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Abstract. In many practical situations, if we split our e�orts into two
disconnected chunks, we get better results: a pavement is stronger if
instead of a single strengthening layer, we place two parts of this layer
separated by no-so-strong layers; teaching is more e�ective if instead of
concentrating a topic in a single time interval, we split it into two parts
separated in time, etc. In this paper, we provide a general explanation
for all these phenomena.

Keywords: Pavement engineering · Fracking · Interleaving in education.

1 Formulation of the Problem

General idea. This research was motivated by the fact that in several applica-
tion areas, there appears a similar empirical phenomenon, a phenomenon that,
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in each of these areas, is di�cult to explain. In this paper, we provide a general
explanation for this phenomenon. Let us list the examples of this phenomenon.

Pavement engineering. Road pavement must be strong enough to sustain the
tra�c loads. To strengthen the pavement, usually, the pavement is formed by
the following layers (see, e.g., [1]):

� First, on top of the soil, we place compacted granular material; this is called
the sub-base.

� On top of the sub-base, we place granular material strengthened with cement;
this layer is called the base.

� Finally, the top layer is the granular material strengthened by adding the
liquid asphalt; this layer is called the asphalt concrete layer.

In this arrangement, the strength of the pavement comes largely from the two
top layers: the asphalt concrete layer and the base.

Empirical evidence shows that in many cases, the inverse layer structure,
where the base and sub-base are switched � so that the two strong layers are
separated by a weaker sub-base layer � leads to better pavement performance;
see, e.g., [3, 6�8, 10, 11, 16�18, 20, 22, 25].

Fracking. Traditional methods of extracting oil and gas leave a signi�cant por-
tion of them behind. They were also unable to extract oil and gas that were
concentrated in small amounts around the area. To extract this oil and gas,
practitioners use the process called fracking, when high-pressure liquid is in-
jected into the underground location, cracking the rocks and thus, providing the
path for low-density oil and gas to move to the surface. Usually, several pipes are
used to pump the liquid. Empirically, it turned out that the best performance
happens when not all the pipes are active at the same time, but when there
is always a signi�cant distance between the active pipes. One way to maintain
this distance � known as zipper fracking � is to activate, e.g., every other pipe,
interchanging activations of pipes 1, 3, 5, etc., with activating the intermediate
pipes 2, 4, 6, etc. (This particular technique is known as Texas two-step.) For
more information, see, e.g., [19, 26] and references therein.

Education. In education, best learning results are achieved when there is a
pause between two (or more) periods when some topic is studied; this pedagogical
practice is known as interleaving. Several studies show that interleaving enhances
di�erent types of learning, from learning to play basketball [9, 13] to learning
art [12] to learning mathematics [14, 23, 24], to training and re-training medical
doctors [2, 21]; see also [4, 5, 15].

2 Towards an Explanation

General idea. What is the ideal situation?

� The ideal pavement would mean that all layers are strong.
� The ideal fracking would mean that all the pipes are active all the time.
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� The ideal study process would mean that we study all the time.

So, a natural way to compare the quality of di�erent strategies is to see which
ones are closer to this ideal case.

A general mathematical description of the problem. Let us formulate
this general setting in precise terms.

In general, we have a certain range: this can be the range that describes:

� strength as a function of depth,
� study intensity as a function of time, etc.

From the mathematical viewpoint, we can always change the starting point to
be 0. For example, for studying, we can measure time starting with the moment
when we started the whole study process. In this case, the range will take the
form [0, T ] for some T > 0. So, for simplicity, let us assume that this range has
the form [0, T ].

Ideally, we should have full intensity at all points from this range:

� we should have full strength at all depth,
� we should have full study intensity at all moments of time, etc.

Again, from the mathematical viewpoint, we can re-scale intensity by taking this
level as a new unit for measuring intensity. After this re-scaling, the value of the
high level of intensity will be 1. So, the ideal case (I) is described by a function
that takes the value 1 on the whole interval [0, T ]; see Fig. 1.

-

6

0 T

1

Fig. 1. Ideal case (I)

The problem is that in all the above applications, the ideal case is not realistic.
In practice, we can have full strength only over a small portion of this range, a
portion of overall size ε.
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� We can have this strength portion concentrated on a connected (C) subrange
(see Fig. 2) � as is the case, e.g., of the traditional pavement.

� Alternatively, we can divide this portion into two (or more) disconnected
(D) subranges, as in Fig. 3.

In both cases, the value of intensity:

� is equal to 1 on a small part of the range, and

� is equal to 0 for all other values from the range.

-

6

0
T

1

Fig. 2. Connected portion (C)

-

6

0
T

1

Fig. 3. Disconnected portion (D)
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In all the above examples, the performance was better for the disconnected
subranges. We will explain this by proving that, in some reasonable sense, the
graph D corresponding to the disconnected portion is indeed closer to the graph
I of the ideal dependence than the graph corresponding to the connected portion
C, i.e., that d(D, I) < d(C, I). In order to prove this, let us recall what is the
natural way to describe distance d(A,B) between two graphs A and B.

From the mathematical viewpoints, graphs are sets in a plane. So, to be
able to describe distance between graphs, let us recall how to describe distance
d(A,B) between sets A and B.

How to de�ne the distance d(A,B) between two sets A and B: reminder.

Let us start with the simplest case, when both sets are 1-element sets, i.e., when
A = {a} and B = {b} for some points a and b. We assume that for two points a
and b, distance d(a, b) is already de�ned, In this case, it is reasonable to de�ne

d(A,B) = d({a}, {b}) def
= d(a, b).

A natural idea is to use Euclidean distance here:

d((x, y), (x′, y′)) =
√
(x− x′)2 + (y − y′)2.

Instead, we can use a more general ℓp-metric for some p ≥ 1:

d((x, y), (x′, y′)) = ((x− x′)p + (y − y′)p)1/p.

It is worth mentioning that our result remains valid whiever value p ≥ 1 we
select.

A slightly more complex case is when only one the sets is a one-point set,
e.g., A = {a}. In this case, it makes sense to de�ne the distance d({a}, B) is
such a way that this distance is 0 when a ∈ B. A reasonable idea is to take

d(A,B) = d({a}, B)
def
= inf

b∈B
d(a, b).

Finally, let us consider the general case, when both sets A and B may contain
more than one point. In line with the general de�nition of a metric, we would
like to have d(A,B) = 0 if and only if the sets A and B coincide, i.e., if and only
if:

� every element the set A is also an element of the set B, and
� every element of the set B is also an element of the set A.

In other words, for us to declare that d(A,B) = 0:

� we must have d({a}, B) = 0 for all a ∈ A, and
� we must have d({b}, A) for all b ∈ B.

The usual way to achieve this purpose is � similarly to how we de�ned d({a}, B)
� to de�ne d(A,B) as the largest of all these values; the resulting �worst-case�
expression dw(A,B) is known as the Hausdo� distance:

dw(A,B)
def
= max

(
sup
a∈A

d({a}, B), sup
b∈B

d({b}, A)
)
. (1)
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In general, the worst case is now �always the most adequate description. For
example, if we have the set B almost equal to A, but with a very tiny additional
part which is far away from the original set, the worst-case distance is huge, but
in reality, the sets A and B are almost the case. To better capture the intuitive
idea of distance between two sets, it is reasonable to consider not the worst-case

values of d({a}, B) and d({b}, A), but their average values:

da(A,B)
def
=

1

2
·
∫
A
d({a}, B) da

µ(A)
+

1

2
·
∫
B
d({b}, A) db
µ(B)

. (2)

Let us see what these two de�nitions dw(A,B) and da(A,B) say about the
relation between our graphs I, C, and D.

What are the values dw(A,B) and da(A,B) in our case. Both worst-case
and average-case de�nitions are based on the values d({a}, B) and d({b}, A). So,
to compute the distances between the corresponding graphs, let us �rst analyze
what are the values d({a}, B) and d({b}, A) for our case.

Without losing generality, let us denote one of the graphs C or D by A, and
the ideal graph I by B. Let us �rst consider the values d({a}, B) = d({a}, I).

� Here, for points a ∈ A corresponding to the portion of overall length ε, the
intensity is equal to 1. So these points also belong to the graph I and thus,
d({a}, I) = 0.

� For all other points a ∈, the intensity is 0, i.e., this point has the form (x, 0)
for some x ∈ [0, T ]. The set I is the straight line segment. So, the closest
element to I is the projection of the point A on this straight line, i.e., the
point (x, 1). In this case, the shortest distance d({a}, I) from the point a and
points b ∈ I is equal to 1: d({a}, I) = 1.

So, we have

sup
a∈A

d({a}, I) = 1 (3)

and ∫
A
d({a}, I) da
µ(A)

=
0 · ε+ 1 · (T − ε)

T
=

T − ε

T
. (4)

It should be mentioned that the values (3) and (4) are the same both:

� for the connected portion C and
� for the disconnected portion D;

these values only depend on the overall length of the portion.
Let us now consider the values d({b}, A), when b ∈ I, i.e., when b = (x, 1)

for some x ∈ [0, 1], and A is C or D. By de�nition, d({b}, A) is the smallest of
the values d(a, b) when a is in the set A, i.e., when a is:

� either in the portion � in which case a = (x′, 1) for some x′ ∈ [0, T ],
� or not in the portion � in which case a = (x′, 0) for some x′ ∈ [0, T ].
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In the second case, the distance is at least 1 � and can always be made smaller
than or equal to 1 if we take the point (x, ·) ∈ A. In the �rst case, the distance
is equal to d(a, b) = d((x, 1), (x′, 1)) = |x− x′|. So:

� for points b = (x, 1) ∈ I which are at most 1-close to the portion, the shortest
distance d({b}, A) is equal to the distance z between x and the portion, while

� for all other points b = (x, 1) ∈ I, we have d({b}, A) = 1.

And herein lies the di�erence between the connected case C and the discon-
nected case D. In the connected case, we have:

� one connected portion of length ε on which d({b}, A) = 0, and
� two nearby intervals for which d({b}, A) < 1,

see Fig. 4.

0 T

-� -� -�1 ε 1

Fig. 4. Case of connected portion (C)

In this case, provided:

� that ε is su�ciently small, and
� that the portion is su�ciently separated from the endpoints 0 and T of the

range,

we have
sup
b∈C

d({b}, I) = 1 (5)

and∫
I

d({b}, C) db = 0 · ε+2

∫ 1

0

z dz+(T − 2− ε) · 1 = 2 · 1
2
+T − 2− ε = T − 1− ε,

thus ∫
I
d({b}, C) db

µ(I)
=

T − 1− ε

T
. (6)

In the disconnected case, we have:

� two connected subranges (of length ε/2 each) on which d({b}, A) = 0, and
� two pairs of nearby intervals for which d({b}, A) < 1,

see Fig. 5.

In this case, provided:



8 E. D. Rodriguez Velasquez et al.

0 T

-�-�-� -�-�-�
1

ε

2
1 1

ε

2
1

Fig. 5. Case of disconnected portion (D)

� that ε is su�ciently small, and
� that both subranges are su�ciently separated from each other and from the

endpoints 0 and T of the range,

we have
sup
b∈D

d({b}, I) = 1 (7)

and∫
I

d({b}, D) db = 0 · ε+4

∫ 1

0

z dz+(T − 2− ε) · 1 = 4 · 1
2
+T − 4− ε = T − 2− ε,

thus ∫
I
d({b}, C) db

µ(I)
=

T − 2− ε

T
. (8)

By combining the formulas (3), (5), and (7), we conclude that

dw(C, I) = dw(D, I) = 1.

Thus, if we only take into account the worst-case distance, then we cannot dis-
tinguish between the connected and disconnected cases.

However, if we use a more adequate average distance, then, by combining the
formulas (4), (6), and (8), we get

da(C, I) =
1

2
·
(
T − ε

T
+

T − 1− ε

T

)
=

T − 1/2− ε

T
, (9),

while

da(D, I) =
1

2
·
(
T − ε

T
+

T − 2− ε

T

)
=

T − 1− ε

T
. (10)

Here clearly, da(D, I) < da(C, I). In other words, the disconnected situation is
closer to the ideal case than the connected one � which explains why in all above
cases, the disconnected approach indeed leads to better results.
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