
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

5-1-2023 

Fast -- Asymptotically Optimal -- Methods for Determining the Fast -- Asymptotically Optimal -- Methods for Determining the 

Optimal Number of Features Optimal Number of Features 

Saied Tizpaz-Niari 
The University of Texas at El Paso, saeid@utep.edu 

Luc Longpré 
The University of Texas at El Paso, longpre@utep.edu 

Olga Kosheleva 
The University of Texas at El Paso, olgak@utep.edu 

Vladik Kreinovich 
The University of Texas at El Paso, vladik@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Sciences Commons, and the Mathematics Commons 

Comments: 

Technical Report: UTEP-CS-23-21 

Recommended Citation Recommended Citation 
Tizpaz-Niari, Saied; Longpré, Luc; Kosheleva, Olga; and Kreinovich, Vladik, "Fast -- Asymptotically Optimal 
-- Methods for Determining the Optimal Number of Features" (2023). Departmental Technical Reports 
(CS). 1806. 
https://scholarworks.utep.edu/cs_techrep/1806 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1806?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1806&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Fast � Asymptotically Optimal � Methods for

Determining the Optimal Number of Features⋆

Saied Tizpaz-Niari, Luc Longpré, Olga Kosheleva[0000−0003−2587−4209], and
Vladik Kreinovich[0000−0002−1244−1650]

University of Texas at El Paso, El Paso, TX 79968, USA
{saeid,longpre,olgak,vladik}@utep.edu

Abstract. In machine learning � and in data processing in general � it
is very important to select the proper number of features. If we select
too few, we miss important information and do not get good results,
but if we select too many, this will include many irrelevant ones that
only bring noise and thus again worsen the results. The usual method of
selecting the proper number of features is to add features one by one until
the quality stops improving and starts deteriorating again. This method
works, but it often takes too much time. In this paper, we propose faster
� even asymptotically optimal � methods for solving the problem.

Keywords: Machine learning · Data processing · Optimal number of
features · Asymptotically optimal method.

1 Formulation of the Problem

Selecting optimal number of features: an important problem. In ma-
chine learning � and in data processing in general � an important problem is
selecting the number of features; see, e.g., [2].

� When we only use very few of the available features, the results are not very
good � since we do not use a signi�cant portion of the available information.

� As we increase the number of features, the results get better and better.
� However, at some point, we exhaust useful features, and we start adding

features that practically do not contribute to the desired decision. In such
situations, new features mostly adds noise, so the performance deteriorates
again.

In other words, the e�ciency E depends on the number of features n as follows:

⋆ This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice
in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), EAR-
2225395, and by the AT&T Fellowship in Information Technology.
It was also supported by the program of the development of the Scienti�c-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478,
and by a grant from the Hungarian National Research, Development and Innovation
O�ce (NRDI).



2 S. Tizpaz-Niari et al.

� the value E(n) �rst increases with n,
� but at some point, it starts decreasing with n.

We need to �nd the value n0 at which the e�ectiveness E(n) is the largest.

How this problem is solved now. Of course, we can always do it by adding
features one by one � and this is usually how people solve this problem now.

A better method is needed. In many cases � e.g., for machine learning �
the adding-features-one-by-one algorithm is very time-consuming, since for each
number of features, we need to re-train the neural network, and this takes time.

It is thus desirable to have faster methods for �nding the optimal value n0.

What we do in this paper. In this paper, we �rst describe a straightforward
asymptotically optimal method for �nding the optimal number of features. Then,
we show how to further speed up the corresponding computations. Speci�cally:

� in Section 2, we formulate the problem in precise terms;
� in Section 3, we describe a straightforward asymptotically optimal method

for solving this problem;
� in Section 4, we describe the new method, and we show that this method is

indeed faster than the straightforward method.

2 Let Us Formulate the Problem in Precise Terms

What we are given.We are given a numberN � the overall number of available
features. We have an algorithm that:

� given a natural number n ≤ N ,
� returns a real number E(n).

What we know. We know that the function E(n) �rst strictly increases, then
strictly decreases. In other words, there exits some threshold value n0 � that is
not given to us � for which:

� if n < n′ ≤ n0, then E(n) < E(n′), and
� if n0 ≤ n < n′, then E(n) > E(n′).

What we want to compute.We want to compute the threshold value n0, i.e.,
the value at which the e�ectiveness E(n) attains the largest possible value.

Usual method for computing n0. The usual method for computing n0 is
trying n = 1, n = 2, etc., until we reach the �rst value n for which E(n) <
E(n− 1). Then, we return n0 = n− 1.

This method requires, in the worst case, N calls for the algorithm E(n).

What we want. We want to come up with a faster method for computing n0.



Fast Methods for Determining the Optimal Number of Features 3

3 Straightforward Asymptotically Optimal Method for

Solving the Problem

Main idea.

� For values n < n0, we have E(n) < E(n+ 1).
� For values n ≥ n0, we have E(n) > E(n+ 1).

It is therefor reasonable to use bisection (see, e.g., [1]) to �nd the threshold
value n0.

Resulting method. At each iteration, we have values n− < n+ for which
E(n−) < E(n−+1) and E(n+) > E(n++1). Based on the properties described
in the previous paragraph, this implies that n− < n0 ≤ n+.

We start with the values n− = 0 and n+ = N − 1. At each iteration, we take
the midpoint

m =

⌊
n− + n+

2

⌋
and check whether E(m) < E(m+ 1). Then:

� If E(m) < E(m+ 1), we replace n− with the new value m.
� If E(m) > E(m+ 1), we replace n+ with the new value m.

At each iteration, the width of the interval [n−, n+] is decreased by half. We stop
when this width becomes equal to 1, i.e., when n+−n− = 1. Once we reach this
stage, we return n+ as the desired value n0.

How many calls to the algorithm E(n) this method requires. We start
with an interval [0, N −1] of width ≈ N . At each stage, the width of the interval
decreases by a factor of 2. Thus, after k iterations, we get an interval of width
2−k ·N . The number k of iterations needed to reach the desired interval of width
1 can be therefore determined from the formulas 2−k ·N = 1, so k = log2(N).

On each iteration, we call the algorithm E(n) twice: to �nd E(m) and to
�nd E(m+ 1). Thus, overall, this method requires 2 · log2(N) calls to the algo-
rithm E(n).

This method is asymptotically optimal. We need to �nd a natural number
n0 from the interval [0, N ]. In general, by using b bits, we can describe 2b di�erent
situations. Thus, the amount of information b that we need to determine n0 must
satisfy the inequality 2b ≥ N , i.e., equivalently, b ≥ log2(N). To get each bit of
information, we need to call the algorithm E(n). Thus, to �nd n0, we need to
make at least log2(N) calls to this algorithm.

The above algorithm requires 2 · log2(N) = O(log2(N)) calls. Thus, this
method is indeed asymptotically optimal.

Natural question. The straightforward method described in this section is
asymptotically optimal, this is good. However, still, this method requires twice
more calls to the algorithm E(n) that the lower bound. Thus, a natural question
is: can we make it faster?

Our answer to this question is �yes�. Let us describe the new faster method.



4 S. Tizpaz-Niari et al.

4 New Faster Method: Description and Analysis

Preliminary step. First, we compute the value E(m) for the midpoint m of

the interval [0, N ], so we form an interval [n−, n+]
def
= [0, N ].

Iterations. At the beginning of each iteration, we have the values n− < n+ for
which:

� we know the values E(n−), E(n+) and E(m), where m is the midpoint of
the interval [n−, n+], and

� we know that E(n−) < E(m) > E(n+).

We stop when n+ − n− = 2, in which case we return n0
def
= n− + 1.

At each iteration, we �rst select, with equal probabilities 0.5, whether we
start with the left subinterval or with the right subinterval.

If we start with the left subinterval, then we compute the midpoint L of this
subinterval, and compute the value E(L). Then:

� If E(L) > E(m), i.e., if E(n−) < E(L) > E(m), then we replace the interval
[n−, n+] with the new half-size interval [n−,m]. In this case, the iteration is
�nished. So, if the stopping criterion is not yet satis�ed, we start the new
iteration.

� On the other hand, if E(L) < E(m), then we compute the midpoint R of
the right subinterval [m,n+], and compute the value E(R). Then:
• If E(m) > E(R), i.e., if E(L) < E(m) > E(R), then we replace the
interval [n−, n+] with the new half-size interval [L,R].

• On the other hand, if E(m) < E(R), i.e., if E(m) < E(R) > E(n+), then
we replace the interval [n−, n+] with the new half-size interval [m,n+].

If we start with the right subinterval, then we compute the midpoint R of
this subinterval, and compute the value E(R). Then:

� If E(m) < E(R), i.e., if E(m) < E(R) > E(n+), then we replace the interval
[n−, n+] with the new half-size interval [m,n+]. In this case, the iteration is
�nished. So, if the stopping criterion is not yet satis�ed, we start the new
iteration.

� On the other hand, if E(m) > E(R), then we compute the midpoint L of
the left subinterval [n−,m], and compute the value E(L). Then:
• If E(L) > E(m), i.e., if E(n−) < E(L) > E(m), then we replace the
interval [n−, n+] with the new half-size interval [n−,m].

• On the other hand, if E(L) < E(m), i.e., if E(L) < E(m) > E(R), then
we replace the interval [n−, n+] with the new half-size interval [L,R].

Why this algorithm works. If for some values n− < m < n+, we have
E(n−) < E(m) > E(n+), then:

� we cannot have n0 ≤ n−, since then n− < m would imply E(n−) < E(m);
thus, we must have n− ≤ n0; and



Fast Methods for Determining the Optimal Number of Features 5

� we cannot have n+ ≤ n0, since then m < n+ would imply E(m) < E(n+);
thus, we mist have n0 ≤ n+.

Thus, in this case, we must have n0 ∈ [n−, n+].

How many calls to the algorithm E(n) this method requires. Each it-
eration reduced the width of the original interval [n−, n+] = [0, N ] by half. So,
similarly to the straightforward algorithm, we need log2(N) iterations

On each iteration, we �rst make the �rst call to E(n) and then the �rst
comparison. We have two possible results of this comparison, so it is reasonable
to assume that each comparison result occurs with probability 0.5. So, on each
iteration:

� with probability 0.5, we require only one call to the algorithm E(n), and
� with probability 0.5, we require two calls.

Thus, the expected number of calls on each iteration is 0.5 · 1 + 0.5 · 2 = 1.5.
Since we make an independent random selection on each iteration, the num-

bers of calls on di�erent iterations are independent random variables. Thus, due
to the large numbers theorem (see, e.g., [3]), the overall number of calls will be
close to the expected number of calls, i.e., to 1.5 · log2(N). This is clearly faster
than the number of calls 2 · log2(N) required for the straightforward algorithms.

References

1. Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-

rithms, MIT Press, Cambridge, Massachusetts, 2022.
2. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge,

Massachusetts, 2016.
3. D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,

Chapman and Hall/CRC, Boca Raton, Florida, 2011.


	Fast -- Asymptotically Optimal -- Methods for Determining the Optimal Number of Features
	Recommended Citation

	tmp.1687456083.pdf.53S9I

