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How People Make Decisions Based on Prior
Experience: Formulas of Instance-Based
Learning Theory (ILBT) Follow from Scale
Invariance

Palvi Aggarwal, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

Abstract To better understand human behavior, we need to understand how people
make decisions, how people select one of possible actions. This selection is usually
based on predicting consequences of different actions, and these predictions are,
in their turn, based on the past experience. For example, consequences that occur
more frequently in the past are viewed as more probable. However, this is not just
about frequency: recent observations are usually given more weight that past ones.
Researchers have discovered semi-empirical formulas that describe our predictions
reasonably well; these formulas form the basis of the Instance-Based Learning
Theory (ILBT). In this paper, we show that these semi-empirical formulas can be
derived from the natural idea of scale invariance.

1 Formulation of the Problem

How do people make decisions? To properly make a decision, i.e., to select one of
the possible actions, we need to predict the consequences of each of these actions.
To predict the consequences of each action, we take into account past experience, in
which we know the consequences of similar actions. Often, at different occasions,
the same action led to different consequences. So, we cannot predict what exactly
will be the consequence of each action. At best, for each action, we can try to predict
the probability of different consequences.
In this prediction, we take into account the frequency with which each conse-

quence occurred in the past. We also take into account that situations change, so
more recent observations should be given more weight than the ones that happened
long ago. To better understand human behavior, we need to know how people take
all this into account.
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Semi-empirical formulas. By performing experiments and by analyzing the result-
ing data, researchers found some semi-empirical formulas that provide a very good
description of the actual human behavior [4, 5] (see also [2]). These formulas form
the basis of the Instance-Based Learning Theory (ILBT).
In the first approximation, when we only consider completely different con-

sequences, these formulas have the following form. For each possible action, to
estimate the probability 𝑝𝑖 of each consequence 𝑖, we first estimate the activation 𝐴𝑖

of this consequence as

𝐴𝑖 = ln

(∑︁
𝑗

(𝑡 − 𝑡𝑖, 𝑗 )−𝑑
)
, (1)

where:

• 𝑡 is the current moment of time (i.e., the moment of time at which we make a
decision),

• the values 𝑡𝑖,1, 𝑡𝑖,2, etc. are past moments of time at which the same action led to
consequence 𝑖, and

• 𝑑 > 0 is a constant – depending on the decision maker.

Based on these activation values, we estimate the probability 𝑝𝑖 as

𝑝𝑖 =
exp(𝑐 · 𝐴𝑖)∑
𝑘

exp(𝑐 · 𝐴𝑘)
, (2)

where 𝑐 is another constant depending on the decision maker, and the summation in
the denominator is over all possible consequences 𝑘 .

Challenge. How can we explain why these complex formulas properly describe
human behavior?

What we do in this paper. In this paper, we show that these formulas can be actually
derived from the natural idea of scale invariance.

2 Our Explanation

Analysis of the problem. If time was not the issue, then the natural way to compare
different consequences 𝑖 would be by comparing the number of times 𝑛𝑖 that the 𝑖-th
consequence occurred in the past:

𝑛𝑖 =
∑︁
𝑗

1. (3)

In this formula, for each past observation of the 𝑖-th consequence, we simply add 1.
In other words, all observations are assigned the same weight.
As we have mentioned, it makes sense to provide larger weight to more recent

observations and smaller weight to less recent ones. In other words, instead of adding
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1s, we should add some weights depending on the time Δ𝑡 = 𝑡 − 𝑡𝑖, 𝑗 that elapsed
since the observation. Let us denote the dependence on the weight on time by 𝑓 (Δ𝑡).
This function should be decreasing with Δ𝑡: the more time elapsed, the smaller the
weight. In these terms, the simplified formula (3) should be replaced by the following
more adequate formula

𝑛𝑖 =
∑︁
𝑗

𝑓 (𝑡 − 𝑡𝑖, 𝑗 ). (4)

Based on the corresponding values 𝑛𝑖 – describing the time-adjusted number
of observations – we need to predict the corresponding probabilities 𝑝𝑖 . The more
frequent the consequence, the higher should be its probability. At first glance, it may
seem that we can simply take 𝑝𝑖 = 𝑔(𝑛𝑖) for some increasing function 𝑔(𝑧). However,
this will not work, since the sum of the probabilities of different consequences should
be equal to 1. To make sure that this sum is indeed 1, we need to “normalize” the
values 𝑔(𝑛𝑖), i.e., to divide each of them by their sum:

𝑝𝑖 =
𝑔(𝑛𝑖)∑
𝑘

𝑔(𝑛𝑘)
. (5)

Remaining question.The above formulas (4) and (5) leave uswith a natural question:
which functions 𝑓 (𝑡) and 𝑔(𝑧) better describe human behavior?
Our main idea: scale-invariance. To answer this question, let us take into account
that the numerical value of time duration – as well as the numerical values of many
other physical quantities – depends on the choice of the measuring unit. If we replace
the original unit for measuring time by a new unit which is 𝜆 > 0 times smaller, then
all numerical values of time intervals get multiplied by 𝜆: 𝑡 ↦→ 𝜆 · 𝑡. For example, if
we replace minutes by seconds, then all numerical values are multiplied by 60, so
that, e.g., 2 minutes becomes 120 seconds.
In many physical (and other) situations, there is no physically preferred unit for

measuring time intervals 𝑥. This means that the formulas should remain the same if
we “re-scale” 𝑡 by choosing a different measuring unit, i.e., by replacing all numerical
values 𝑡 with 𝑡 ′ = 𝜆 · 𝑡. This “remains the same” is called scale invariance.
Now, we are ready to formulate our main result.

Proposition. Let 𝑓 (𝑥) and 𝑔(𝑥) by continuous monotonic functions. Then, the fol-
lowing conditions are equivalent to each other:

• for each 𝜆 > 0, the values of 𝑝𝑖 as described by the formulas (4) and (5) will
remain the same if we replace 𝑡 and 𝑡𝑖, 𝑗 with 𝑡 ′ = 𝜆 · 𝑡 and 𝑡 ′

𝑖, 𝑗
= 𝜆 · 𝑡𝑖, 𝑗 ;

• the dependence (4)-(5) is described by the formulas (1)-(2).

Proof.

1◦. Let us first show that if we re-scale all the time values in the formulas (1)-(2), the
probabilities remain the same.

Indeed, in this case,
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𝑗

(𝑡 ′ − 𝑡 ′𝑖, 𝑗 )−𝑑 = 𝜆−𝑑 ·
∑︁
𝑗

(𝑡 − 𝑡𝑖, 𝑗 )−𝑑

and thus, the new value 𝐴′
𝑖
of the activity is:

𝐴′
𝑖 = ln

(∑︁
𝑗

(𝑡 ′ − 𝑡 ′𝑖, 𝑗 )−𝑑
)
= ln

(∑︁
𝑗

(𝑡 − 𝑡𝑖, 𝑗 )−𝑑
)
+ ln(𝜆−𝑑) = 𝐴𝑖 + ln(𝜆−𝑑).

Thus, we have
𝑐 · 𝐴′

𝑖 = 𝑐 · 𝐴𝑖 + 𝑐 · ln(𝜆−𝑑),

and exp(𝑐 · 𝐴′
𝑖
) = 𝐶 · exp(𝑐 · 𝐴𝑖), where we denoted 𝐶

def
= exp(𝑐 · ln(𝜆−𝑑)). Hence,

the new expression for probability takes the form

𝑝′𝑖 =
exp(𝑐 · 𝐴′

𝑖
)∑

𝑘

exp(𝑐 · 𝐴′
𝑘
) =

𝐶 · exp(𝑐 · 𝐴𝑖)
𝐶 · ∑

𝑘

exp(𝑐 · 𝐴𝑘)
.

If we divide both the numerator and the denominator of the right-hand side by the
same constant 𝐶, we conclude that 𝑝′

𝑖
= 𝑝𝑖 , i.e., that the probabilities indeed do not

change.

2◦. So, to complete our proof, it is sufficient to prove that if the expressions (4)-(5)
leads to scale-invariant probabilities, then the dependence (4)-(5) is described by the
formulas (1)-(2).

2.1◦. Let us first find what we can deduce from scale-invariance about the function
𝑔(𝑥).

To do that, let us consider the case when we have two consequences, one of which
was observed only once, and the other one was observed 𝑚 times for some 𝑚 > 1.
Let us also assume that all the observations occurred at the same time Δ𝑡 moments
in the past, so that 𝑡 − 𝑡𝑖, 𝑗 = Δ𝑡. In this case, 𝑛1 = 𝑓 (Δ𝑡), 𝑛2 = 𝑚 · 𝑛1, and the formula
for the probability 𝑝1 takes the form

𝑝1 =
𝑔( 𝑓 (Δ𝑡)

𝑔(𝑚 · 𝑓 (Δ𝑡)) + 𝑔( 𝑓 (Δ𝑡)) . (6)

By re-scaling time, we can replace Δ𝑡 with any other value, and this should not
change the probabilities. Thus, the formula (6) should retain the same value for all
possible values of 𝑧 = 𝑓 (Δ𝑡). In other words, the ratio

𝑔(𝑧)
𝑔(𝑚 · 𝑧) + 𝑔(𝑧)

should not depend on 𝑧, it should only depend on 𝑚. Hence, its inverse

𝑔(𝑚 · 𝑧) + 𝑔(𝑧)
𝑔(𝑧) =

𝑔(𝑚 · 𝑧)
𝑔(𝑧) + 1
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should also depend only on 𝑚, and therefore, that we should have

𝑔(𝑚 · 𝑧)
𝑔(𝑧) = 𝑎(𝑚)

for some function 𝑎(𝑚). So, we should have 𝑔(𝑚 · 𝑧) = 𝑎(𝑚) · 𝑔(𝑧) for all 𝑧 and 𝑚.
In particular, for 𝑧′ = 𝑧/𝑚′ for which 𝑚′ · 𝑧′ = 𝑧, we should have 𝑔(𝑚′ · 𝑧′) =

𝑎(𝑚′) · 𝑔(𝑧′), i.e., 𝑔(𝑧) = 𝑎(𝑚′) · 𝑔(𝑧/𝑛′), hence 𝑔(𝑧/𝑛′) = (1/𝑎(𝑚′)) · 𝑔(𝑧). So, for
each rational number 𝑟 = 𝑚/𝑚′, we should have

𝑔(𝑟 · 𝑧) = 𝑔(𝑚 · (𝑧/𝑚′)) = 𝑎(𝑚) · 𝑔(𝑧/𝑚′) = 𝑎(𝑚) · (1/𝑎(𝑚′)) · 𝑔(𝑧).

In other words, for every 𝑧 and for every rational number 𝑟 , we should have

𝑔(𝑟 · 𝑧) = 𝑎(𝑟) · 𝑔(𝑧), (7)

where we denoted 𝑎(𝑟) def= 𝑎(𝑚) · (1/𝑎(𝑚′)).
By continuity, we can conclude that the formula (7) should hold for all real values

𝑟 , not necessarily for rational values. It is known that every continuous solution to
the functional equation (7) is the power law, i.e., it has the form 𝑦 = 𝐴 · 𝑥𝑎 for some
constants 𝐴 and 𝑎; see, e.g., [1]. Thus, we conclude that

𝑔(𝑧) = 𝐴 · 𝑧𝑎 . (8)

2.2◦. We can simplify the resulting expression (8) even more.

Indeed, substituting the expression (8) into the formula (5), we conclude that

𝑝𝑖 =
𝐴 · 𝑛𝑎

𝑖

𝐴 · ∑
𝑘

𝑛𝑎
𝑘

.

We can simplify this expression if we divide both the numerator and the denominator
by the same constant 𝐴. Then, we get the following simplified formula

𝑝𝑖 =
𝑛𝑎
𝑖∑

𝑘

𝑛𝑎
𝑘

(9)

that corresponds to the function 𝑔(𝑧) = 𝑧𝑎. So, without loss of generality, we can
conclude that 𝑔(𝑧) = 𝑧𝑎.

2.3◦. Let us now find out what we can deduce from scale-invariance about the
function 𝑓 (𝑡).

For this purpose, let us consider two consequences each of which was observed
exactly once, one of which was observed 1 time unit ago and the other one was
observed 𝑡0 time units ago. Then, according the formulas (4) and (9), the predicted
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probability 𝑝1 should be equal to

𝑝1 =
( 𝑓 (1))𝑎

( 𝑓 (1))𝑎 + ( 𝑓 (𝑡0))𝑎
.

By scale-invariance, this probability should not change if we multiply both time
intervals by 𝜆, so that 1 ↦→ 𝜆 and 𝑡0 ↦→ 𝜆 · 𝑡0:

( 𝑓 (1))𝑎
( 𝑓 (1))𝑎 + ( 𝑓 (𝑡0))𝑎

=
( 𝑓 (𝜆))𝑎

( 𝑓 (𝜆))𝑎 + ( 𝑓 (𝜆 · 𝑡0))𝑎
.

The equality remains valid if we take the inverses of both sides:

( 𝑓 (1))𝑎 + ( 𝑓 (𝑡0))𝑎
( 𝑓 (1))𝑎 =

( 𝑓 (𝜆))𝑎 + ( 𝑓 (𝜆 · 𝑡0))𝑎
( 𝑓 (𝜆))𝑎 ,

subtract 1 from both sides, resulting in:

( 𝑓 (𝑡0))𝑎
( 𝑓 (1))𝑎 =

( 𝑓 (𝜆 · 𝑡0))𝑎
( 𝑓 (𝜆))𝑎 ,

and raise both sides to the power 1/𝑎:

𝑓 (𝑡0)
𝑓 (1) =

𝑓 (𝜆 · 𝑡0)
𝑓 (𝜆) .

The left-hand side of this equality does not depend on 𝜆, it depends only on 𝑡0. Thus,
the right-hand side should also depend only on 𝑡0, i.e., we should have

𝑓 (𝜆 · 𝑡0)
𝑓 (𝜆) = 𝐹 (𝑡0),

for some function 𝐹 (𝑡0). Multiplying both sides by 𝑓 (𝜆), we conclude that

𝑓 (𝜆 · 𝑡0) = 𝐹 (𝑡0) · 𝑓 (𝜆)

for all 𝑡0 > 0 and 𝜆 > 0.
We have already mentioned that every continuous solution to this functional

equation has the form
𝑓 (𝑡) = 𝐵 · 𝑡𝑏 (10)

for some constants 𝐵 and 𝑏. Since the function 𝑓 (𝑡) is decreasing, we have 𝑏 < 0.

2.4◦. We can simplify the expression (10) even more.

Indeed, substituting the expression (10) into the formula (4), we get

𝑛𝑖 = 𝐵 ·
∑︁
𝑗

(𝑡 − 𝑡𝑖, 𝑗 )𝑏,

i.e., 𝑛𝑖 = 𝐵 · 𝑎𝑖 , where we denoted
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𝑎𝑖
def
=

∑︁
𝑘

(𝑡 − 𝑡𝑖, 𝑗 )𝑏 . (11)

Substituting the formula 𝑛𝑖 = 𝐵 · 𝑎𝑖 into the formula (9), we get

𝑝𝑖 =
𝐵𝑎 · 𝑎𝑎

𝑖

𝐵𝑎 · ∑
𝑘

𝑎𝑎
𝑘

.

We can simplify this expression if we divide both the numerator and the denominator
by the same constant 𝐵𝑎. Then, we get the following simplified formula

𝑝𝑖 =
𝑎𝑎
𝑖∑

𝑘

𝑎𝑎
𝑘

that corresponds to using 𝑎𝑖 instead of 𝑛𝑖 , i.e., in effect, to using the function
𝑓 (𝑡) = 𝑡𝑏. So, without loss of generality, we can conclude that 𝑓 (𝑡) = 𝑡𝑏. For this
function 𝑓 (𝑡), we have

𝑝𝑖 =
𝑛𝑎
𝑖∑

𝑘

𝑛𝑎
𝑘

. (11)

2.5◦. Let us show that for 𝑓 (𝑡) = 𝑡𝑏 for 𝑏 < 0 and 𝑔(𝑧) = 𝑧𝑎, we indeed get the
expression (1)-(2).

Indeed, for 𝑓 (𝑡) = 𝑡𝑏, the formula (4) takes the form

𝑛𝑖 =
∑︁
𝑗

(𝑡 − 𝑡𝑖, 𝑗 )𝑏,

i.e., the form
𝑛𝑖 =

∑︁
𝑗

(𝑡 − 𝑡𝑖, 𝑗 )−𝑑 ,

where we denoted 𝑑 def= −𝑏. Thus, the expression (1) takes the form 𝐴𝑖 = ln(𝑛𝑖). So,
the expression exp(𝑐 · 𝐴𝑖) in the empirical formula (2) takes the form

exp(𝑐 · 𝐴𝑖) = exp(𝑐 · ln(𝑛𝑖)) = (exp(ln(𝑛𝑖))𝑐 = 𝑛𝑐𝑖 .

Thus, the formula (2) takes the form

𝑝𝑖 =
𝑛𝑐
𝑖∑

𝑘

𝑛𝑐
𝑘

.

One can see that this is exactly our formula (11), the only difference is that the
parameters that is denoted by 𝑐 in the formula (2) is denoted 𝑎 in the formula (11).
Thus, we have indeed explained the empirical formulas (1) and (2). The proposi-

tion is proven.
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