the way, this Euler’s hypothesis turned out to be not true: for example, we have
245 + 845 + 1105 + 1335 = 1445; see, e.g., [6]. Later, other counterexamples to
Euler’s hypothesis were found. After the discovery of the first counterexample, a
slightly modified – and generalized – version of Euler;s hypothesis was proposed:
that if xd

1 + . . .+ xd
k = xd

k+ + . . .+ xd
k+ℓ for positive integers xi, then k+ ℓ ≥ d [7].

This hypothesis is still an open problem: no counter-example has been found (and
no proof either).

How this explain the non-conservation of energy. Let us show that the Chevalley-
Warning Theorem explains both above-mentioned paradoxes. Let us start with ex-
plaining why energy is usually not conserved for numerical solutions of physical
PDEs.

Indeed, usually, numerical methods of solving partial differential equations are
based on the fact that for small changes in time, from moment t to moment t +∆ t,
the values xi(t +∆) are close to the corresponding values xi(t). Thus, we can ignore
terms which are quadratic or of higher order in terms of the difference xi(t +∆)−
xi(t) and hence, keep all equations for determining the new values xi(t +∆) linear.
To find N such values, we thus have a system of N linear equations – exactly as
much as needed to uniquely determine all these values.

However, energy is usually a quadratic (or, sometimes, higher order) function of
the corresponding physical quantities; a good example is kinetic energy

1
2
·mv2

which is proportional to the square of the velocity v. Thus, the equation that de-
scribes the energy at the moment t +∆ t is equal to the energy at the moment t is
also a quadratic equation. So, if we replace one of the original linear equations with
this quadratic equation:

• the number of equations remains the same, but
• the quantity ∑d j increases by 1.

Thus, here, we still have m = N unknown, but now the quantity in the right-hand
side of (2) is equal to N +1. So:

• while previously, we had m = ∑dk, which – for linear systems – guarantees a
solution,

• now we have m < ∑dk – so the condition (2) guaranteeing the existence of a
non-zero solution is not satisfied.

This provides a possible explanation of why energy is not preserved for numerical
solutions – since a system of equation containing energy conservation, in general,
may not have a solution.
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How this explains why in effective deep learning, the number of parameters is
much larger than the number of equations. Neurons are non-linear. Thus, equa-
tions that related the input and output of a neural network are nonlinear. If all these
equations have degree d, then, according to our argument, the smallest value m for
which the corresponding system of equations has a solution – i.e., for which we can
fit all the patterns – is equal to ∑dk = d ·K.

Activation functions used in neural networks are not polynomial. While every
function can be approximated, with any given accuracy, by a polynomial, we need
polynomials of high degree d to accurately represent these functions. Thus, the num-
ber of parameters m = d ·K that we need to accurately describe K patterns indeed
has to be much larger than the number K of patterns K – which is exactly the sur-
prising phenomenon that we observe in deep learning. So, we indeed have a possible
explanation for this challenge as well.
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