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Abstract

In the last decades, deep learning has led to spectacular successes.
One of the reasons for these successes was the fact that deep neural
networks use a special Rectified Linear Unit (ReLU) activation function
s(x) = max(0, x). Why this activation function is so successful is largely a
mystery. In this paper, we show that common sense ideas – as formalized
by fuzzy logic – can explain this mysterious effectiveness.

1 Formulation of the Problem

How neural networks work: a brief general description. An artificial
neural network (see, e.g., [2, 3]) is a network of computational elements called
neurons. Each neuron transforms the inputs x1, . . . , xn into a value

y = s(w1 · x1 + . . .+ wn · xn + w0),

where:

� wi are real numbers known as weights, and

� s(x) is a function – usually (non-strictly) increasing – that is called acti-
vation function.

Some neurons process the input data – i.e., usually, the measurement results.
Other neurons take, as input, the results of processing by some other neurons,
etc.

How neural networks work: some specifics. It is known that neural
networks have the universal approximation property, i.e., that for a sufficient
number of neurons and for an appropriate selection of weights, they can ap-
proximate any continuous function with any given accuracy. The process of
determining the appropriate weights is known as training.
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Which activation function should we select. The effectiveness of training
depends on the selection of the activation function.

� Traditionally, neural networks used the function s(x) = 1/(1 + exp(−x))
coming from biological neurons [2, 3].

� However, in the last decades, it turns out that the use of a Rectified Linear
Unit (ReLU) s(x) = max(0, x) leads to a much more effective learning.
The use of ReLU was one of the factors contributing to the spectacular
successes of deep learning; see, e.g., [3].

Remaining problem. Why ReLU is so effective is, however, to a large extent
a mystery.

What we do in this paper. This is the problem that we deal with in this
talk. Specifically, we use ideas from fuzzy logic (see, e.g., [1, 4, 5, 6, 7, 8]) to
provide a possible explanation for ReLU effectiveness.

2 Possible Explanation

2.1 Plan

Our explanation will come in two steps:

� first, we will use fuzzy techniques to narrow down the class of possible
activation functions;

� then, we apply general ideas from calculus to the class selected on the first
step, and show that this indeed leads to the ReLU activation function.

2.2 Towards an explanation: first step

Data is usually known with some uncertainty. Inputs to data processing
are known with some uncertainty. Indeed, as we have mentioned, these inputs
usually come from measurements, and measurements are never absolutely ac-
curate. Because of this uncertainty, the same actual value may lead to slightly
different measurement results.

For example, if the actual value of the voltage is 1.0 V and we measure it
with accuracy 10%, we can get measurement results 1.09 or 0.92.

The data uncertainty should minimally affect the result of data pro-
cessing. It is reasonable to require that the resulting difference should affect
the result of data processing as little as possible.

What this implies for a neuron. In particular, with respect to processing
by a single neuron, this means that if the values x and x′ are close, then the
values s(x) and s(x′) should also be close.
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How to describe this requirement in precise terms. The natural-language
word “close” does not have a precise mathematical meaning; this word is im-
precise (“fuzzy”). To describe knowledge conveyed by such terms, Lotfi Zadeh
invented a special technique called fuzzy logic. This technique takes into account
that:

� in contrast to precise terms like “positive” which are always either true or
not,

� if you ask the person about an imprecise term like “close”, this person will
often say that this property is satisfied only to some degree.

Some pairs of numbers are very close, some are somewhat close, etc.
To capture these intermediate degrees of confidence – intermediate between

absolutely false and absolutely true – Zadeh took into account that in a com-
puter:

� “true” is usually represented by 1, while

� “false” is usually represented by 0.

So, it is natural to represent intermediate degrees of confidence by numbers
intermediate between 0 and 1.

In general, to describe each such property, we therefore need to ask the per-
son who uses this term, for each possible value v of the corresponding quantity,
to mark, on the scale from 0 to 1, the degree µ(v) to which this value satisfies
this property. The resulting function µ(v) is known as a membership function,
or, alternatively, as a fuzzy set.

In our case, closeness depends on how different are the numbers x and x′,
i.e., it depends on the distance v = |x − x′| between these two numbers. So,
the degree of closeness has the form µ(|x− x′|) for an appropriate membership
function µ(v). The further away the two points, i.e., the larger the distance
between them, the less confident we are that these two points are close. Thus,
the function µ(v) shouold be strictly decreasing.

This way, we for every two values x and x′, we get:

� the degree of confidence µ(|x− x′|) in the statement “x and x′ are close”,
and

� the degree of confidence µ(|s(x)− s(x′)|) in the statement “s(x) and s(x′)
are close”.

We need to interpret the if-then combination of these two statements. In
general, a natural way to interpret the statement “if A then B” is that our
degree of confidence in the statement B should be at least as large as our degree
of confidence in the statement A. In our case, this means that for all possible
real numbers x and x′, we must have

µ(|s(x)− s(x′)|) ≥ µ(|x− x′|). (1)

3



What this inequality implies for the activation function. Since, as we
have mentioned, the membership function corresponding to “close” is strictly
decreasing. Thus, the inequality (1) is equivalent to the following inequality:

|s(x)− s(x′)| ≤ |x− x′|. (2)

What this inequality implies for the derivative of the activation func-
tion. Neural network training is usually based on the gradient descent, i.e., on
using the derivatives. Because of this, the activation function s(x) is usually
selected to be smooth (differentiable) – or at least differentiable almost every-
where. Let us analyze what the inequality (2) implies for the derivative s′(x) of
the activation function.

If we take x′ = x+ h for some small h > 0, then |x− x′| = h. Since x < x′

and the function s(x) is monotonic, we get s(x) < s(x′), thus |s(x) − s(x′)| =
s(x+ h)− s(x) ≥ 0. So, the inequality (2) takes the form

0 ≤ s(x+ h)− s(x) ≤ h. (3)

If we divide both sides of this inequality by h, we get

0 ≤ s(x+ h)− s(x)

h
≤ 1. (4)

In the limit h → 0, we get
0 ≤ s′(x) ≤ 1. (5)

2.3 Towards an explanation: final step

Let us show how the fuzzy-motivated inequality (5) leads to the explanation of
ReLU effectiveness – i.e., to the explanation of why ReLU is, in some reasonable
sense, optimal.

What can we say, in general, about an optimal choice. In general,
according to calculus, the maximum of a function F (X) in a given region is
attained:

� either at the local maximum, where all partial derivatives of this function
are 0s,

� or at the border of this region.

Case when we have a large number of constraints. In situations where
we have many constraints, each of which decreases the region size, the resulting
region is very small. So, the probability that it contains a local maximum is
also very small. Thus, in most cases, the maximum is attained at the border,
i.e., where (at least) one the inequality constraints turns into an equality. So,
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to find the maximum of a function in a region, it is, in most cases, sufficient to
find its maximum on the border of this region.

We can apply the same argument to the function F (X) restricted to the
border and conclude that most probably, the maximum is attained when another
inequality constraint becomes an equality, etc.

In general, the maximum is most probably attained at the point where most
– if not all – inequality constraints turn into equalities.

Let us apply this general conclusion to our case. Let us apply the above
conclusion to our case. The set of all activation functions is determined by in-
equality constraints 0 ≤ s′(x) ≤ 1 corresponding to different x. Thus, whatever
optimality criterion we use, the optimal activation function most probably cor-
responds to the situation when each of these inequalities turns into an equality,
i.e., when for each x, we either have s′(x) = 0 or s′(x) = 1. Here:

� In regions where s′(x) = 0, the function s(x) is constant.

� In regions where s′(x) = 1, we have s(x) = x+ c for some constant c.

Thus, the optimal activation function must consists of regions in which it is
either constant or have the form s(x) = x+ c.

What are the simplest functions of this type? The fewer regions, the
simpler the function.

The simplest case is when we have only one region. However, in this case, the
activation function s(x) would be linear and so, we will not be able to represent
non-linear functions.

Thus, the simplest case when we can represent non-linear functions is when
we have two regions:

� on one of them s(x) is constant,

� on another one s(x) = x+ c.

Each such two-region function is linearly equivalent to ReLU.
Thus, we indeed have a fuzzy-based explanation for the success of ReLU.
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