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Abstract

One of the main limitations of many cur-
rent Al-based decision-making systems is
that they do not provide any understandable
explanations of how they came up with the
produced decision. Taking into account that
these systems are not perfect, that their deci-
sions are sometimes far from good, the ab-
sence of an explanation makes it difficult
to separate good decisions from suspicious
ones. Because of this, many researchers are
working on making Al explainable. In some
applications areas — e.g., in chess — practi-
tioners get an impression that there is a limit
to understandability, that some decisions re-
main inhuman — not explainable. In this pa-
per, we use fuzzy techniques to analyze this
situation. We show that for relatively sim-
pler systems, explainable model are indeed
optimal approximate descriptions, while for
more complex systems, there is a limit on the
adequacy of explainable models.

Keywords: Explainable Al, Fuzzy logic,
Explainability in physics, Interval computa-
tions

1 Formulation of the Problem

Good news: deep learning-based systems are very
successful. The last decades have seen numerous suc-
cesses of machine learning — especially deep learning.
Systems based on machine learning play chess and Go
— and play much better than humans, diagnose some
diseases much better than humans, etc.; see, e.g., [4].

Fact: deep learning-based systems are not perfect.
Systems based on deep learning are very good, but they
are not perfect. There are known examples when a sys-

tem trained to distinguish, e.g., cats from dogs, mis-
takenly concludes that the picture is of a dog. Same
in more serious applications: deep learning diagnos-
tic systems sometimes misdiagnose a patient, systems
for deciding whether to give a loan sometimes make a
clearly wrong decision, etc.

Bad news: imperfection of computer-based systems
is much more dangerous that imperfection of hu-
man decision makers. At first glance, the imper-
fection of computer-based decision making does not
sound so bad: human decision makers also make mis-
takes, and in many application areas, human decision
makers make even more mistakes than computer sys-
tems. However, there is a big difference: if you are
not sure about the doctor’s diagnosis, you can ask the
doctor how he/she came up with this diagnosis, and if
you (or the second-opinion doctor) do not find it con-
vincing, you can argue against it. In contrast, machine
learning-based systems do not provide you with any
explanation, so it is difficult to decide which decisions
are reasonable and which are based on shaky founda-
tions and need further analysis.

Need for explainable Artificial Intelligence (XAI).
In view of the above problem, it is desirable to make
Al-based systems explainable.

Natural question. A lot of progress has been done
in this direction, but the progress is not as fast as
many researchers hoped. So, a natural question can
be asked: maybe there is a natural barrier to explain-
ability? maybe fully explainable Al is not possible?

For example, in chess, where computer-based system
easily beat up human players, there seems to be a rather
general understanding that some moves that the com-
puter systems propose are “inhuman", there is no way
to explain them at all — and if someone uses such a
move in a game between two humans, this is usually
a telltale sign that this person is cheating and using a
computer system to help.



What we do in this paper. In this paper, we analyze
this question by using fuzzy techniques. Our conclu-
sion is that most probably fully explainable Al is not
possible. This does not mean that we should give up
on making Al more explainable, it just means that there
are natural barriers to explainability.

Comment. This conclusion is similar to a similar situa-
tion in complexity theory. It is known that (unless P =
NP, which most computer scientists believe to be im-
possible), no feasible algorithm is possible that would
solve all instances of many important problems; see,
e.g., [2, 7, 14]. This does not mean that we should
not try to solve them, it just means that no matter how
much we try, there will always be cases that the current
algorithm cannot solve in feasible time.

2 Analysis of the Problem

Let us talk about physics. In order to properly an-
alyze the problem, let us better understand what “ex-
planations” mean for human decision making. And let
us take, as an example, an area that is not directly re-
lated to potentially emotional issues like illnesses or
business success. Let us take an area that does not deal
directly with human beings, and does not even deal di-
rectly with living beings who may also cause emotions.
Let us take an area that deals with the objective world
—1i.e., physics.

What are explanations in physics: physicists
vs. mathematicians. In many areas of physics, we
know the equations that describe the corresponding ob-
ject. In such areas, in solving problems, physicists are
helped by mathematicians.

We ourselves have worked with physicists on some
such problems, and we were always amazed by the
ability of physicists to often solve the corresponding
problems faster than we did, in spite of our better math-
ematical knowledge and our better mathematical skills.
How did they do it?

According to the Nobelist Richard Feynman [3], the
special skill that physicists have is the ability to find
out what can be ignored (at least in the first approxi-
mation) and what is important — and thus, to make a
complex problem solvable. This leads to a clear and
understandable (= explainable) approximate solution.
Starting with this solution, we can make it more accu-
rate by taking secondary factors into account, and thus,
extend the explanations.

Examples: from Newton to Einstein. This trend can
be traced all the way to the first mathematically pre-
cise and reasonably universal physical theory — New-

ton’s mechanics. Full equations of celestial mechan-
ics, that take into account the presence of all the plan-
ets and their non-zero size, are very difficult to solve
even now. They are difficult even if we only take into
account the three bodies most importance for us: the
Sun, the Earth, and the Moon. What Newton did, in
the first approximation, he only considered the Sun and
the Earth, he ignored the effects of the Moon and of
other planets, and he assumed that both the Sun and
the Earth are point bodies — ignoring their size. In this
approximation, he could get a clear and understandable
solution, and then he showed how to modify it if take
Moon into account (this explains tides) and how to take
into account non-zero size (this turned out to be auto-
matically taken care of already, at least if we ignore the
fact that the Sun and the Earth are not perfect spheres).

This trend can be traced further. There is a (proba-
bly apocryphal) story of Einstein’s wife invited to the
opening of a big research computing center. When she
asked what was the purpose of the state-of-the-art com-
puter, she was told — in reference to her husband’s work
— that one of the main objectives is to study the struc-
ture of the Universe. To this she replied that her hus-
band does that on the back of the envelope.

This may be not a true story, but there is another
— true — story about Einstein. Many physicists and
mathematicians know that it was somewhat accidental
that Einstein was the first to come up with equations
of General Relativity theory — a relativistic theory of
gravitation. Namely, David Hilbert, the most famous
mathematician of that time, was also working on this
problem, and he came up with the exact same equa-
tions — but he submitted his paper 2 weeks later than
Einstein. But what many mathematicians do now know
is that even if the situation was reversed, and it would
have been Einstein who submitted his paper 2 weeks
later, physicists would still celebrate mostly Einstein.
The reason is very straightforward: all Hilbert did was
come with the corresponding very complex and very
difficult-to-solve nonlinear system of partial differen-
tial equations. Even now high performance comput-
ers find solving this system a challenge. Einstein, in
his paper, not only came up with these equations. By
using a deep understanding of what is important and
what can be safely ignored, he came up with simplified
equations, solved them, and this way, described pos-
sible experimental consequences of this theory. This
enabled General Relativity to be experimentally con-
firmed already in 1919, a few years after it was pub-
lished.

Summarizing: what seems to be explanations in sci-
ence. There is a complex phenomenon that is diffi-
cult to analyze in all its complexity. To get a good



explainable approximate solution, we select a few fea-
tures that need to be taken into account, we take them
into account fully, and we completely ignore all other
features. Correctly selecting the features is not easy,
but once this selection is done, we get a simplified sys-
tem for which we have a clear understandable solution
— often even an explicit solution in the analytical form,
i.e., described by an explicit formula.

To get a more accurate solution, we can take into ac-
count a few more features — again, an important task
is to find out which features are most important to add
— and we modify the original simple solution to take
these additional features into account.

This seems to be an (probably) optimal strategy.
Based on the history of physics, this seems to be a suc-
cessful — thus, probably optimal — strategy. This ex-
plains the love for explicit solutions for complex sys-
tems of equations, love that may seem to be outdated
in modern era where computations are fast — explicit
solutions are not only easy to compute, they are also
easy to understand, to analyze, and to explain.

But is this indeed an optimal strategy? The fact that
for many practical problems, this turned out to be a
very successful strategy is an indication that for many
such problems, this strategy was indeed probably op-
timal. On the other hand, the fact that in many new
cases, we cannot find such an explanation this way,
may mean that for many problems, this strategy is not
optimal. So is this strategy always optimal — and if
it is not always optimal, why was it optimal for many
problems in the past?

To answer these questions, let us formulate this them
in precise terms.

3 Towards a Precise Formulation of the
Problem and the Resulting Answers

Reminder. Let us denote the number of features we
have by n. In the usual physicists’ strategy, for each
such feature, we either fully take this feature into ac-
count, or completely ignore this feature. The overall
number of features that we take into account should be
small, so that the resulting model will be solvable. Let
us denote the overall small number of features that we
can take into account by f.

Our main idea: use degrees. In line with Zadeh’s
main idea that everything is a matter of degree (see,
e.g., [1, 6,10, 12, 13, 17]), we can take into account
that for each of n features, in addition to fully taking
this feature into account or completely ignoring this
feature, we can also take it into account partly, with

some degree. Let us denote the degree to which we
take this feature into account by d;. It is reasonable to
describe the case when we completely ignore the fea-
ture by d; = 0, and the case when we fully take this fea-
ture into account by d; = 1. Intermediate cases, when
we only partly take the i-th feature into account, can be
naturally described by values d; between 0 and 1.

For degrees, how do we describe the need to limit
ourselves to a small amount of information. In situ-
ations when each feature is either completely ignored
or fully taken into account, for each i, we have either
d; =0 ord; =1, and the limitations on the total number
of features takes the form

di+dy~+...+d,=f. (1)

In situations when we allow partial taking of features
into account, to make the problem solvable, we still
need to make sure that the overall amount of informa-
tion that is taken into account is small. A natural way
to describe this condition is to similarly require that the
sum of all the values d; is equal to f, i.e., to require the
same condition (1).

What do we want. Under the constraint (1), we want
to select the values d; for which the resulting model is
as adequate as possible. Let us describe adequacy by
a real number: 0 means not adequate, and the larger
the value, the higher is the adequacy level. No model
is perfectly accurate, so there should not be an up-
per limit, the values of adequacy should potentially go
from O to infinity.

The adequacy level a depends on the corresponding de-
grees: a =a(dy,...,d,): if we select the right features,
we expect the level of adequacy to be high, but if we
select the irrelevant feature, the level of adequacy of
the resulting model will be 0.

If we do not select any features at all, the level of ade-
quacy will be 0: a(0,...,0) =0.

In general, the more information we take into account,
the more adequate will be the resulting model. So, the
function a = a(dy,...,dy,) should be non-decreasing in
each of its variables: if d; < d{ , then we should have

a(dl,---7di—l,di,di+l7---,dn) <

a(dl,...,dl-,l,d,{,d,'ﬂ,...,dn).

So, what we want is to find the values d; that optimize
the function a(dy,...,d,) under the condition (1). Let
us see what we can conclude from this description.

What can we conclude based on such a description:
general idea. A priori, we do not know the form of



the function a(d,...,d,). From the purely mathemat-
ical viewpoint, it may seem that in this case, we cannot
conclude anything definite. However, in physics, such
situations — when we do now know the actual function
— are common. In such cases, what physicists do (see,
e.g., [3, 16]) is take into account that many functions
can be expanded in Taylor series

f0+Zfl xl+zz ijrXiXj+

i=1j=

f(xl,.. 3 X

for some coefficient fy, f;, etc. In particular, fy def
£(0,...,0), each value f; is the partial derivative of
the function f(x; ...,x,) with respect to x; at the point
(0,...,0), etc.

* In the O-th approximation, we approximate the
function f(xi,...,x,) by a constant fy. If we
know the function f(xi,...,x,), we can determine
the value fj as fo = f(0,...,0).

* In the first approximation, we take into account
linear terms:

n
FOonseox) = fo+ Y firxie
i=1
If we know the function f(xi,...,x,), then

we can determine each value f; as f; =
f(0,...,0,1,0,...,0) — fo, where 1 is on the i-th
place.

* In the next (second) approximation, we also take
quadratic terms into account, etc.

Let us apply this general idea to our problem. Let
us apply this general idea to our problem. In this case,
since a(0,...,0) = 0, the 0-th term in the Taylor ex-
pansion is equal to 0, so the Taylor expansion has the
following form:

a(dl,...,dn):Z d—I—ZZaU di-dj+ ..

i=1 i=1j=

Simplest case explains the classical explainable
strategy. In the simplest case, we only take into ac-
count linear terms. In this case, we need to optimize
the function

ald,....d z 2)

under the constraint (1). Here, the objective function is
linear, and the set fo all possible values of the variables
d; — as determined by linear inequalities 0 < d;, d; < 1,

and (1) —is a convex polyhedron. It is known (see, e.g.,
[15]) that on each convex polyhedron, a linear function
attains its maximum on one of the vertices, i.e., in one
of the tuples in which n inequalities become equalities.

So, in addition to equality (1), n — 1 inequalities must
become equalities. For each i, we cannot have two
equalities: this would mean that d; is equal both to 0
and to 1. So, for each i, we can only have one valid
equality. Thus, for n — 1 values i, we must have d; =0
or d; = 1. The remaining value d;, can be determined
by the condition (1), as

i =J—

All the values f and d; in the right-hand side of the for-
mula (3) are integers, so the resulting value d;; is also
an integer. Since each degree d; is located in the inter-
val [0, 1], the only two possible choices for the integer
degree d;, are d;, = 0 or d;, = 1. So, for each i, we
will have dyp = 0 or d; = 1, i.e., we will have a classical
explainable solution — which is thus shown to be the
actually optimal one.

d, (dl+...+di0,1+di0+1+...+dn). (3)

Comment. 1t this case, it is also easy to describe for
which exactly values d; the maximum of the expression
(2) is attained., For this purpose, we sort the values a;
in decreasing order:

and then select d; = 1 for the values i that correspond
to f largest values of a;:

and d; = 0O for all other i.

What if the situation becomes more complex. When
the situation becomes more complex, it is no longer
possible to only use a linear approximation, we will
have to use the quadratic approximation instead:

a(dy,....d, Zaz d+ZZa1] -d; - dj. 4)

i=1j=

In this case, we face the problem of maximizing the
quadratic function (4) under the linear constraint (1)
and the constraints 0 < d; < 1.

For the linear function, the maximum is always at-
tained at the tuple (di,...,d,) for which each value d;
is 0 or 1 — and, if we know the function a(dy,...,d,),
it is easy to find this optimal tuple. In contrast, in the
quadratic case, the maximum may be attained for val-
ues d; € (0,1) and, what is even worse, even when we
know the quadratic function, finding the values d; at
which this function attains maximum is, in general,
NP-hard; see, e.g., [7].



In such more complex situations, the traditional ex-
planation approach is no longer optimal — and finding
the appropriate explanation is an NP-hard problem —
which means that the problem is no longer feasible.

Comment. It should be mentioned that our problem of
maximizing a function under constraints d; € [0, 1] is
a particular case of the general problem of maximiz-
ing or minimizing a function f(xi,...,x,) under the
interval constraints x; € [x;,%;], the problem studied in
interval computations; see, e.g., [5, 8,9, 11].

Conclusions. When the systems that we study are suf-
ficiently simple, so that a linear approximation reason-
ably accurately describes the adequacy level, the opti-
mal way to provide a simplified model is to fully take
into account a small number of features, and to ignore
all other features. This is exactly what the traditional
explainable models do.

However, as the systems become more complex, the
traditional explainable approach is no longer optimal.
In an optimal approximation, we need to take into ac-
count many features — to some degree. This is what
we observe in finite-element solutions to partial differ-
ential equations, this is what we observe in machine
learning — we have adequate models, but these models
are not explainable in the original sense of this word.

Thus, our conclusion is that, as the systems that we an-
alyze become more and more complex, there is a limit
of explainability, we will have to live with the fact that
some conclusions of these models are “inhuman”.

4 Auxiliary Idea: What if We Take
Uncertainty Into Account

Idea and how to describe it. In the previous sec-
tions, we considered well-defined models, in which
some features are taken into account (maybe to a de-
gree) and some features are ignored. Such models pro-
vide an approximate description of the system, but by
themselves, they do not provide us with an idea of how
accurate is this description.

A natural way to provide this additional description is,
e.g., instead of simply ignoring a feature, to take into
account that this feature is present — without specify-
ing what exactly is the effect of this feature. Since we
decided to describe ignoring a feature by 0 and fully
taking it into account by 1, it is natural to describe this
new idea — where we do not know what will be the
actual degree of this feature’s effect — by the whole in-
terval [0, 1].

In general, if we explicitly take into account the i-th
feature with some degree d;, and we also take into ac-

count the possibility that this feature may have an ef-
fect corresponding to a higher degree d;, then it is rea-
sonable to describe this situation by an interval [d;,d;].

Comment. While the original degrees d; € [0, 1] corre-
sponded to the usual fuzzy logic, the above-mentioned
degrees [d;,d;] correspond to interval-valued fuzzy
logic; see, e.g., [10].

Let us formulate this idea in precise terms. For each
i, instead of a single value d;, we select an interval
[d;,d;]. In each selection, we absolutely take into ac-
count each feature to the degree d;. The overall amount
of features that we absolutely take into account should
be equal to f:

di+..+d,=f. (5)

The amount of uncertainty corresponding to each fea-
ture is equal to the difference d; —d;: when this differ-
ence is 0, we are back to the previous scheme that does
not take uncertainty into account at all. Taking uncer-
tainty into account is not easy. So, the overall amount
of uncertainty that we can take into account should also
be limited by some number u:

(di—d)+...+(d,—d,) =u. (6)

What is the optimal strategy: simplest case. Under
the constraints (5) and (6), we need to maximize the
adequacy, which now depends on both bounds d; and
d;. In the simplest case, the adequacy is described by a
linear function

(a;-d;+a;-d;).

™=

a(d]iglw"udymgn) =
i=1

So, we need to maximize this function under the con-
ditions (5), (6), and

0<d;<di<1 (7)

Similarly to the previous case, the maximum is attained
when 2n inequalities become equalities. In each sys-
tem (7), at most two inequalities can becomes equali-
ties. The case when exactly two become equalities is
when the interval [d;,d;] is equal to [0,0], to [1,1], or
to [0,1]. If this happens for fewer than n — 2 values i,
then we will have:

« fewer than 2(n —2) = 2n — 4 such equalities

* plus two equalities (5) and (6)



* plus two equalities from the two remaining in-
dices i,

to the total of less than 2n. Since we do have 2n equal-
ities, this implies that for at least n — 2 indices (i.e.,
for almost all indices), we should have either 0 (ig-
noring this feature), or 1 (fully taking this feature into
account), or [0,1] — meaning that we fully take into
account the possibility of this feature’s effect, without
providing any details about the actual effect.

This is exactly what physicists do. The above conclu-
sion is also in line with what physicists do: to estimate
uncertainty, they usually fully take into account some
sources of uncertainty while ignoring other sources.
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