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Abstract

Most formulas analyzed in fuzzy mathemat-
ics assume – explicitly or implicitly – that
the corresponding “and”-operation (t-norm
is the simplest minimum operation. In this
paper, we analyze what happens if instead,
we use other “and”-operations. It turns out
that for such operations, a fuzzification of
a mathematical theory naturally leads to a
more complex mathematical setting: fuzzi-
fication of equivalence relation leads to met-
ric, fuzzification of order leads to kinematic
metric, and fuzzification of topology leads to
area or volume.

Keywords: fuzzy mathematics, equivalence
relation, metric, order, kinematic metric,
topology, area, volume.

1 Formulation of the Problem

Need for fuzzy techniques: a brief reminder. In
our everyday life, we often make decisions based
on imprecise (“fuzzy”) natural-language statements:
whether rain is light or heavy, whether the car in front
us is close, etc. To help us make good decisions, it
is therefore desirable to take this imprecise knowledge
into account. To be able to do this, we need to translate
this knowledge into computer-understandable – i.e.,
numerical – form. Techniques for such translation are
known as fuzzy techniques; see, e.g., [1, 5, 6, 8, 9, 12].

In these techniques, pioneered by Lotfi Zadeh, one of
the main ideas is to use numbers to describe the corre-
spondingly uncertainty. For example:

• a car 4 meters in front is definitely close,

• a car 1 km away is definitely not close,

• but for many intermediate values of the distance,
we may be not sure whether it is close or not:
we can say that it is somewhat close, reasonably
close, etc.

In the computer:

• “true” is usually represented as 1, and

• “false" is usually represented as 0.

It is therefore reasonable to represent intermediate de-
grees of confidence by numbers intermediate between
0 and 1.

To get such a degree, we can ask the expert to mark
his/her degree of confidence on a scale from 0 to 1. In
the current culture, this is a common procedure:

• this is how we reply to what extent we are satisfied
with a service,

• this is how students reply to what extent they are
satisfied with our teaching skills, etc.

Need for “and”-operations (t-norms): a brief re-
minder. In decision making, we often use composite
statements. For example, if we need to go out into the
rain, how we dress and whether we take an umbrella
depends not only on whether the rain is light or heavy
but also whether the wind is strong: if the rain is heavy
and the wind is strong, a usual umbrella will not work,
a raincoat will work better.

We have already mentioned that to find the degree to
which rain of different strength is heavy, we can ask
an expert. Similarly, to find the degree to which wind
of different speed is strong, we can ask experts. All
this is feasible. But, in view of the use of compos-
ite statements, we also need to find, for each possible
combination of rain intensity and wind speed, to what
extend the phrase “the rain is heavy and the wind is



strong” holds true. Even if we could potentially ask
the expert about all possible combinations of these two
quantities, what if we have 3? 4? 5? 7 such quanti-
ties – and in serious decisions, we do take into account
values of many quantities.

In such situations, since we cannot elicit the corre-
sponding degrees directly from the expert, we need to
estimate these degrees based on the available informa-
tion that we have already elicited. In other words, we
need to be able:

• given the expert’s degree of confidence a and b in
statements A and B,

• to provide an estimate for the expert’s degree of
certainty in the composite statement A&B.

Functions f&(a,b) providing such an estimate are
known as “and”-operations, or, for historical reasons,
t-norms.

The simplest t-norm – introduced in the first Zadeh’s
paper on fuzzy logic – is the min t-norm f&(a,b) =
min(a,b) [12]. However, there are many other
“and”-operations, starting with the product operation
f&(a,b) = a · b introduced by Zadeh in that same pa-
per.

Comment. Similarly, there exists fuzzy “or”-operations
f∨(a,b) (also known as t-conorms) that transform the
expert’s degees of certainty a and b in statements A and
B into an estimate for the expert’s degree of certainty
in a composite statement A∨B.

Fuzzy mathematics: a brief reminder. Usually,
fuzzy techniques are used to describe our uncertainty
about the numerical values. However, people also use
fuzzy words to describe more complex mathematical
objects.

For example, an engineer can say that the function
y = f (x) describing the dependence between the two
quantities is “rather smooth” or “very smooth”, or that
the solution to the corresponding system of equation is
“usually unique”, etc.

To formalize such use of “fuzzy” natural-language
words, researchers have extended fuzzy techniques to
more general fuzzy mathematics, where fuzzy degrees
can be applied to general mathematical objects.

Fuzzy mathematics mostly uses the min t-norm.
Mathematics is not easy, and extending mathematics to
fuzzy objects does not make it easier. Because of this
complexity, most results of fuzzy mathematics limit
themselves to the simplest t-norm, i.e., the min t-norm.

A natural question. A natural question is: what will
happen if we use more general “and”-operations?

What we do in this paper. In this paper, we show, on
several examples, that the use of non-minimal “and”-
operations naturally leads to new mathematical con-
cepts:

• equivalence leads to metric,

• order leads to kinematic metric, and

• topology leads to volume.

2 First Example: Equivalence Leads to
Metric

What is equivalence: reminder. In mathematics, an
relation ∼ is called an equivalent relation if it satisfies
the following three conditions:

• it is reflexive, i.e., x ∼ x for all x;

• it is symmetric, i.e., x ∼ y is equivalent to y ∼ x
for all x and y, and

• it is transitive, i.e., if x ∼ y and y ∼ z, then x ∼ z.

Towards a fuzzy analogue of the equivalence rela-
tion. In 2-valued logic, for every two objects x and y,
either x is equivalent to y or not. A natural fuzzy ana-
logue is when for every two objects x and y, we have
a degree d(x,y) ∈ [0,1] to which these two objects are
equivalent. Let us reformulate the above three proper-
ties in these terms.

• Reflexivity means that each object is absolutely
equivalent to itself, i.e., that d(x,x) = 1 for all x.

• Symmetry means that the degree to which x is
equivalent to y should be the same as the degree
to which y is equivalent to x, i.e., that d(x,y) =
d(y,x) for all x and y.

• Finally, transitivity means that our degree of be-
lief that x is equivalent to z should be at least a
large as our belief in the statement

“x is equivalent to y and y is equivalent to z”,

i.e., that we should have

d(x,z)≥ f&(d(x,y),d(y,z)) (1)

for all x, y, and z.

Fuzzy version naturally leads to metric. It is known
(see, e.g., [7]) that for every ε > 0, every “and”-
operation can be approximated, with accuracy ε , by



a strictly Archimedean “and”-operation, i.e., by an
“and”-operation of the type

f&(a,b) = ψ
−1(ψ(a) ·ψ(b)) (2)

for some strictly increasing 1-1 function ψ(a) from the
interval [0,1] to itself.

In practice, we always get the degrees with some ac-
curacy. Thus, from the practical viewpoint, it is safe
to assume that the actual “and”-operation is strictly
Archimedean, i.e., has the form (2). For such an “and”-
operation, transitivity (1) means that

d(x,z)≥ ψ
−1(ψ(d(x,y)) ·ψ(d(y,z))).

Applying the increasing 1-1 function ψ(a) to both
sides of this inequality, we will get an equivalent in-
equality

ψ(d(x,z))≥ ψ(d(x,y)) ·ψ(d(y,z)). (3)

Similarly, by applying the function ψ(a) to equalities
describing reflexivity and symmetry, we conclude that:

• ψ(d(x,x)) = 1 for all x and

• ψ(d(x,y)) = ψ(d(x,y)) for all x and y.

Let us see how we can simplify the above properties.
The inequality (3) involves multiplication. From the
computational viewpoint, multiplication is more com-
plex than addition, but if can be reduced to addition
if we take logarithms, since ln(a · b) = ln(a)+ ln(b):
this is exactly what logarithms were invented for, to
simplify computing the products – and this is what the
slide rule, the main engineering computational device
for many centuries, was based on.

It is therefore reasonable to apply logarithms to both
sides of the inequality (3). This way, we get an equiv-
alent inequality

ln(ψ(d(x,z)))≥ ln(ψ(d(x,y)))+ ln(ψ(d(y,z))). (4)

This is better, but not perfect, since when we apply log-
arithm to the degree ψ(d(x,y)) from the interval [0,1],
we get negative numbers (or 0). However, it is easier
for us to deal with positive numbers, since we are more
accustomed to them. So, to make the resulting expres-
sion more convenient, let us change the signs of both
sides, and consider the following non-negative expres-
sion:

ρ(x,y) def
= − ln(ψ(d(x,y))). (5)

Since we changed the signs of both sides,we need to
replace ≥ with ≤. Thus, for the expression (5), the
inequality (4) takes the form

ρ(x,z)≤ ρ(x,y)+ρ(y,z).

This is a well-known triangle inequality – one of the
properties describing a general metric. Similarly, by
applying − ln(a) to both sides of equalities describ-
ing reflexivity and symmetry, we get ρ(x,x) = 0 and
ρ(x,y) = ρ(y,x) for all x and y – the two remaining
properties of the metric.

So, fuzzification of equivalence relation indeed leads
to a metric.

Comment. Usually, the metric also needs to satisfy an
additional property: that if ρ(x,y) = 0 then x = y. This
property can also be derived if we additionally require
that if d(x,y) = 1 then x must be equal to y.

3 Second Example: Order Leads to
Kinematic Metric

Strict order relation: a brief reminder. In this ex-
ample, we will consider a strict order relation, i.e., a
relation < which is:

• anti-reflexive: x ̸< x for all x;

• anti-symmetric: if x < y, then y ̸< x; and

• transitive: if x < y and y < z, then x < z.

An example of such a relation is “x is smaller than y”.

Comment. Strictly speaking, we do not need to pos-
tulate the second property, since it follows from the
other two. Indeed, if we had x < y and y < x, then
by transitivity, we would have x < x, which contradicts
anti-reflexivity.

However, we explicitly added this property to keep this
section as similar to the previous one as possible.

Where fuzziness enters. For some objects, x is defi-
nitely not smaller than y. However when x is smaller
than y, then we can distinguish between different de-
grees of this smallness:

• we can have cases when x slightly smaller than y,

• we can have cases when x much smaller than y,
etc.

The relation “much smaller" has the following natural
property:

if x < y < z, then whenever x is much smaller than y
or y is much smaller than z, then x is much smaller

than z.

If we use the usual notation x ≪ y for “x is much
smaller than y”, then this property takes the following
form:



if x < y < z and either x ≪ y or y ≪ z, then x ≪ z.

To describe the relation ≪ in precise terms, to each
pair of objects x and y for which x < y, we assign a
degree d(x,y) to which x is much smaller than y. When
x is not smaller than y, then, of course, d(x,y) = 0. In
terms of this degree, the above “or”-property, in fuzzy
terms, takes the following form:

if x < y < z then

d(x,z)≥ f∨(d(x,y),d(y,z)). (6)

This can be transformed into a kinematic metric.
Let us simplify the above inequality. For this purpose,
we need to use the known fact that there is a 1-1 corre-
spondence between “and”- and “or”-operations:

• if f&(a,b) is an “and”-operation, then

1− f&(1−a,1−b)

is an “or”-operation, and

• vice versa, if f∨(a,b) is an “and”-operation, then

1− f∨(1−a,1−b)

is an “and”-operation.

Because of this correspondence, each “or”-operation
has the form

f∨(a,b) = 1− f&(1−a,1−b) (7)

for some “and”-operation f&(a,b). Substituting this
expression into the inequality (6), we conclude that

d(x,z)≥ 1− f&(1−d(x,y),1−d(y,z)). (8)

Subtracting both sides of this inequality from 1, we
conclude that

1−d(x,z)≤ f&(1−d(x,y),1−d(y,z)). (9)

We have already mentioned that, from the practi-
cal viewpoint, we can safely assume that the “and”-
operation has the form (2), Substituting the expression
(2) for the “and”-operation into the inequality (9), we
conclude that

1−d(x,z)≤

ψ
−1(ψ(1−d(x,y)) ·ψ(1−d(y,z))). (10)

If we apply the function ψ(a) to both sides of this in-
equality, we conclude that

ψ(1−d(x,z))≤ ψ(1−d(x,y)) ·ψ(1−d(y,z)). (11)

Similarly to the previous section, we can simplify this
inequality if we apply − ln(a) to both sides. Then, for
the values

τ(x,y) def
= − ln(ψ(1−d(x,y)),

we get
τ(x,z)≥ τ(x,y)+ τ(y,z). (12)

Here, if x ̸< y, then d(x,y) = 0 and thus,

τ(x,y) =− ln(ψ(1−d(x,y)) = 0.

The inequality (12) – which differs from the triangle
inequality by its sign – is known as the anti-triangle
inequality. It is true in physics, where τ(x,y) indicates
the longest time needed to go from space-time event x
to space-time event y; see, e.g., [3, 11], This longest
time corresponds to rest or inertial motion. From this
viewpoint, the inequality (12) described the so-called
twin paradox of relativity theory: that a twin that stays
on Earth – and thus, stays on the rest trajectory from x
to z – grows older than the twin that first traveled to a
faraway star (y) and then came back.

In general, functions τ(x,y) that satisfy this inequality
as known as kinematic metrics; they form the basis of
the study of space-time; see, e.g., [2, 4, 10]. So, fuzzi-
fication of order indeed leads to a kinematic metric.

4 Third Example: Topology Leads to
Area or Volume

How topology is usually defined. In mathematics,
topology is usually defined as a class of open sets, i.e.,
sets that contain, with each point, some neighborhood
of this point. One the most frequent ways to define
topology is to describe its basis, i.e., describe a class
of open sets – e.g., on a plane, small circles. Then, we
say that a set is open if it is a union of some sets from
the basis - or of their finite intersections.

A simplified description. To analyze the possible use
of fuzzy, let us consider the simplified case when we
have a grid formed by points with integer coordinates
c = (c1, . . . ,cn), and the basis consists of semi-open
boxes attached to each such point c. For each grid point
c, the corresponding box B(c) consists of all the points
x = (x1, . . . ,xn) for which ci ≤ xi < ci +1 for all i.

In this scheme, the only open sets are finite unions of
such boxes.

What fuzzy adds to this description. One of the main
ideas behind fuzzy techniques is that everything is a
matter of degree. In particular, this means that in the
general fuzzy case, the boxes are not absolutely open,
but rather open with some degree of confidence d. In



this case, the union S = B1 ∪ . . .∪Bk of k boxes Bi is
open if and only if each of these k boxes is open, i.e.,
if the box B1 is open, and the box B2 is open, etc. For
each of these k statements, the degree of confidence is
d. Thus, our degree of confidence d(S) that all k boxes
are open – and thus, that their union S is open – can
be obtained by applying the “and’-operation to these k
values:

d(S) = f&(d, . . . ,d) (k times).

This leads to area or volume. If we now substitute
the expression (2) for the generic “and”-operation, we
thus conclude that

d(S) = ψ
−1(ψ(d) · . . . ·ψ(d)) (k times),

i.e.,
d(S) = ψ

−1((ψ(d))k).

If we apply the function ψ to both sides of this equality,
we get

ψ(d(S)) = (ψ(d))k.

If we now apply the function − ln(a) to both sides, then

for the resulting expression V (S) def
= − ln(ψ(d(S))), we

get
V (S) = k ·V0,

where we denoted V0
def
= − ln(ψ(d)).

So, by fuzzifying topology, we indeed get a value
which is proportional to the number of boxes forming
the set S – i.e., depending on the dimension, to the area
or to the volume of this set.

Comments.

• If we decrease the size of the boxes, then, in the
limit when this size tends to 0, we get the actual
area or volume.

• In our description, we simplified this example so
that computations will be clear. In doing this,
we uses boxes which are not actually open in the
usual Euclidean topology. However, a similar re-
sult holds if we use intersecting open small boxes
instead.
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