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Abstract

In many practical situations, we need to
make a decision while for each alternative,
we only know the corresponding value of the
objective function with interval uncertainty.
To help a decision maker in this situation, we
need to know the (in general, partial) order
on the set of all intervals that corresponds to
the preferences of the decision maker. For
this purpose, in this paper, we provide a de-
scription of all such partial orders – under
some reasonable conditions. It turns out that
each such order is characterized by two lin-
ear inequalities relating the endpoints of the
corresponding intervals, and that all such or-
ders form a 2-parametric family.

Keywords: decision making, interval uncer-
tainty, partial order, decision making under
interval uncertainty.

1 Formulation of the Problem

Need to make decisions under uncertainty. In many
practical situations, we have several alternatives to se-
lect from, and we have an objective function that de-
scribes our preferences. For example, when we design
an electric car:

• we may want to maximize the distance that it can
run until the next charge, or

• we can minimize its weight, etc.

In the ideal case, when for each alternative, we know
the exact value of the objective function. In this case:

• If we want to maximize the objective function, we
select the alternative with the largest value of this
function.

• If we want to minimize the objective function, we
select the alternative with the smallest value of
this function.

However, in practice, we rarely know these exact val-
ues. What we usually know instead is the interval
of possible values. It is therefore necessary to make
a decision based on these interval values; see, e.g.,
[3, 6, 8, 10, 13].

Comment. In this paper, we analyze the problem of
decision making under such interval uncertainty. This
problem – as we will show – is already not easy.

In practice, the situation is sometimes even more com-
plex than that. For example:

• in addition to the interval of possible values,

• we may have experts describing us to what extent
each of these values is possible.

In this case, each alternative is characterized not just
by an interval, but, in effect, by a fuzzy set of possible
values; see, e.g., [1, 4, 9, 11, 12, 15].

We hope that our analysis of decision making in the
case of interval uncertainty can help to come up with
similar techniques for decision making in this more
complex case of fuzzy uncertainty.

Why decision making under interval uncertainty is
not easy. Let us explain why decision making under
interval uncertainty is not easy. For example:

• If we want to maximize the value of the objective
function, then the value 4 is clearly better than the
value 3.

• However, it is not clear whether, e.g., the inter-
val [2,5] corresponding to one alternative is better
than the interval [3,4] corresponding to another
alternative.



Sometimes, a decision maker may have a clear pref-
erence between the two intervals. In other cases, the
decision maker may be undecided. In other words:

• in contrast to comparing real numbers, where we
have a linear (total) order, i.e., where for every
two different numbers either the first one is larger
or the second one is larger,

• for comparing intervals, in general, we have par-
tial order: sometimes one interval is better than
another interval, and sometimes, there is no rela-
tion between them.

So, to help decision makers make good decisions in
such situations, we need to know the partial order
between intervals that describes the decision maker’s
preferences.

What we do in this paper. In this paper, we describe
all possible partial orders that satisfy some reasonable
properties.

2 What Are the Reasonable Properties
of a Partial Order

What we do in this section. Let us first analyze what
are reasonable properties that the partial order ⪯ on the
set of all intervals must satisfy. To make our analysis
clearer and more convincing, we will illustrate these
properties not on complex examples like electric car
design, but on simple financial examples. In this case:

• the numerical value is a monetary gain, and

• an interval means that we are not sure what will be
the monetary gain in this situation, we only know
the range of possible values of this gain.

First reasonable property: additivity. Suppose that
the decision maker needs to decide between two al-
ternatives characterized by the intervals a = [a,a] and
b = [b,b].

An important point is that gains rarely come from only
one source. In addition to the gain that will come
from the decision maker selecting one of these two
alternatives, this decision maker may be bound to re-
ceive some additional amount resulting from his/her
previous decisions. This additional amount may also
not be known exactly, we may only know the interval
c = [c,c] of possible gains.

With this additional gain in mind, we have two differ-
ent ways to look at the original choice problem. We
can ignore this additional gain and consider it as the

problem of selecting between the intervals a and b.
Alternatively, we can consider the overall gains of the
decision maker in this situation.

• If the decision maker selects the alternative a,
then the possible values of his/her overall gain
form an interval

a+ c = {a+ c : a ∈ a and c ∈ c}.

The smallest possible value of this sum is attained
when both values a and c are the smallest, and
the largest possible value of this overall gain is
attained when both values a and c are the largest.
Thus, this interval is equal to

a+ c = [a+ c,a+ c].

• Similarly, if the decision maker selects the alter-
native b, then the possible values of his/her over-
all gain form an interval

b+ c = [b+ c,b+ c].

In this alternative description, we need to select be-
tween the two intervals a+ c and b+ c.

These are two different descriptions of the exact same
decision situation. So, it makes sense to require that the
decision maker selects b over a if and only if he/she
selects b+ c over a+ c. Thus, we arrive at the first
reasonable requirement.

Definition 1. A partial order ⪯ on the set of all inter-
vals is called additive if for every three intervals a, b,
and c, we have:

a ⪯ b ⇔ a+ c ⪯ b+ c.

Second reasonable property: antisymmetry. Some-
times, we have zero-sum situations in which one
party’s gain is another party’s loss. Let us consider
the simplest case when the two parties has the same
preferences. In this case:

• if for the first party, the gain a is better than the
gain b,

• this would mean that for the second party, the loss
of a should be worse than the loss of b.

The loss of a is, in mathematical terms, the same as
gain −a. Thus, the requirement is that if a ≤ b, then
we should have −b ≤−a.

The same should be true for interval-valued gains,
where for each interval a = [a,a], we have

−a def
= {−a : a ∈ a}= [−a,−a].



Thus, we arrive at the following definition:

Definition 2. A partial order ⪯ on the set of all inter-
vals is called antisymmetric if for every two intervals
a and b, we have

a ⪯ b ⇒−b ⪯−a.

Comment. For real numbers, a similar property does
not need to be separately formulate, since for real num-
bers, this property follows from additivity. Indeed, if
a ≤ b, then for c =−a−b, additivity implies that

a+(−a−b)≤ b+(−a−b),

i.e., that −b ≤−a.

This conclusion is based on the fact that for real num-
bers, a+(−a) = 0. However, this derivation cannot be
applied to intervals, since for intervals, in general, the
sum a+(−a) is different from 0: e.g.,

[0,1]+ (−[0,1]) = [0,1]+ [−1,0] =

[0+(−1),1+0] = [−1,1] ̸= 0.

Third reasonable property: homogeneity. In gen-
eral, if the gain b is better than the gain a, then:

• half of b is still better than half of a,

• twice the gain of b is better than twice the gain of
a, and,

• in general, for every λ > 0, λ · b is better than
λ ·a.

It is reasonable to require the same property for inter-
vals, where λ ·a means

λ · [a,a] def
= {λ ·a : a ∈ [a,a]}.

By using the same monotonicity argument as in the
case of addition, one can check that this interval is
equal to

λ · [a,a] = [λ ·a,λ ·a].

Thus, we arrive at the third reasonable property.

Definition 3. A partial order ⪯ on the set of all inter-
vals is called homogeneous if for every two intervals a
and b and for every real number λ > 0, we have

a ⪯ b ⇒ λ ·a ⪯ λ ·b.

Now, we are ready to formulate our main result.

3 Main Result: Formulation and Proof

Proposition. For every partial order ⪯ on the set of
intervals, the following two conditions are equivalent
to each other:

• the order is additive, antisymmetric, and homoge-
neous;

• there exist real numbers c1, c1, c2, c2 and rela-
tions <1,<2∈ {<,⪯} for which

[a,a]⪯ [b,b]⇔

c1 ·a+ c1 ·a <1 c1 ·b+ c1 ·b and

c2 ·a+ c2 ·a <2 c2 ·b+ c2 ·b.

Comments.

• At first glance, it may look like we need 4 param-
eters ci and ci to describe a general partial order.
However, it is easy to see that we only need two
parameters: in each pair (ci,ci), we can divide
both sides by each inequality the absolute value
of a non-zero parameter and thus, get an equiva-
lent inequality with only one parameter.

• In the particular case of linear (total) order, we
conclude that the decision means selecting an al-
ternative with the largest (of smallest) value of a
linear combination of lower and upper endpoints
of the interval. This is, in effect, what is known
as Hurwicz optimism-pessimism criterion, a cri-
terion that was awards by a Nobel prize [2, 5, 7].

Proof.

1◦. It is easy to check that every partial order than is
described by the parameters ci and ci is additive, anti-
symmetric, and homogeneous.

So, to complete the proof, it is sufficient to prove that
every additive, antisymmetric, and homogeneous par-
tial order ⪯ has this form. In the following proof, we
will assume that the order ⪯ has these three properties,
and we will show that it has the desired form.

2◦. Let us first prove that the order ⪯ is uniquely de-
termined by the set C of all the interval a for which
[0,0]⪯ a. For this purpose, we will consider two pos-
sible cases:

• the case when the width b− b of the interval b
is larger than or equal to the width a− a of the
interval a, and

• the case when the interval a has the larger width.



2.1◦. In the first case, by adding b−a to both sides of
the inequality b−b ≥ a−a, we conclude that

b−a ≥ b−a.

Thus, we can have an interval [b− a,b− a]. We will
denote this interval by b⊖a.

One can easily check that we have b = (b⊖a)+a and
that we have a= [0,0]+a. Thus, by additivity, we have

a ⪯ b ⇔ [0,0]⪯ b⊖a,

i.e., by definition of the set C:

a ⪯ b ⇔ b⊖a ∈C.

2.2◦. In the second case, by adding a−b to both sides
of the inequality b−b < a−a, we conclude that

a−b < a−b.

Thus, we can have an interval a⊖ b. One can easily
check that we have a = (a⊖b)+b and that we have
b = [0,0]+b. Thus, by additivity, we have

a ⪯ b ⇔ a⊖b ⪯ [0,0].

Now, due to antisymmetry, the condition a⊖b ⪯ [0,0]
is equivalent to

[0,0]⪯−(a⊖b) = [b−a,b−a],

i.e.,
a ⪯ b ⇔ [b−a,b−a] ∈C.

Thus, indeed, the order ⪯ is uniquely determined by
the set C.

3◦. Let us use a natural geometric representation of
intervals to analyze the properties of the set C.

Namely, each interval [a,a] can be naturally repre-
sented by a planar point with coordinates (a,a). In this
representation, the set C becomes a set of such points,
i.e., a planar set.

3.1◦. Due to homogeneity, if [0,0] ⪯ a, then for each
λ > 0, we have [0,0]⪯ λ ·a.

In geometric terms, this means that the set C is closed
under multiplication by a positive number.

3.2◦. If the set C contains two intervals a and b, i.e.,
if [0,0] ⪯ a and [0,0] ⪯ b then by additivity, we get
[0,0] + b ⪯ a + b, i.e., b ⪯ a + b. So, since partial
order is transitive, we get [0,0]⪯ a+b.

In geometric terms, this means that the set C is closed
under addition.

3.3◦. Thus, the set C is closed under multiplication by
a positive constant and under addition.

This means that the set C is a convex cone, and it is
known that all convex cones in a plane have the desired
representation: namely, they form a space between two
lines – each of which is described by a homogeneous
linear equation; see, e.g., [14].

The proposition is thus proven.
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