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Why Softmax? Because It Is the Only Consistent

Approach to Probability-Based Classi�cation⋆

Anatole Lokshin1, Olga Kosheleva2[0000−0003−2587−4209], and
Vladik Kreinovich2[0000−0002−1244−1650]

1 Alpine Replay
214 7th Street, Huntington Beach, CA 92648, USA

anatole@traceup.com
2 University of Texas at El Paso, El Paso, TX 79968, USA

{olgak,vladik}@utep.edu

Abstract. In many practical problems, the most e�ective classi�cation
techniques are based on deep learning. In this approach, once the neural
network generates values corresponding to di�erent classes, these values
are transformed into probabilities by using the softmax formula. Re-
searchers tried other transformation, but they did not work as well as
softmax. A natural question is: why is softmax so e�ective? In this pa-
per, we provide a possible explanation for this e�ectiveness: namely, we
prove that softmax is the only consistent approach to probability-based
classi�cation. In precise terms, it is the only approach for which two rea-
sonable probability-based ideas � Least Squares and Bayesian statistics
� always lead to the exact same classi�cation.

Keywords: Classi�cation · Machine learning · Softmax · Least Squares
· Bayesian approach.

1 Formulation of the Problem

Classi�cation problems are ubiquitous. In many practical situations, we
need to classify an image or the situation into one of the given categories. For
example:

� a security system needs to decide whether an incoming email is legitimate
or malicious,

� a medical imaging system needs to decide whether a tumor is benign or
malignant,
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(A Model of Change for Preparing a New Generation for Professional Practice
in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), EAR-
2225395, and by the AT&T Fellowship in Information Technology.
It was also supported by the program of the development of the Scienti�c-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478,
and by a grant from the Hungarian National Research, Development and Innovation
O�ce (NRDI).
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� am environmental imaging system needs to decide what animal it sees, etc.

In many cases, we cannot identify the class with a 100% accuracy. In such cases,
we would like to know the probabilities p1, . . . , pN of di�erent classes � proba-
bilities that add to 1: p1 + . . .+ pn = 1.

Usually, the reason why we want to classify is that we need to make a decision
based on this classi�cation:

� whether to pass the email to the user,
� whether to perform a surgery, etc.

A natural idea is to make a decision corresponding to the most probable class,
i.e., to the class with the largest probability pi.

Comment. Probability values corresponding to other classes indicate how con�-
dent we should be in this decision.

How these problems are solved now: enter deep learning. At present, for
many problems, the most e�ective methods are methods based on deep learn-
ing; see, e.g., [2]. Classi�cation problems are no exception: in many cases, deep
learning leads to the most successful classi�cation.

We need to transform values � generated by deep neural networks �
into probabilities. Traditionally, deep learning techniques are used for machine
learning:

� We have several examples (x
(k)
1 , . . . , x

(k)
m , y(k)) (k = 1, . . . ,K) in which we

know both the inputs x
(k)
1 , . . . , x

(k)
m and the desired output y(k).

� We have a new case, in which we only know the input x1, . . . , xm.
� Based on this information, we want to predict the output y corresponding

to this input.

The predicted value ỹ is what the deep neural network generates � after being
trained on the K known examples.

In the classi�cation problem, for each of the K training examples, we know
whether the corresponding object belongs to this class or not. For each class, we
thus have the output y(k) to be:

� either 1 � if the object belongs to this class,
� of 0 � if the object does not belong to this class.

For each of n classes, we can train the corresponding neural network. Thus, for
each new object described by the values x1, . . . , xm, and for each class i, we get
some value yi that, crudely speaking, describes the computer's con�dence that
the corresponding object belongs to theis class. The larger this value, the more
con�dent is the computer systems.

These values can be negative � e.g., slightly smaller than 0, these values can
be larger than 1. And in almost all cases, they do not add up to 1. But what
we need are probabilities � i.e., we need n non-negative numbers that add up
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to 1. Thus, we need to transform the values vi generated from deep learning into
probabilities.

How values are transformed into probabilities: general idea. First, we
need to make sure that the values are non-negative. For this purpose, we select
a measurable (e.g., continuous) function s(y) that transforms the whole real line
into the set of non-negative numbers. By using this function, we transform the
original n real values y1, . . . , yn into n non-negative numbers s(y1), . . . , s(yn).

Then, to come up with non-negative values that add up to 1, we divide each
of the resulting numbers by their sum:

pi =
s(yi)

n∑
j=1

s(yj)
.

Comment. For this formula to be always applicable, we need to make sure that
all the values s(y) are positive. Indeed, if we have s(y) = 0 for some y, and we
encounter a situation in which y1 = . . . = yn = y, then the above formula leads
to the unde�ned value 0/0.

How values are transformed into probabilities: speci�cs. In principle, we
can use di�erent functions s(y). It turns out that in classi�cation problems, the
most e�ective function is the exponential function exp(k · y), for an appropriate
value k > 0. The resulting transformation into probabilities

pi =
exp(k · yi)

n∑
j=1

exp(k · yj)

is known as softmax. This name comes from the fact that:

� instead of simply crisply selecting the class that provides the largest degree
of con�dence yi,

� we make a softer choice, and allow other options with some probability,
� although, of course, the probability of these options is smaller than the prob-

ability of the largest-con�dence class.

Comment. Instead of s(y) = exp(k ·y), one can use a function s(y) = C ·exp(k ·y)
for some C > 0; then, we will get the exact same probabilities pi: indeed, if we
plug in the new function into the general expression for pi, the factors C in the
numerator and in the denominator of this expression cancel out, and we get the
exact same expression for pi as without the factor C.

Remaining problem and what we do about it. Why the exponential func-
tion works better than other possible monotonic function is a mystery. In this
paper, we provide a possible explanation for this mysterious fact: namely, we
show that the exponential function corresponding to softmax is the only one
that leads to a consistent probability-based classi�cation.
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2 Our Explanation

Dynamic classi�cation: a problem. To explain our idea, we need to consider
frequent situations in which we need to classify an object based in a dynamical
situation, when:

� instead of a single image,
� we have several images corresponding to di�erent moments of time.

For example, in an environmental system, we have several blurry images of an
animal taken at several consequent moments of time. Based on this information,
we need to identify the animal.

Let T denote the number of consequent images. Let us number them in
chronological order by numbers t = 1, . . . , T . To each of these images t, we
can apply the classi�cation algorithm and come up with the probability values
p1,t, . . . , pn,t. Based on all these values, we need to come up with the probabilities
p1, . . . , pn. How can we combine T tuples of probability values into a single tuple?

Two approaches to solving this problem: general idea. We will show
that standard probability ideas lead to two natural approaches to solving this
problem.

� We will prove that for softwax, when we use an exponential function s(y),
these two approaches lead to the exact same selection of the most probable
class. In this sense, softmax leads to a consistent assignment of probabilities.

� We will also prove that for any function s(y) that is di�erent from softmax-
based exponential function, these two approaches sometimes lead to di�erent
selections. In this sense, softmax is the only approach that leads to a consis-
tent assignment of probabilities.

Let us describe these two approaches.

First approach: using Least Squares (LS) approach. For each class i and
for each moment t, the neural network generates a value yi,t. This value describes
the system's degree of con�dence � based on the observation at moment t � that
the observed object belongs to the class i. A natural interpretation is that there
is some actual (unknown) degree of con�dence yi, and all T values yi,1, . . . , yi,T
are estimates of this true value.

In these terms, the problem of estimating yi becomes a particular case of
the general problem of estimating the value q of a quantity based on several
observations q1, . . . , qT . In other words, we have T approximate equalities q ≈ q1,
. . . , q ≈ qT . In this general situation, a natural idea is to use the Least Squares
approach, i.e., to �nd the estimate q that minimizes the sum

(q − q1)
2 + . . .+ (q − qT )

2;

see, e.g., [3]. To �nd the optimal value q, we can di�erentiate the minimized
expression by q and equate the derivative to 0. This leads to the arithmetic
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average

q =
q1 + . . .+ qT

T
.

In our case, we get

yi =
yi,1 + . . .+ yi,T

T
. (1)

Based on these values, we can compute the corresponding probabilities

pLSi =
s(yi)

n∑
j=1

s(yj)
.

Comment. In statistics, the Least Squares method is usually justi�ed by assum-
ing that the approximation errors are independent and normally distributed.
This is a reasonable assumption, but it is not always satis�ed.

However, there is a more general common-sense justi�cation of the Least
Squares approach. Namely, T approximate equalities q ≈ q1, . . . , q ≈ qT can
be summarized by saying that the tuple (q, . . . , q) should be close to the tuple
(q1, . . . , qT ). In this formulation, it is natural to select the value q for which the
distance between these two tuples is the smallest � or, equivalently, for which
the square of this distance is the smallest. And this square of the distance is
exactly the Least Squares sum

(q − q1)
2 + . . .+ (q − qT )

2.

Second approach: using Bayesian (B) approach. Another idea is using
the Bayesian approach; see, e.g., [3]. Here, we have n hypotheses corresponding
to n classes. In the general case, a priori, we do not know which class is more
probable. This means that each class must be assigned the same prior probability
p0(i) = 1/n. According to Bayes formula, once we have observations E, the
probability changes to

pBi =
p(E | i) · p0(i)

n∑
j=1

p(E | j) · p0(j)
,

where p(E | i) is the conditional probability that we observe E under the condi-
tion that the actual class is i.

Since all prior probabilities are the same p0(1) = . . . = p0(n) = 1/n, we can
divide both the numerator and the denominator by this common probability,
and get a simpli�ed formula

pBi =
p(E | i)

n∑
j=1

p(E | j)
,
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For each image t, the probability that we observe this image under this con-
dition is equal to pi,t. Similarly to the least squares approach, it is reasonable
to assume that the observations are independent � in the sense that the cor-
responding approximation errors are independent. Under this assumption, the
probability that we observe all T images under the hypothesis i is equal to the
product of individual probabilities, i.e., we have p(E | i) = pi,1 · . . . · pi,T . In this
case, the above formula for pi takes the form

pBi =
pi,1 · . . . · pi,T

n∑
j=1

pj,1 · . . . · pj,T
. (2)

Main result. Now, we are ready to formulate our main result.

De�nition 1. By a transformation, we mean a measurable continuous function

whose values are all positive.

De�nition 2.

� By data, we mean a triple D = ⟨n, T, {yi,t}i=1,...,n;t=1,...,T ⟩, where n and T
are positive integers and yi,t are real numbers.

� Integers from 1 to n will be called classes.

De�nition 3. Let s(y) be a transformation, and let D be data.

� We say that the class i0 is LS-most probable if pLSi0 = maxi p
LS
i , where

pLSi
def
=

s(yi)
n∑

j=1

s(yj)

and the value yi is determined by the formula (1).

� We say that the class i0 is B-most probable if pBi0 = maxi p
B
i , where pBi is

determined by the formula (2), in which

pi,t
def
=

s(yi,t)
n∑

j=1

s(yj,t)
.

Proposition. For each transformation s(y), the following two conditions are

equivalent to each other:

� For each data D, a class i0 is LS-most probable if and only if it is B-most

probable.

� The transformation s(y) is equal to C ·exp(k ·y) for some constants C and k.
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Comment. Thus indeed, the exponential function � corresponding to softmax
� is the only one for which the two probabilistic approaches lead to the same
result. This explains why this function is so successful in practice � it is the only
function that leads to a consistent probability-based classi�cation.

Proof.

1◦. Let us �rst prove that if we use the exponential function as the transforma-
tion, then a class i0 is LS-most probable if and only if it is B-most probable.

Indeed, all the expressions pi have the same denominator, so the inequality
pLSi0 ≥ pLSi describing LS-comparison is equivalent to s(yi0) ≥ s(yi). Since the
function s(y) is strictly increasing, this inequality, in its turn, is equivalent to
yi0 ≥ yi. By de�nition of the values yi, this means that

yi0,1 + . . .+ yi0,T
T

≥ yi,1 + . . .+ yi,T
T

.

If we multiply both sides of this inequality by T , we get an equivalent inequality

yi0,1 + . . .+ yi0,T ≥ yi,1 + . . .+ yi,T .

The function exp(k · y) with k > 0 is strictly increasing, so this inequality is
equivalent to

exp(k · (yi0,1 + . . .+ yi0,T )) ≥ exp(k · (yi,1 + . . .+ yi,T )).

Here,

exp(k · (yi,1 + . . .+ yi,T )) = exp(k · yi,1) · . . . · exp(k · yi,T ) = s(yi,1) · . . . · s(yi,T ),

so we have
s(yi0,1) · . . . · s(yi0,T ) ≥ s(yi,1) · . . . · s(yi,T ).

Dividing both sides by the product of the same denominators
n∑

j=1

s(yj,t) corre-

sponding to t = 1, . . . , T , we get an equivalent inequality

pi0,1 · . . . · pi0,T ≥ pi,1 · . . . pi,T .

Finally, dividing both sides by the same sum
∑n

j=1 pj,1 · . . . · pj,T , we get the

equivalent inequality pBi0 ≥ pBi . So, for the exponential transformation, indeed, a
class is LS-optimal if and only if it is B-optimal.

2◦. Let us now prove that if we for all data, a class i0 is LS-most probable if
and only if it is B-most probable, then the transformation is the exponential
function.

Indeed, let s(y) be a transformation for which a class i0 is LS-most probable
if and only if it is B-most probable. For every two real numbers a and b, let us
consider the data in which n = T = 2, and

y1,1 = 1, y1,2 = b, y2,1 = a+ b, y2,2 = 0.
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For this data,

y1 = y2 =
a+ b

2
,

so

pLS1 = pLS2 =
s(yi)

s(y1) + s(y2)
=

1

2
.

So, in this case, both classes i = 1 and i = 2 are LS-most probable. Thus,
because of our assumption about s(z), they must both be B-most probable. By
de�nition of what is B-most probable, this means that we must have pB1 = pB2 .
By the formula (2), this means that

p1,1 · p1,2
p1,1 · p1,2 + p2,1 · p2,2

=
p2,1 · p2,2

p1,1 · p1,2 + p2,1 · p2,2
.

Multiplying both sides by the common denominator, we conclude that

p1,1 · p1,2 = p2,1 · p2,2. (3)

Here,

p1,1 =
s(a)

s(a) + s(a+ b)
, p1,2 =

s(b)

s(b) + s(0)
,

p2,1 =
s(a+ b)

s(a) + s(a+ b)
, p2,2 =

s(0)

s(b) + s(0)
.

So, the equality (3) takes the form

s(a) · s(b)
(s(a) + s(a+ b)) · (s(b) + s(0))

=
s(a+ b) · s(0)

(s(a) + s(a+ b)) · (s(b) + s(0))
.

Multiplying both sides by the common denominator, we get

s(a) · s(b) = s(a+ b) · s(0).

All the values of the function s(y) are positive. So, we can apply logarithm to
both sides of this equality, and get

L(a) + L(b) = L(a+ b) + L(0),

where we denoted L(y)
def
= ln(s(y)), so that s(y) = exp(L(y)).

If we subtract 2L(0) from both sides, we get

L(a)− L(0) + L(b)− L(0) = L(a+ b)− L(0),

i.e.,
F (a) + F (b) = F (a+ b), (4)

where we denoted F (y)
def
= L(y)− L(0) (so that L(y) = F (y) + L(0)).

By de�nition, the transformation s(y) is measurable. Thus, the functions
L(y) = ln(s(y)) and F (y) = L(y) − L(0) are also measurable. It is known (see,
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e.g., [1]) that if a measurable function satis�es the property (4) for all a and
b, then it is a linear function, i.e., F (y) = k · y for some k. Thus, L(y) =
F (y) + L(0) = L(0) + k · y, and

s(y) = exp(L(y)) = exp(L(0) + k · y) = C · exp(k · y),

where we denoted C
def
= exp(L(0)).

The proposition is proven.
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