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Abstract

In many practical situations, inputs to a data
processing algorithm are known with in-
terval uncertainty, and we need to propa-
gate this uncertainty through the algorithm,
i.e., estimate the uncertainty of the result of
data processing. Traditional interval com-
putation techniques provide guaranteed es-
timates, but from the practical viewpoint,
these bounds are too pessimistic: they take
into account highly improbable worst-case
situations when all the measurement and es-
timation errors happen to be strongly cor-
related. In this paper, we show that a nat-
ural idea of having more realistic estimates
leads to the use of so-called interactive addi-
tion of intervals, techniques that has already
been successful used to process interval un-
certainty. Thus, we provide a new justifica-
tion for these techniques. If we use a known
interpretation of a fuzzy set as a nested fam-
ily of intervals – its alpha-cuts – then we
can naturally extend our results to the case
is fuzzy uncertainty.

Keywords: interval uncertainty, fuzzy un-
certainty, uncertainty propagation, interac-
tive addition of intervals

1 Formulation of the Problem

Need for data processing. One of the main objectives
of science is to predict the future state of the world, i.e.,
the future values of all the quantities that characterize
this state. One of the main objectives of engineering
is to come up with designs and controls that lead to a
better future state.

How do we predict the future state of the world? We
measure or estimate the current state and we use the

known relation between the current and the future state
of the world to make these predictions. In other words,
to predict the future value y of one of the desired quan-
tities, we find the current quantities x1, . . . ,xn that are
related to y by a known dependence y = f (x1, . . . ,xn),
and then we use the estimates x̃1, . . . , x̃n of the cur-
rent quantities – coming either from measurements
or from expert estimates – to compute the estimate
ỹ = f (x̃1, . . . , x̃n) for the desired quantity y. This com-
putation is an important particular case of data pro-
cessing.

Need for uncertainty propagation. Measurement are
never absolutely accurate. Similarly, expert estimates
are never absolutely accurate. In both cases, each esti-
mate x̃i is, in general, somewhat different from the ac-
tual (unknown) value xi of the corresponding quantity.
The difference ∆xi

def
= x̃i − xi is known as the approxi-

mation error, or, in case of measurements, a measure-
ment error.

Because of these differences, the value ỹ that is ob-
tained by applying the algorithm f to the measurement
results is, in general, different from the value y that we
would have obtained if we knew the actual values xi.
It is important to know how accurate is our estimate
i.e., how big is the difference ∆y ref

= ỹ− y between the
estimate ỹ and the actual value y. Estimating this dif-
ference – i.e., the uncertainty with which we know y
– based on the uncertainty with which we know the
inputs xi is known as uncertainty propagation.

Interval uncertainty. To perform uncertainty prop-
agation, we need to know what information we have
about the uncertainty in xi. Let us start with the case
of measurements. Often, the only information that we
have about the measurement error is the range [∆,∆]
of its possible values of measurement error (provided
by the manufacturer of the measuring instrument). For
example, if the upper bound on the absolute value of
the measurement error is 0.1, this means that the mea-
surement error lies in the interval [∆,∆] = [−0.1,0.1].



In such cases, once we know the measurement result x̃,
the only conclusion we can make about the actual (un-
known) value x of the corresponding quantity is that
this value x is somewhere in the interval [x,x] def

= [x̃−
∆, x̃−∆]. For example, if we have an instrument with
measurement error not exceeding 0.1, and the mea-
surement result is 1.0, this means that the actual value
is somewhere in the interval [1.0 − 0.1,1.0 + 0.1] =
[0.9,1.1]. This situation is known as interval uncer-
tainty; see, e.g., [4].

Fuzzy uncertainty. Interval uncertainty means that
we are absolutely sure that the measurement error is in
the interval [∆,∆]. As we have mentioned, this interval
is provided by the manufacturer, and the manufacturer
wants to make sure that it is not sued if its instrument
is used in critical situations and underestimation of the
measurement error leads to a disaster. Because of this
fear, manufacturers usually overestimate their bounds
on measurement error. Designers of measuring instru-
ments usually say that, e.g., while the only interval
they can absolutely guarantee is [−0.1,0.1], they are
very confident – e.g., with degree of confidence 0.99 –
that it will actually be within a narrower interval, e.g.,
[−0.05,0.05]; with somewhat smaller degree of confi-
dence – that it will be even within a narrower interval,
etc.

In such situations, in addition to the wide interval cor-
responding to 100% certainty (and, correspondingly,
0% uncertainty), we have narrower intervals corre-
sponding to intermediate levels of uncertainty α – all
the way to 1. These nested intervals form, in effect,
what is called a fuzzy set (see, e.g., [2]) – so that an
interval corresponding to degree α is the α-cuts of this
set.

Similar things happens if instead of measurement re-
sults, we use expert estimates – we have wider inter-
vals of possible values that, with low uncertainty, con-
tain the actual value, and we have narrower intervals
corresponding to higher uncertainty.

From this viewpoint, a fuzzy set is nothing else but
a nested family of intervals, so processing fuzzy infor-
mation simply means processing several interval cases.
Because of this, in the following text, we will concen-
trate on interval uncertainty.

Propagation of interval uncertainty: usual ap-
proach. If all we know about each input xi is that
its value is located somewhere in the interval xi =
[xi,xi], then the only thing we can conclude about
the value y = f (x1, . . . ,xn) is that this value is some-

where in the set y = f (x1, . . . ,xn)
def
= { f (x1, . . . ,xn) :

x1 ∈ x1, . . . ,xn ∈ xn)}. The task of computing this set
is known as interval computations; see, e.g., [4].

Monotonic case. In many practical situations, the
function f (x1, . . . ,xn) is monotonic with respect to
each of its variables. For example, it can be non-strictly
increasing with respect to each input – the simple ex-
ample of such function is addition f (x1,x2) = x1 + x2.

In this monotonic case, the largest possible value
of this function is attained when all the inputs xi
attain their largest value xi = xi, and the small-
est possible value of this function is attained when
all the inputs xi attain their smallest value xi = xi.
Thus, in this case, we have f ([x1,x1], . . . , [xn,xn]) =
[ f (x1, . . . ,xn), f (x1, . . . ,xn)]. For example, for addition,
we get [x1,x1]+ [x2,x2] = [x1 + x2,x1 + x2].

Case of relatively small measurement errors. An-
other important case is the practically important case
if when the measurement errors are relatively small.
In general, by definition of the measurement error
∆y = ỹ−y, we have ∆y = f (x̃1, . . . , x̃n)− f (x1, . . . ,xn).
By definition of the measurement error, we have ∆xi =
x̃i − xi, so xi = x̃i −∆xi. Substituting these expressions
for xi into the above formula, we get

∆y = f (x̃1, . . . , x̃n)− f (x̃1 −∆x1, . . . , x̃n −∆xn). (1)

Since the measurement errors ∆xi are small, terms
which are quadratic (or of higher order) with respect to
∆xi can be safely ignored in comparison with the linear
terms. For example, if ∆xi ≈ 10%, then (∆xi)

2 ≈ 1%
– which is indeed much smaller. Thus, we can expand
the right-hand side of the expression (1) in Taylor se-
ries and ignore quadratic and higher order terms in the
corresponding expansion. As a result, we get the fol-
lowing expression: ∆y = c1 ·∆x1+ . . .+cn ·∆xn, where

ci
def
=

∂ f
∂xi |x1=x̃1,...,xn=x̃n

. Each term ci ·∆xi is monotonic

in ∆xi: increasing if ci ≥ 0 and decreasing if ci < 0. So,
when ∆xi is in the interval [∆i,∆i], the largest value ai
of each term ci · ∆xi is equal to ci · ∆i if ci ≥ 0, and
to ci · ∆i if ci < 0. The largest possible value ∆ of
∆y can be obtained by adding these n largest values:
∆ = a1 + . . .+an.

Similarly, the smallest value ∆ of each term ci ·∆xi is
equal to ci ·∆i if ci ≥ 0, and to ci ·∆i if ci < 0. The
smallest possible value ∆ of ∆y can be obtained by
adding these n smallest values: ∆ = a1 + . . .+an.

Problem with the usual approach. The usual ap-
proach corresponds to the most pessimistic case, when
we consider the worst possible scenario. For exam-
ple, in the case of addition, we consider the case when
each input xi attain its largest possible value – i.e., that
the correpsonding measurement error attains its small-
est possible value. We have already mentioned that
even for a single variable, it is not very probable that
the measurement error will attain its smallest possible



value. That two such rare events will both happen is
highly improbable. It is therefore desirable to come
up with more realistic estimates of the results of data
processing. This is what we will be doing in this paper.

2 From Pessimistic to Optimistic
Approach

Idea. We consider situations in which all we know for
each input xi is that its values are located on the cor-
responding interval [xi,xi]. We do not have any infor-
mation about the relation between different inputs. If
they change independently from each other, then yes,
it is possible that both inputs xi attain their largest val-
ues, and it is possible that they both will attain their
smallest values, so we get the widest possible interval
– which we called pessimistic.

But it may happen that the values xi are related, so that
when x1 is the largest, x2 must be the smallest and vice
versa. In this case, we get the narrowest possible inter-
val. It is therefore reasonable to consider the optimistic
approach – i.e., to consider the narrowest possible in-
terval. Let us describe this idea in precise terms.

Towards the precise formulation of the optimistic
approach. We know that for each input xi, both end-
points xi and xi are possible – if one or both of these
values was not possible, we would have a narrower
interval of possible values of xi. We have no such
confidence about the possibility of intermediate val-
ues. So, to minimize the set of all possible values of
y = f (x1, . . . ,xn), let us consider the case when only
these two values are possible for each input xi.

Then, the set X of possible tuples x = (x1, . . . ,xn) must
have the property that for each i, at least one tuple must
contain xi, and at least one tuple must contain xi. For
each set with this property, we can consider the interval
hulls generated by all the corresponding values f (x).
The intersection of all these interval is thus the narrow-
est possible interval for y. Let us describe it in terms of
a precise definition.

Definition 1. Let x1 = [x1,x1], . . . , xn = [xn,xn] and let
f (x1, . . . ,xn) be a real-valued function of n real vari-
ables. We say that a set X of tuples x = (x1, . . . ,xn) is
possible if the following three conditions are satisfied:

• for each tuple x ∈ X and for each i, the i-th ele-
ment for every i is equal either to xi or to xi;

• for each i, there exists a tuple x ∈ X for which
xi = xi; and

• for each i, there exists a tuple x ∈ X for which
xi = xi.

For each possible set X, we define the interval

f (X) as
[

min
x∈X

f (x),max
x∈X

f (x)
]
. By the optimistic range

fo(x1, . . . ,xn) of the function f (x1, . . . ,xn) on the inter-
vals x1, . . . ,xn, we mean the intersection of the inter-
vals f (X) for all possible tuples X.

Algorithms for computing the optimistic range:
general comment. There are finitely many possible
tuples – namely, 2n of them. Thus, there exist finitely
many sets of such tuples. In principle, we can therefore
test all possible sets of such tuples, and thus, find all
the intervals f (X) and their intersection. So, in prin-
ciple, the optimistic range is computable. Of course,
this computation requires unrealistic exponential time.
However, we will show that in many practical cases,
there are feasible algorithms for computing the opti-
mistic range. Let us describe some of these algorithms.

Algorithm for computing the optimistic range: case
of n = 2. For n = 2, we get the following result.

Proposition 1. For n = 2, fo([x1,x1], [x2,x2]) = [∆,∆],
where ∆ = max(min( f (x1,x2), f (x1,x2)),
min( f (x1,x2), f (x1,x2))) and
∆ = min(max( f (x1,x2), f (x1,x2)),
max( f (x1,x2), f (x1,x2))).

Proof. If a possible set X is a proper subset of a pos-
sible set X ′, then clearly f (X) is a subinterval of the
interval f (X ′). Thus, to find the desired intersection,
it is sufficient to consider minimal possible sets, i.e.,
possible sets for which no proper subset is possible.

For n = 2, for i = 1, in a possible set, there must be
a tuple containing x1 and there must be a tuple con-
taining x1. If these two tuples contain different end-
points of the 2nd interval, then we get two possible
sets used in the formulation of the proposition: the sets
X1 = {(x1,x2),(x1,x2)} and X2 = {(x1,x1),(x1,x2)}.

Let us now consider the remaining cases when the two
above-mentioned tuples contain the same endpoint of
the 2nd interval. If this endpoint is x2, this means that
we must have at least one more tuple containing x2.
If this third tuple contains x1, then X contains (x1,x2)
and (x1,x2), i.e., contains the set X2 – and is, thus, not
minimal. If this third tuple contains x1, then X contains
(x1,x2) and (x1,x2), i.e., contains the set X1 – and is,
thus, not minimal.

Similarly, if the common endpoint is x2, this means that
we must have at least one more tuple containing x2.
If this third tuple contains x1, then X contains (x1,x2)
and (x1,x2), i.e., contains the set X1 – and is, thus, not
minimal. If this third tuple contains x1, then X contains
(x1,x2) and (x1,x2), i.e., contains the set X2 – and is,
thus, not minimal.



So, the only minimal possible sets are X1 and X2. One
can check that the intersection of two corresponding
intervals is exactly the expression from the formulation
of Proposition 1. The proposition is proven.

Case of a monotonic function. For functions that
are (non-strictly) increasing in both variables, we get
a simpler result.

Proposition 2. If a function f (x1,x2) is
(non-strictly) increasing in each of its vari-
ables, then fo([x1,x1], [x2,x2]) = [∆,∆],
where ∆ = min( f (x1,x2), f (x1,x2)) and
∆ = max( f (x1,x2), f (x1,x2)). This interval is equal to
f (X), for X = {(x1,x2),(x1,x2)}.

Proof. This result follows from Proposition 1. In-
deed, for an increasing function, we have f (x1,x2) ≤
f (x1,x2), thus

min( f (x1,x2), f (x1,x2)) = f (x1,x2).

Here, due to monotonicity, f (x1,x2) ≤ f (x1,x2) and
f (x1,x2)≤ f (x1,x2), thus

f (x1,x2)≤ min( f (x1,x2), f (x1,x2))

and so indeed

∆ = min( f (x1,x2), f (x1,x2)).

The formula for ∆ is proven similarly.

Since addition is clearly increasing in each of the vari-
ables, we have the following corollary:

Corollary. [x1,x1] +o [x1,x2] = [∆,∆], where ∆ =
min(x1 + x2,x1 + x2) and ∆ = max(x1 + x2,x1 + x2).

Comment. These operations were first proposed by
Kaucher and are thus known as Kaucher arithmetic;
see, e.g., [3].

Case of general n. What happened with addition of
intervals for the generic n – which corresponds to the
linearization case of uncertainty propagation? In this
case, we have the following result.

Definition 2. By a midpoint of an interval [xi,xi], we
mean the value mi = (xi + xi)/2.

By a half-width (radius) of an interval [xi,xi], we mean
the value ri = (xi − xi)/2.

Comments. Once we know the midpoint and the ra-
dius, then we can reconstruct the original interval as
[xi,xi] = [mi−ri,mi+ri]. Vice versa, when the interval
already has the form [x̃i −∆i, x̃i +∆i], where x̃i is the
measurement result and ∆i is the bound on the abso-
lute value of the measurement error, then the midpoint
is exactly the measurement result and the radius ri is
exactly the given error bound.

Proposition 3. For addition f (x1, . . . ,xn) = x1 + . . .+
xn of intervals [xi,xi], the optimistic range has the fol-
lowing form:

• If 2max
i

ri ≥ ∑
j

r j, then ∑
o
[xi,xi] = [m− r,m+ r],

where m = m1 + . . .+mn and r = 2max
i

ri −∑
j

r j.

• If 2max
i

ri < ∑
j

r j, then ∑
o
[xi,xi] = /0.

Proof.

1◦. Let us first consider the first case, when the inequal-
ity 2max

i
ri ≥ ∑

j
r j holds. Let i0 denote the index of

the interval with the largest radius: ri0 = max
i

ri. Sub-

tracting ri0 from both side of the above inequality, we
get ri0 ≥ ∑

j ̸=i0
r j, and we also get r = 2max

i
ri −∑

j
r j =

ri0 − ∑
j ̸=i0

r j.

By definition, a possible set X must include a tuple for
which xi0 = xi0 = mi0 + ri0 . For this tuple, for each j ̸=
i0, we have x j ≥ x j = m j − r j, thus

x1 + . . .+ xn ≥ mi0 + ri0 + ∑
j ̸=i0

(m j − r j) =

∑
i

mi +

(
ri0 − ∑

j ̸=i0

r j

)
= m− r.

Similarly, we conclude that a possible set X must con-
tain a tuple for which ∑

i
xi ≥ m + r. Thus, for each

possible set X , we have f (X) ⊇ [m− r,m+ r]. On the
other hand, for

X = {(x1, . . . ,xi0−1,xi0 ,xi0+1, . . . ,xn),

(x1, . . . ,xi0−1,xi0 ,xi0+1, . . . ,xn)},

we have f (X) = [m− r,m+ r]. Thus, indeed, the in-
tersection of all the sets f (X) is indeed the interval
[m− r,m+ r].

2◦. Let us now consider the second case, when
2max

i
ri < ∑

j
r j. Since each ri is smaller ot equalo than

the maximum, this implies that 2ri < ∑
j

r j. Subtracting

ri from both sides of this inequality, we conclude that
ri < ∑

j ̸=i
r j.

Let us now consider the set X1 consisting of all the tu-
ples in which one of the values xi is equal to xi and all
other values x j are equal to x j. For each of these tuples,
we have

x1 + . . .+ xn = xi +∑
j ̸=i

x j = mi + ri +∑
j ̸=i

(m j − r j) =



∑mi +

(
ri −∑

j ̸=i
r j

)
< ∑mi = m.

Thus, for this set, the upper bound of f (X1) is smaller
than m.

On the other hand, we can similarly prove that for the
set X2 consisting of all the tuples in which one of the
values xi is equal to xi and all other values x j are equal
to x j, the upper bound of f (X2) is larger than m. Thus,
the intersection of the intervals f (X1) and f (X2) is
empty – and hence, the intersection of all the intervals
f (X) corresponding to possible sets X is also empty.
The proposition is proven.

Limitations of the optimistic approach. For two in-
tervals, optimistic approach means that when x1 attains
its largest possible value x1, the quantity x2 attains its
smallest possible value x2. This is as improbable as the
corresponding assumption in the pessimistic case.

Thus, both pessimistic and optimistic approaches are
not realistic: the pessimistic approach is too pes-
simistic, it consider too many possible values of ∆y,
while the optimistic approach is too optimistic, it con-
sider too few possible values of ∆y. So, to get a real-
istic estimate, we need to combine the pessimistic and
optimistic results into a single optimistic-pessimistic
approach.

3 From Pessimistic and Optimistic to
Realistic Approach: Case When the
Optimistic Approach Leads to a
Nonempty Interval

Idea. Let us first consider the case when the optimistic
approach leads to a non-empty interval. In this case,
we have two intervals: the pessimistic interval A and
the optimistic intervals B. We need to combine them
into a single interval.

This problem is similar to the general problem that we
started with: if we knew how to combine two numeri-
cal estimates a and b into a single numerical estimate
c(a,b), then a reasonable idea would be to consider the
set of all possible values c(a,b) when a ∈ A and b ∈ B:
c(A,B) = {c(a,b) : a ∈ A,b ∈ B}. To utilize this idea,
we need to find reasonable ways to combine two nu-
merical estimates.

How to combine two numerical estimates. What are
the reasonable properties of the combination function
c(a,b)? First, since we have two numerical estimates
of the same quantity, a reasonable requirement is that
the combined estimate should be within the interval
generated by these two estimates:

min(a,b)≤ c(a,b)≤ max(a,b). (2)

The second reasonable property comes from the fact
that often, what we estimate is a combination of two of
more parts: e.g., we may be estimating the population
of a state, which is equal to the sum of populations
of all its counties. In particular, for the case of two
parts, we have estimates a1 and b1 for the first part,
and estimates a2 and b2 for the second part.

There are two possible ways to get a combined esti-
mates for the sum of the two values We can first com-
bine estimates for each part, into two combined esti-
mates c(a1,b1) and c(a2,b2), and then add the result-
ing combined estimates into a single value c(a1,b1)+
c(a2,b2). Alternatively, we can first add the estimates
for both parts, resulting in a = a1+a2 and b = b1+b2,
and then combine these two estimates, resulting in
c(a,b) = c(a1 +a2,b1 +b2). It is reasonable to require
that these two ways lead to the same value, i.e., that

c(a1,b1)+ c(a2,b2) = c(a1 +a2,b1 +b2). (3)

Definition 3. We say that a function c(a,b) is a com-
bination rule if it satisfies the conditions (2) and (3).

Proposition 4. A function is a combination rule if and
only if it has the form c(a,b) = γ · a+ (1− γ) · b for
some γ ∈ [0,1].

Proof. It is known – see, e.g., [1] – that every bounded
function that satisfies the condition (3) is linear, i.e.,
has the form c(a,b) = γ · a+ δ · b for some γ and δ .
The condition (2) for a = b implies that δ = 1− γ , and
the same condition for a ̸= b implies that γ ∈ [0,1].

Comment. If we additionally require that the combined
value does not depend on the order of the estimates,
i.e., that c(a,b) = c(b,a), then, as one can easily check,
the only possible value is γ = 0.5.

So how to combine two intervals. The above-
described function is non-strictly increasing in both a
and b, thus we can use the formula for computing range
of a monotonic function – that we described in Section
1 – and come up with an explicit expression for the
combined interval:

c([a,a], [b,b]) = [γ ·a+(1− γ) ·b,γ ·a+(1− γ) ·b].

Interestingly, if we take the pessimistic interval as [a,a]
and the optimistic interval as [b,b], we get the formulas
for so-called interactive addition for intervals, formu-
las that have been successfully used in many applica-
tions; see, e.g., [5]. Thus, our analysis provides a new
justification for these formulas.



4 From Pessimistic and Optimistic to
Realistic Approach: Case When the
Optimistic Approach Leads to the
Empty Set

What are the reasonable transformations: discus-
sion. But what can we do if the optimistic approach
leads to the empty set? In this case, we only have one
interval – the pessimistic one. So, to get a narrower re-
alistic interval, we can only use this given interval. In
other words, we need an operation F that takes an in-
terval [a,a] and returns its subinterval F([a,a])⊆ [a,a].

To analyze what are the natural properties of this trans-
formation, let us take into account that we are process-
ing numerical values of the corresponding quantities,
but these numerical values depends on the selection
of the measuring unit, on the selection of the starting
point, and – sometimes – on the choice of the sign (e.g.,
what is positive electric charge and what is negative is
just a question of choice).

If we change the measuring unit to a new one which
is λ times smaller, then all numerical values are mul-
tiplies by λ : x 7→ λ · x; e.g., 2 meters becomes 200
centimeters. If we change the direction, then all val-
ues are multiplied by −1: x 7→ −x. If we change
the starting point to a new one which is x0 units ear-
lier, then we need to add x0 to all numerical values:
x 7→ x + x0. For example, Year x = 2 in the French
revolution calendar – that started in 1789 – is year
2+ 1789 = 1791 in the regular calendar. It general, if
we make all these changes, then we get a linear trans-
formation x 7→ λ · x+ x0 for all possible real numbers
λ ̸= 0 and x0.

It is reasonable to require that the selection of a subin-
terval should not depend on these choices, i.e., that
it should lead to the same subinterval no matter what
scale we use.

Definition 4. We say that a function F that maps each
interval into its subinterval is scale-invariant if for ev-
ery interval [a,a] and for all possible real numbers
λ ̸= 0 and x0, we have the following property:

if F([a,a]) = [b,b], then we should have

F([A,A]) = [B,B], where [A,A] def
= λ · [a,a]+ x0 and

[B,B] def
= λ · [b,b]+ x0.

Proposition 5. A function a function F that maps each
interval into its subinterval is scale-invariant if and
only if it has the form F([m− r,m+ r] = [m− γ · r,m+
γ · r] for some γ ∈ [0,1].

Proof. One can easily check that the above formula is
indeed scale-invariant. Vice versa, let us assume that

we have a scale-invariant transformation F , and let us
proved that it is described by the above formula.

For degenerate intervals, i.e., intervals of the type [a,a]
with r = 0, the requirement that the result is a subin-
terval leads to F([a,a]) = [a,a], exactly as the formula
predicts. So, to complete the proof, it is sufficient to
consider non-degenerate intervals [m − r,m + r] with
r > 0.

For the interval [a,a] = [−1,1], the requirement that

the result [b,b] def
= F([−1,1] should not change under

the transformation x 7→ −x implies that should have
−[b,b] = [b,b], i.e., that b = −b. If we denote b by
γ , we thus get F([−1,1]) = [−γ,γ]. The requirement
that the resulting interval be a subinterval of the origi-
nal interval [−1,1] leads to γ ∈ [−1,1].

Now, every non-degenerate interval [m − r,m + r]
can be obtained from the interval [−1,1] if we ap-
ply the transformation x 7→ r · x + m. Since we
have F([−1,1]) = [−γ,γ], scale-invariance implies that
F([r · (−1) +m,r · 1+m]) = [r · (−γ) +m,r · γ +m],
i.e., exactly to the desired formula F([m− r,m+ r] =
[m− γ · r,m+ γ · r]. The proposition is proven.
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