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Abstract

In contrast to crisp clustering techniques that
assign each object to a class, fuzzy cluster-
ing algorithms assign, to each object and
to each class, a degree to which this object
belongs to this class. In the most widely
used fuzzy clustering algorithm – fuzzy c-
means – for each object, degrees correspond-
ing to different classes add up to 1. From
this viewpoint, these degrees act as proba-
bilities. There exist alternative fuzzy-based
clustering techniques in which, in line with
the general idea of the fuzzy set, the largest
of the degrees is equal to 1. In some practical
situations, the probability-type fuzzy clus-
tering works better; in other situations, the
more fuzzy-type technique leads to a more
adequate clustering. It is therefore desirable
to combine the two techniques, so that one
of them will cover the situations where the
other method does not work so well. Such
combination methods have indeed been pro-
posed. An empirical comparison has shown
that out of all these combined methods, the
most effective one is the method in which we
the use the product of probability and fuzzy
degree. In this paper, we provide a theoreti-
cal explanation for this empirical result.

Keywords: fuzzy sets, clustering, fuzzy
clustering, probabilistic clustering

1 Formulation of the Problem

Probability-inspired approach to fuzzy clustering.
The most widely used fuzzy-based clustering tech-
niques – fuzzy c-means – assigns, to each object i and
to each class k, the degree pik to which this object be-
longs to the class; see, e.g., [2]. If we want to select

the cluster that most probably contains the object i, we
should select the cluster k for which the value pik is the
largest.

For each object, these degrees add up to 1:

∑
k

pik = 1.

Because of this fact, one of the natural interpretation of
this degree is that is estimates the probability that the
object i is in class k – indeed, such probabilities should
add up to 1, if we assume, as it is usually done, that
each object actually belongs to one of the clusters.

For simplicity, in the following text, we will call such
clustering methods probabilistic, and the vlues pik
probabilities.

Alternative more fuzzy-type approaches to fuzzy
clustering. There exist other fuzzy-based approaches
to clustering for which the resulting values µik are
more in line with the general fuzzy logic ideas (see,
e.g., [1, 3, 5, 6, 7, 13]): namely, for which the con-
straint on the corresponding values µik has a fuzzy-type
form

max
k

µik = 1;

see, e.g., [4].

Need to combine probabilistic and fuzzy schemes.
It turns out that both probabilistic and fuzzy schemes
capture some aspects of clustering that is not well cap-
tured by the other scheme:

• for some objects i, selecting the cluster with the
largest value k of the probability pik leads to a
more adequate clustering, while

• for some other objects i, selecting the cluster with
the largest value k of the fuzzy degree µik leads to
a more adequate clustering.

It is therefore desirable to combine the two methods, so
as to combine the advantages of both methods. A nat-



ural idea is to make the selection of a cluster based on
some combination f (pik,µik) of the values produced
by these two methods.

Which combination method works best? Sev-
eral different combination functions f (p,µ) were pro-
posed; see, e.g., [8, 10, 11, 12]. An empirical com-
parison of different function showed that in many sit-
uation, the most adequate clustering comes from using
the product f (p,µ) = p ·µ; see, e.g., [10, 11, 12].

What we do in this paper. In this paper, we provide a
theoretical explanation for this empirical fact. Namely,
we explain why the product function works the best, by
showing that the product is the only combination func-
tion that satisfied the corresponding reasonable proper-
ties.

2 What Are the Reasonable Properties
of the Combination Function?

Two possible viewpoints. We have two different ap-
proaches: probabilistic and fuzzy. Depending on what
approach we start with, we can view the transition to
the combined technique in two different ways:

• if we start with the probabilistic approach, we can
view the use of fuzzy degrees as a correction of
the original probabilistic estimate pik;

• alternatively, if we start with the fuzzy approach,
we can view the use of probabilities as a correc-
tion to the original fuzzy estimates µik.

It turns out that each viewpoint leads to its own reason-
able requirement on the combination function.

Main idea behind these requirements. Often, in the
beginning, we have very little information. So, to be on
the safe side, we consider many possible classes (clus-
ters) to which the object can belong. Later on, we often
gain additional knowledge that allows us to limit the
possible choices to a smaller subset of classes.

When we limit ourselves to a smaller group of clus-
ters, this changes the corresponding probability and/or
fuzzy values. A reasonable idea is to require that the
corrected probability/fuzzy values should also be sim-
ilarly re-scaled.

Let us show what this idea leads to for both viewpoints.

Let us first consider the probabilistic viewpoint. For
each object i and for each cluster k, we had the original
probability pik that the object i belongs to the cluster k.
When we gain the additional knowledge that allows us
to limit the set of possible clusters to a smaller set S,
this means that instead of the original probabilities pik,

we now consider conditional probabilities – p′ik under
the condition that k belongs to S. By definition of con-
ditional probability (see, e.g., [9]), we have

p′ik =
pik

p(S)
,

where p(S) is the original probability of the set S.

Thus, from the probabilistic viewpoint, restricting the
set of clusters means multiplying all the probability
values by some constant c > 0:

p 7→ c · p.

Resulting requirement. The main idea behind our re-
quirements is that:

• if we re-scale the original probabilities p,

• then this should leads to a similar re-scaling of the
corrected probabilities f (p,µ).

Thus, we arrive at the following definition.

Definition 1. We say that a function f (p,µ) is reason-
able from the probabilistic viewpoint if for all possible
values of p, µ , and c, we have

f (c · p,µ) = c · f (p,µ). (1)

Let us now consider the fuzzy viewpoint. In order
to properly analyze the situation from the fuzzy view-
point, let us recall where the fuzzy degrees come from.

Some popular expositions of fuzzy logic provide a sim-
plified description that we simply ask the experts to
mark, on a scale from 0 to 1, the degree to which the
corresponding property is satisfied. This simplified de-
scription adequately describes situations when we have
natural objects with degree 1 – or at least there are ob-
jects for which this degree is as close to 1 as possible.
For example:

• for “small”, clearly 0 is absolutely small; for this
value, all the experts will agree that this value is
small;

• for “large”, clearly, the larger the value, the more
confident we are that this value is large – and as
this value tends to infinity, the corresponding de-
gree tends to 1; again, all the experts will agree on
this.

In such situations, the sometimes-forgotten require-
ment – that the largest of the degrees should be 1 –
is automatically satisfied.



However, there are other situations in which this re-
quirement is not automatically satisfied. For exam-
ple, when we consider properties like “medium”, it is
highly improbable that there will be a value for which
all the experts will agree that this value is absolutely
medium. In such situations, the determination of mem-
bership degrees goes through two stages:

• first, we ask the experts to estimate, for each pos-
sible input k, the corresponding degree dk ∈ [0,1];

• then, we normalize these degrees by dividing
them by the largest, and get the new values

µk =
dk

max
j

d j

for which the desired condition max
k

µk = 1 is sat-

isfied.

From this viewpoint, if we delete the class k0 that orig-
inally had the largest degree of confidence, then we
need to again re-scale, to make sure that the largest of
the degrees is still 1. This re-scaling means that we
multiply all the values µk by the same factor:

µ 7→ c ·µ

for some constant c > 0.

Resulting requirement. As we have mentioned, the
main idea behind our requirements is that:

• if we re-scale the original degrees µ ,

• then this should leads to a similar re-scaling of the
corrected degrees f (p,µ).

Thus, we arrive at the following definition.

Definition 2. We say that a function f (p,µ) is reason-
able from the fuzzy viewpoint if for all possible values
of p, µ , and c, we have

f (p,c ·µ) = c · f (p,µ). (2)

Now, we are ready to present our main result.

3 Main Result

Proposition. For a function f (p,µ) that maps two
non-negative numbers to a non-negative number, the
following two conditions are equivalent to each other:

• the function is reasonable both from the proba-
bilistic viewpoint and from the fuzzy viewpoint,

• the function f (p,µ) has the form

f (p,µ) = a · p ·µ

for some a > 0.

Discussion. At first glance, it may seem that this
proposition almost explains the above-mentioned em-
pirical fact – that out of all possible combination func-
tions f (p,µ), the most adequate is the product func-
tion f (p,µ) = p ·µ . We said “almost” since the func-
tions described by our proposition may contain an ad-
ditional positive factor a. However, from the practical
viewpoint, this factor does not change anything, for the
following two reasons:

• First, multiplication by a positive constant does
not change the order. Thus, the cluster k with the
largest value of the expression a · pik ·µik is exactly
the same cluster for which the product pik ·µik at-
tains it largest value.

• Second, if we normalize the values of the combi-
nation function – whether by dividing by the sum,
to get probabilities or by dividing by the largest
value, to get fuzzy degrees – we get the same re-
sult, whether we start with the values a · pik · µik
or with the values pik ·µik.

Proof of Proposition.

1◦. It is easy to check that for each a > 0, the function
f (p,µ) = a · p · µ is reasonable both from the proba-
bilistic and from the fuzzy viewpoints.

2◦. Vice versa, let us assume that the function f (p,µ)
is reasonable both from the probabilistic and from the
fuzzy viewpoints. Under this assumption, let us prove
that this function has the desired form.

Indeed, for each value p, the fact that the function
f (p,µ) is reasonable from the probabilistic viewpoint
implies that

f (p,1) = f (p ·1,1) = p · f (1,1). (3)

Similarly, the fact that the function f (p,µ) is reason-
able from the fuzzy viewpoint implies that

f (p,µ) = f (p,µ ·1) = µ · f (p,1). (4)

Substituting the expression (3) for f (p,1) into the for-
mula (4), we conclude that

f (p,µ) = µ · (p · f (1,1)) = f (1,1) · p ·µ.

This is exactly the desired expression, with a= f (1,1).
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