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Abstract

A reasonable way to make AI results ex-
plainable is to approximate the correspond-
ing deep-learning-generated function by a
simple expression formed by fuzzy opera-
tions. Experiments on real data show that out
of all easy-to-compute fuzzy operations, the
best approximation is attained if we use an
operation a+b−0.5 (limited to the interval
[0,1]). In this paper, we provide a possible
theoretical explanation for this empirical re-
sult.

Keywords: Explainable AI, Fuzzy logic,
Fuzzy operations

1 Formulation of the General Problems

Need for Explainable AI (XAI). Modern deep-
learning based systems achieve spectacular results;
see, e.g., [4]. Not only they place chess and Go much
better than any human player – which is great but not
very useful, they also perform many human tasks better
then human specialists. For example, when analyzing
X-rays, for many diseases, an AI system makes much
fewer diagnostic mistakes than most human doctors.

Based on these highly publicized successes, it may
seems, at first glance, that we should start replacing
medical doctors – and many other specialists – with
computers. But there is an important reason why we
are not rushing to perform this replacement, and the
gist of this reason is that AI systems sometimes make
mistakes.

Yes, human doctors also make mistakes, but these mis-
takes are somewhat repairable. Indeed, when a medi-
cal doctor describes his/her diagnosis, he/she explains
the reasons for this decision. A patient can ask for a
second opinion, and the two doctors can compare their
reasons and come up with a more reliable conclusion.

In contrast, a usual deep-learning-based AI system
does not provide any reasons for its decisions. So, in
contrast to opinions of human experts, for AI-based de-
cisions, there is no way to argue and thus to improve
the situation.

To improve this situation, and to fully utilize the po-
tential of AI systems, it is important to make sure that
these system provide us:

• not only with decisions,

• but also with justifications for these decisions.

In order words, the important task is to transform cur-
rent AI systems into Explainable AI (XAI, for short).

A natural approach to explainable AI. On the one
hand, the task of converting AI to XAI is a recent im-
portant challenge, unlike any challenges that we hu-
mans encountered before. However, on the other hand,
this challenge is not that unusual. Similar challenges
happen in physics and in all other sciences all the time:

• experimentalists find empirical laws that describe
a certain physical phenomenon,

• then comes theoreticians who provide an explana-
tion for these laws; see, e.g., [3, 9].

Such examples are plentiful; let us give just two exam-
ples:

• Kepler discovered laws that describe the planet
motion, and Newton provided the general theory
that explained all these laws.

• Physicists discovered empirical formulas that de-
scribe the atomic spectra, and Schroedinger came
up with a general equation that explains all these
formulas.



This analogy provides a natural path to XAI: since
deep learning provides us with an effective algorithm
for solving the problem, let us come up with a human-
understandable explanation for this algorithm.

Which explanations are human-understandable:
enter fuzzy techniques. To implement this idea,
we need to clarify what it means to have a human-
understandable explanation. To clarify this, let us
again use medical doctors as an example – or any other
human experts.

One of the reasons why we need to use medical doc-
tors as an example is to avoid a widely spread misun-
derstanding – that comes from the fact that many re-
searchers working in AI are mathematicians by train-
ing, and in mathematics, every statement is either true
or false. This fundamental idea is at the core of math-
ematical reasoning. Because of this, quite a few AI
researchers try to apply the same true-false dichotomy
to computer reasoning as well.

In contrast, medical and other experts do not deal with
absolutely true or absolutely false statements. In most
cases, even when a doctor confidently describes his/her
diagnosis, the doctor understands that there is always
a chance that this diagnosis is wrong. For good doc-
tors, the chance is very small, but it is still there – and
when a situation is unusual, chances are reasonably
high. This is how we reason, and we expect AI-based
system to come up with similar types of reasoning –
reasoning about statements about which we have a cer-
tain degree of certainty.

Techniques for reasoning with such statements are
known as fuzzy techniques; see, e.g., [1, 5, 6, 7, 8, 11].
These techniques were pioneered in the 1960s by Lotfi
Zadeh who suggested to describe the expert’s degree of
certainty in a statement by a number from the interval
[0,1]. This idea is very natural; indeed:

• in the computers, “true” is usually represented as
1, and “false” as 0;

• so naturally degrees of certainty intermediate be-
tween full certainty in the statement and fuzzy
certainty in its negations should be described by
intermediate numbers.

Reasoning involves dealing with complex statements,
i.e., statements obtained from the original ones by us-
ing logical connectives such as “and”, “or”, “if and
only if”, etc. In our reasoning, we mostly use unary
and binary connectives, i.e., connectives that combine
two statements into a single one: e.g., combining state-
ments A and B into a complex statement A&B.

• The “true”-“false” versions of such connectives
transform two truth value (both are equal to 0 or 1)
into a single truth value of a complex statement.

• Correspondingly, a fuzzy analogue f of this con-
nective should take two numbers a and b from the
interval [0,1] and transform them into a new num-
ber f (a,b) from the same interval.

Which fuzzy operations are most adequate for this
purpose? There are many functions of this type, i.e., in
mathematical terms, unary functions f : [0,1]→ [0,1]
and binary functions f : [0,1]× [0,1]→ [0,1]. Which
of them is most adequate for the use in AI? This is the
main questions with which we deal in this paper.

The structure of this paper is as follows.

• First, in Section 2, we describe some general ideas
about selecting an appropriate fuzzy operation,
and come up with a class of operations that are
consistent with these ideas.

• In Section 3, we describe the empirical results of
applying these operations.

• Finally, in Section 4, we provide a possible theo-
retical explanation for these empirical results.

2 General Ideas about Selecting
Appropriate Fuzzy Operations

Main idea: we need operations that are the fastest
to compute. In many applications, decisions need to
be made fast. It is therefore reasonable to consider
operations whose computation is as fast as possible.
Similar ideas are one of the main reasons why modern
neural algorithms:

• mostly use easiest-to-compute activation function
max(0,x) (known as Rectified Linear Unit, ReLU,
for short)

• instead of the previously used more-difficult-to-
compute sigmoid function 1/(1+ exp(−x)).

How can we implement this idea: general discus-
sion. How can we achieve this goal? In a computer,
every computation is performed as a sequence of arith-
metic operations. The fastest arithmetic operation is
addition/subtraction. So, if we want to only consider
fast-to-computer fuzzy operations, it is reasonable to
restrict ourselves to operations that can be computed
by using only additions/subtractions.



How can we implement this idea for unary opera-
tions? If we have only one input z, then, to apply addi-
tion or subtraction, we need a second argument – either
z itself or a constant.

• If we use z twice, we get either z− z = 0 or z+
z = 2z. Since we want the values to always be
between 0 and 1, we cannot use the expression
2z: its value for z = 1 is 2.

• If we use a constant c, then we can have z+ c or
c− z. In the first case, we cannot have all the val-
ues within the interval [0,1]. In the second case,
we can – but only in one case, when c = 1.

So, the only appropriate unary operation is 1−z, which
is the usual fuzzy negation.

How we can implement this idea for binary opera-
tions. Since we need a binary operation, that take into
account both inputs a and b, the simplest case is to use
one addition, which leads to the operation a+b.

To be on the safe side, let us have a family of possible
operations, so that we will be able to select the most
adequate one. With one addition, we cannot get any-
thing other than a+ b, so we need a second addition.
If we add again a or b, we will not get the whole fam-
ily, so instead, we need to add a constant c. This way,
we will get a family of functions f (a,b) = a+ b+ c
characterized by the parameter c.

Taking into account that we need fuzzy operations.
Here, in contrast to the unary case, we have an ad-
ditional complication, related to the fact that the val-
ues of a fuzzy operation must be within the interval
[0,1]. Already the simplest function a+b produced re-
sults outside this interval – e.g., for a = b = 1, we get
a+b = 2. So, to get a fuzzy operation, we need to re-
strict the value of the function by the interval [0,1]. A
natural way to do it is to replace each value which is
outside the interval by the closest value from this inter-
val, i.e.:

• replace negative values z with 0, and

• replace values z larger than 1 with 1.

The result of this replacement can be described as

S(z) def
= max(min(z,1),0).

Resulting selection. Our conclusion is that we should
select the fuzzy operations

fc(a,b) = S(a+b+ c) (1)

corresponding to some constant c.

Comment. It is worth mentioning that:

• for c = 0, the expression (1) takes the form
min(a+b,1); this is one of the well known fuzzy
“or”-operations (aka t-conorms);

• for c = −1, the expression (1) takes the form
max(a+ b− 1,0); this is one of the well known
fuzzy “and”-operations (aka t-norms).

Remaining question. The remaining question is:
which value c should we choose? To answer this ques-
tion, we ran some experiments [2].

3 Which Fuzzy Operation Is the Most
Adequate for XAI: Experimental
Results

What we did. We used 12 classification problems
from the UCI Machine Learning Repository [10]. For
each of these problems, we tried out best to approxi-
mate the results by combination of operations (1) cor-
responding to different values c.

Of course, the results of classification are 0 and 1,
and fuzzy computations return a value between 0 and
1. So, for each values z produced by a sequence of
fuzzy operations is transformed into 0 or 1 depending
on whether 0 or 1 are closer to z:

• if z < 0.5, we transform it into 0, and

• if z > 0.5, we transform it into 1.

Results. Interestingly, in all the cases, the best approx-
imation – with the smallest number of terms for given
accuracy – was attained for c=−0.5. With this choice,
we get really short expressions. Here are some exam-
ples, in which xi is the value of the i-th input normal-
ized to the interval [0,1]:

• For the Breast Cancer problem, we got the ap-
proximating expression

fc( fc(x6,x34), fc(x28,x34)).

• For the Diabetes problem, we got the approximat-
ing expression

1− fc(x1,x6).

• For the King-Rook vs. King-Pawn problem, we
got the approximating expression

fc( fc(x9,x34), fc(x22,x34)).



• For the Vote problem, we got the approximating
expression

fc( fc(x11,x37), fc(x25,x31)).

4 A Possible Theoretical Explanation for
the Empirical Results

Idea. In binary classification problem, we have two
possible results:

• one of them marked as 1: e.g., that the patient has
breast cancer, and

• another one is marked as 0: e.g., that the patient
does not have breast cancer.

This corresponds to the case when we ask whether a
patient has breast cancer.

On the other hand, we can formulate the exact same
classification problem by asking the opposite question:
whether the patient is cancer-free. If we formulate the
question this way, then it is natural to mark absence
of breast cancer as 1 and breast cancer as 0. In other
words, when the original problem leads to the value
z, the reformulated problem should lead to the value
1− z, i.e., “not z”.

Of course, in the original problem, it makes sense to
consider inputs whose presence increases the possibil-
ity that a patient has breast cancer as having:

• the value 1 if they are present and

• the value 0 if they are absent.

If we reformulate this problem as asking whether a pa-
tient is cancer-free then, vice versa, we should consider
inputs for which, vice versa:

• the value 1 if these inputs are absent and

• the value 0 if they are present.

In other words, instead of each original input a, we
should have the new input 1−a, which is “not a".

So, we have two formulations of the exact same prob-
lem:

• in the first formulation, we have inputs x1, . . . ,xn,
and we want to produce an answer

z = f (z1, . . . ,xn);

• in the second formulation, we have inputs x′i =
1− xi, and we want to produce the answer

z′ = f ′(x′1, . . . ,x
′
n)

for which z′ = 1− z.

Both formulations are absolutely equivalent. So, the
complexity of our approximation should not depend on
which of the two formulations we use. In particular,
this means that:

• if we can use only one fuzzy operation for the
original problem, i.e., if we have z = fc(x1,x2),

• then we should be able to use only one fuzzy op-
eration for the reformulated problem as well, i.e.,
we should have z′ = fc(x′1,x

′
2), where z′ = 1− z,

x′1 = 1− x1, and x′2 = 1− x2.

Substituting z′ = 1−z, x′1 = 1−x1, and x′2 = 1−x2 into
the expression z′ = fc(x′1,x

′
2), we get

1− z = fc(1− x1,1− x2).

We know that z = fc(x1,x2), so we get

1− fc(x1,x2) = fc(1− x1,1− x2).

Substituting the expression (1) for fc into this for-
mula and considering only the cases when the value
is strictly between 0 and 1 (i.e., when fc(x1,x2) =
x+1+ x2 + c), we get

1− (x1 + x2 + c) = 1− x1 +1− x2 + c,

i.e., if we open parentheses:

1− x1 − x2 − c = 1− x1 +1− x2 + c.

If we subtract 1−x1−x2 from both sides, we get −c =
1+ c, hence 2c =−1 and c =−0.5.

This is indeed the empirically best value. So, its ap-
pearance can indeed be explained by the fact that, in
general:

• the problem of detecting an effect (e.g., breast
cancer) is equivalent to

• the problem of detecting the absence of this effect
(e.g., the absence of breast cancer).
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