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Abstract

To adequately represent human reasoning in
a computer-based systems, it is desirable to
select fuzzy operations that are as close to
human reasoning as possible. In general,
every real-valued function can be approxi-
mated, with any desired accuracy, by poly-
nomials; it is therefore reasonable to use
polynomial fuzzy operations as the appro-
priate approximations. We thus need to se-
lect, among all polynomial operations that
satisfy corresponding properties – like asso-
ciativity – the ones that best fit the empir-
ical data. The challenge here is that prop-
erties like associativity mean satisfying in-
finitely many constraints (corresponding to
infinitely many possible triples of values),
while most effective optimization techniques
assume that the number of equality or in-
equality constraints is finite. Thus, it is de-
sirable to find, for each corresponding family
of infinitely many constraints, an equivalent
finite set of constraints. Such sets have been
found for many fuzzy operations – e.g., for
implication operations represented by poly-
nomials of degree 4. In this paper, we show
that such equivalent finite sets always exist,
and we describe an algorithm for generating
these sets.

Keywords: fuzzy logic, fuzzy opera-
tions, polynomial fuzzy operations, Tarski-
Seidenberg theorem

1 Formulation of the Problem

Need for fuzzy techniques: a brief reminder. In
the early 1960s, Lotfi Zadeh, then one of the world’s
leading specialists in automatic control, noticed that

in many situations, expert human controllers achieved
better results that the supposedly optimal automatic
controllers. The general reason for this situation was
clear:

• automatic controllers were based on the available
models of the controlled plants,

• so the fact that the resulting control did not work
perfectly meant that these models were not fully
adequate, that expert human controllers had some
additional knowledge about the situation, knowl-
edge that was not incorporated into the available
models.

The problem was not that the experts were hiding some
information: many experts were willing to share this
additional knowledge and to explain what could be im-
proved in the control generated by the automatic con-
trollers. The difficulty was that their knowledge was
described:

• not in precise mathematical easy-to-automate
terms,

• but rather by using imprecise (“fuzzy”) words
from natural language like “small”.

To incorporate this knowledge, Zadeh started design-
ing techniques for translating this imprecise natural-
language knowledge into computer-understandable nu-
merical form. He named techniques providing such
fuzzy-to-precise transformation fuzzy techniques; see,
e.g., [3, 8, 10, 11, 12, 17].

One of his main ideas was that:

• in contrast to precise properties like “smaller than
0.1", properties that are always either true or false,

• fuzzy properties like “small” are usually only true
to some degree.



So, Zadeh suggested to describe each such property by
assigning, to each possible value x of the correspond-
ing quantity, the degree – from the interval [0,1] – to
which this value x satisfies the given property. Many
experts were able to provide such degrees by marking
them on the scale – just like we can gauge the qual-
ity of a customer experience on a 0 to 10 scale and
how students gauge the quality of our teaching. The
resulting function µ(x) mapping real values x into the
degree µ(x) was called a membership function or, al-
ternatively, a fuzzy set.

Since this idea involves, in effect, expanding the set of
“truth values” – one of the basic concepts of logic –
fuzzy techniques are also called fuzzy logic techniques.

Need for fuzzy operations. One of the main objec-
tives of the original fuzzy techniques was to transforms
natural-language expert rules like the one below into a
precise control strategy:

if temperature t is high and humidity h is low, then set
the strength s of the air conditioner on medium.

To translate such statements, first we need to ask the
experts to provide membership functions correspond-
ing to temperature, to humidity, and to strength. How-
ever, this is not enough: to come up with an appropriate
control, we need to come up the degrees of confidence
in complex statements – like the statement above.

In the ideal world, we should determined the degree of
certainty of each such statement for all possible com-
binations of inputs. However, this is not realistic: even
if we have 10 different values of each of the three in-
puts, we would need to ask the expert 103 questions
about each rule. This may be feasible, but what if we
have 5 inputs? 7 inputs? This is typical for complex
control systems, and this would require asking 107 =
10 million questions to the expert – this is clearly not
feasible.

Since we cannot get the estimates of complex state-
ments directly from the experts, we need to generate
these estimates based on whatever information we have
– i.e., based on the expert’s degrees of confidence that
t is high, that h is now, and that s is medium.

In other words, for logical connectives ⊙ such as
“and”, “or”, “implies”, etc., we need to be able, given
our degree of confidence x and y in the component
statements X and Y , to provide an estimate for our de-
gree of confidence in the complex statement X ⊙Y .
The function f⊙(x,y) that provides such estimates is
called a fuzzy operation; for example:

• functions f&(x,y) corresponding to “and” are
known as “and”-operations (or, for historical rea-

sons, t-norms);

• functions f∨(x,y) corresponding to “or” are
known as “or”-operations (or, for historical rea-
sons, t-conorms);

• functions f→(x,y) corresponding to implication
are known as implication operations, etc.

Such operations need to satisfy some reasonable prop-
erties. For example:

• since X &Y means the same as Y &X , these two
expressions should lead to the same estimate, i.e.,
we should have f&(x,y) = f&(y,x); in mathemat-
ical terms, this means that the “and”-operation
should be commutative;

• since X &(Y &Z) means the same as (X &Y )&Z,
these two expressions should also lead to the same
estimate, i.e., we should have f&(x, f&(y,z)) =
f&( f&(x,y),z); in mathematical terms, this means
that the “and”-operation should be associative,
etc.

Need to approximate fuzzy operations. Fuzzy oper-
ations should reflect the expert reasoning. The more
accurately these operation reflect expert reasoning, the
better we capture the expert knowledge. We should
therefore be prepared to capture the actual human rea-
soning as accurately as possible – whatever the reason-
ing will be.

Need for polynomial approximations. Techniques
for capturing all kinds of empirical dependence is well
known in science. For example, in physics (see, e.g.,
[7, 16]) the usual way to capture such a dependence
is based on the fact that many dependencies are ana-
lytical, so they can be expanded into an infinite Taylor
series. For example:

• for functions of one variable, we have

f (x) = a0 +a1 · x+a2 · x2 + . . . ;

• for functions of two variables, we have

f (x,y) = a00 +a10 · x+

a01 · y+a20 · x2 +a11 · x · y+a02 · y2 + . . .

To get a good approximation, we keep only the few
first terms in this expansion:

• in the first approximation, we only keep linear
terms, i.e., approximate the desired function by
a linear polynomial

f1(x,y) = a00 +a01 · x+a10 · y;



• to get a more accurate approximation, we also
keep quadratic terms, i.e., approximate the de-
sired function by a quadratic polynomial

f2(x,y) = a00 +a10 · x+a01 · y+

a20 · x2 +a11 · x · y+a02 · y2;

• to get an even more accurate approximation, we
can add cubic terms, i.e., approximate the desired
function by a quadratic polynomial, etc.

Which of these polynomial functions are fuzzy op-
erations: a challenge. We want an operation that
satisfies the corresponding properties – e.g., we want
an “and”-operation to be commutative and associative.
So, when we try to match the empirical data about
these operations – coming from experts:

• we should not consider all possible polynomial
functions,

• we should only consider functions that satisfy the
corresponding properties.

So, among all the tuples coefficients ai of the corre-
sponding polynomials for which the resulting polyno-
mial is a fuzzy operation, we need to select the tuple
that best fits the available data. The problem is that the
condition “is a fuzzy operation" is very complicated,
it means that some equality should be satisfied for all
possible values x and y (or even x, y, and z). Since
there are infinitely many posisble values x and y, we
thus have infinitely many constraints that need to be
satisfied.

While there exist numerical (and even analytical)
methods for optimizing a function under a finite num-
ber of constraints, there are, in general, no avail-
able methods for optimizing a function under infinitely
many constraints. An ideal solution to this problem
would be to translate the complex constraint – describ-
ing that a polynomial function is the corresponding
fuzzy operation – into a finite sequence of inequalities.

What is known: a brief (incomplete) overview. Such
a translation into a finite set of inequalities is known for
several operations and for several degrees of the cor-
responding polynomial. For example, for polynomial
degrees up to order 4, such a translation is known for
describing whether a polynomial function is a fuzzy
implication, and whether it is an implication that satis-
fies certain general properties; see, e.g., [1, 9].

In [1, 9], implication operation is defined as a function
f (x,y) for which f (0,0)= f (1,1)= 1, f (1,0)= 0, and
for which the following properties are satisfied:

∀x∀y∀z(x ≤ y ⇒ f (x,z)≥ f (y,z)) and

∀x∀y∀z(y ≤ z ⇒ f (x,y)≥ f (x,z)).

Finite sets of inequalities are also described for each of
the following additional properties:

∀y( f (1,y) = y);

∀x∀y∀z( f (x, f (y,z)) = f (y, f (x,z));

∀x∀y(x ≤ y ⇔ f (x,y) = 1);

∀x∀y( f (x, f (x,y)) = f (x,y)); and

∀x( f (x,x) = 1).

These papers also consider properties relating implica-
tion operation with other polynomial fuzzy operations
– e.g., with the “and”-operation t(x,y), with negation
operations, etc., such as

∀x∀y∀z( f (t(x,y),z) = f (x, f (y,z)).

Remaining challenge. While there has been a lot of
progress in this translation into a finite set of inequali-
ties, it has not yet even been clear which properties of
fuzzy operations can be translated into an equivalent
finite set of inequalities.

What we do in this paper. In this paper:

• we prove that a translation into an equivalent fi-
nite set of inequalities is always possible, and

• we provide an algorithm for this translation.

Word of caution. While the algorithm is available, it is
not always practically useful: in some cases, it requires
double exponential time.

2 Main Result

Definition 1. Let:

• c1, . . . ,cm be symbols for real-valued constants,

• n1, . . . ,nk be positive integers,

• f1, . . . , fk be symbols of functions, so that each fi
is a function of ni real variables, and

• x,x1,x2, . . . ,y, . . . ,z, . . . be real-valued variables.

A term is defined as follows:

• every symbol ci and evert variable xi is a term;

• if t1, . . . , tni are terms, then fi(t1, . . . , tni) is a term.

A formula is defined as follows:



• if t and t ′ are terms, then t = t ′, t < t ′, t > t ′, t ≤ t ′,
t ≥ t ′, and t ̸= t ′ are formulas;

• if F and G are formulas, then F &G, F ∨G, F ⇒
G, F ⇔ G, and ¬F are formulas;

• if F is a formula as x is a variable, then ∀xF and
∃xF is a formula.

A formula is closed is every variable is covered by
some quantifier.

Comment. In view of this definition, expressions like
f (x, f (y,z)) and f (t(x,y),z) are terms, and all the
above-descrbed properties from [1, 9] are closed for-
mulas.

Definition 2.

• By a polynomial equality, we mean an expression
of the type P=Q, where P and Q are polynomials.

• By a polynomial inequality, we mean an expres-
sion of one of the type P < Q, P > Q, P ≤ Q,
P ≥ Q, or P ̸= Q, where P and Q are polynomials.

• By a system of polynomial equalities and inequal-
ities, we mean a finite set of polynomial equalities
and inequalities. We say that a tuple satisfies this
system if it satisfies all equalities and inequalities
from this system.

• By a set of systems of polynomial equalities and
inequalities, we mean a finite set of systems of
polynomial equalities and inequalities. We say
that a tuple satisfies this set if it satisfies one of
the systems from this set.

Example. One of the conditions from [1] has the form

If α < 0 and −2α ≤ β −δ ≤−4α , then
(β −δ )2 +2α · (δ + ε +1)≤ 0.

In general, implication “if A then B" means that either
B is true or A is false. So:

• either we have (β −δ )2 +2α · (δ + ε +1)≤ 0

• or the condition

“α < 0 and −2α ≤ β −δ and β −δ ≤−4α”

is false.

In general, the fact that the conjunction “A and B and
C” is false means that either A is false, or B is false, or
C is false, i.e., in our case, that either α ≥ 0 or −2α >
β − δ or β − δ > −4α . Thus, the above condition
means that the tuple (α,β , . . .) satisfies the following
set of four systems, each of which consists of a single
inequality:

• (β −δ )2 +2α · (δ + ε +1)≤ 0;

• α ≥ 0;

• −2α > β −δ ;

• β −δ >−4α .

Similarly, all other conditions from [1, 9] can be de-
scribed in these terms.

Definition 3. Let x1,x2, . . . be variables.

• A monomial is an expression of the type

xv1
i1
· . . . · xvm

im ,

where i1 < .. . < im and vi are positive integers.
The sum v1 + . . .+ vm is called the degree of the
monomial.

• By a polynomial of degree d, we means an
expression of the type a1 · M1 + . . .+ aN · MN ,
where ai are real numbers called coefficients and
M1, . . . ,Mn are all possible monomials of degree
d or smaller.

Examples. For two variables:

• a polynomial of degree 1 is an expression

a1 +a2 · x1 +a3 · x2;

• a polynomial of degree 2 is an expression

a1 +a2 · x1 +a3 · x2 +a4 · x2
1 +a5 · x1 · x2 +a6 · x2

2.

Proposition. Let d1, . . . ,dk be positive integers. Then:

• for each closed formula F, this formula – when
limited to the case when each function fi is a poly-
nomial of degree di – is equivalent to a set of sys-
tems of polynomial equalities and inequalities in
terms of constants ci and coefficients of the poly-
nomials fi;

• there exists an algorithm that, given a closed for-
mula F – limited to the case when each function
fi is a polynomial of degree di – returns the equiv-
alent set of systems of polynomial equalities and
inequalities.

Comment. As one see from the proof below, a similar
result holds if instead of polynomials of a given degree
di, we consider:

• rational functions of this degree, i.e., ratios of
polynomials of degree di,



• or, more generally, algebraic functions of de-
gree di, i.e., functions fi(x1, . . . ,xni) whose val-
ues are determined by a polynomial equation
P(x1, . . . ,xni , fi(x1, . . . ,xni)) = 0 of degree di.

Algebraic functions include expressions with square
roots, cubic roots, etc.

Proof. Our proof is based on the Tarski-Seidenberg
theorem (see, e.g., [2, 4, 5, 6, 13, 14, 15]) about the
so-called first order theory of real numbers; we will
denote this theory by T , after Tarski. In this theory T ,
we start with real-valued constants xi and real-valued
variables x j. Then:

• T -terms are polynomials in terms of ci and x j;

• elementary T -formulas are equalities and inequal-
ities between terms; and

• a general T -formula is a formula obtained from
elementary T -formulas by using logical connec-
tives &, ∨, etc., and quantifiers ∀x and ∃x over
real numbers.

The Tarski-Seidenberg theorem states that:

• each closed T -formula F is equivalent to a set of
systems of polynomial equalities and inequalities
in terms of constants ci; and

• there exists an algorithm that, given a closed T -
formula F , returns the equivalent set of systems
of polynomial equalities and inequalities.

To apply this theorem to our case, we need to represent
our formulas in terms of the theory T . By compar-
ing our definition of a formula with the definition of
the T -formula, one can see that the only difference is
between terms as defined above and T -terms. So, the
only thing we need for such a translation is to trans-
form each term into the T -term form, i.e., into a poly-
nomial. This can be done by induction over the induc-
tive definition of a term. Indeed:

• constants and variables are already polynomials;

• if the terms t1, . . . , tni are polynomials, and the
function fi is a polynomial, then the expression
fi(t1, . . . , tni) is also a polynomial.

For example, if f (x,y) = a0 +a1 · x+a1 · y, then

f (x, f (x,y)) = a0 +a1 · x+a2 · (a0 +a1 · x+a2 · y)) =

a0 +a1 · x+a2 · x+a2 ·a0 +a2 ·a1 · x+a2 ·a2 · y.

The proposition is thus proven.
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