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Wormholes, Superfast Computations, and Selivanov’s Theorem

Olga Kosheleva
Department of Teacher Education, University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA
olgak@utep.edu

Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA
vladik@utep.edu

Abstract. While modern computers are fast, there are still many practical problems that require even faster computers. It turns out
that on the fundamental level, one of the main factors limiting computation speed is the fact that, according to modern physics,
the speed of all processes is limited by the speed of light. Good news is that while the corresponding limitation is very severe
in Euclidean geometry, it can be more relaxed in (at least some) non-Euclidean spaces, and, according to modern physics, the
physical space is not Euclidean. The differences from Euclidean character are especially large on micro-level, where quantum
effects need to be taken into account. To analyze how we can speed up computations, it is desirable to reconstruct the actual
distance values – corresponding to all possible paths – from the values that we actually measure – which correspond only to
macro-paths and thus, provide only the upper bound for the distance. In our previous papers – including our joint paper with
Victor Selivanov – we provided an explicit formula for such a reconstruction. But for this formula to be useful, we need to
analyze how algorithmic is this reconstructions. In this paper, we show that while in general, no reconstruction algorithm is
possible, an algorithm is possible if we impose a lower limit on the distances between steps in a path. So, hopefully, this can help
to eventually come up with faster computations.

Keywords: superfast computations, wormholes, constructive mathematics, metric, interval uncertainty

1. Introduction
We need faster computers. While modern computers are several orders of magnitude faster than several decades
ago, there are still computational problems for which the current computer speed is not sufficient. For example, it is
potentially possible to predict, with reasonable accuracy, in what direction a tornado will turn in the next 15 minutes
– the computations are similar to how we predict tomorrow’s weather – but even on the fastest high-performance
computers, these predictions will take several hours, making these computations useless.

There are physical limits to the computer speed. Why cannot we design faster computers? There are technological
limits – that will be hopefully overcome, but there are also fundamental physical limits. One of such limits is related
to the fact that, according to relativity theory (see, e.g., [8, 22]), communications cannot be faster than the speed of
light c. (Why this limits computation speed is explained, in some detail, in Section 2.)

So how can we make computer faster? This limitation on computation speed is based on the assumption that
locally, space has the usual geometry (close to Euclidean) and the usual topology (of a simply connected region
in Euclidean space). Good news is that, according to modern physics, space is not Euclidean, and, due to quantum
effects, this non-Euclidean character becomes prevalent on very small spatial scales. In principle, using such non-
Euclidean character can drastically speed up computations.

Let us describe all this in precise terms. When we measure the spatial distance d(a, b) between the two points,
what we actually measure is how close these points are if we use techniques corresponding to the level of such
distances. If we take into account microstructure of space, we may be able to get their faster, and this can lead to
faster computations.

There is a simple commonsense analogy of this phenomena: if we measure a distance between two locations
in two rooms separated by a wall, a natural way to measure it is to walk from one room to another: this is fastest
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we macro-objects can go. However, molecules can easily go through the walls – so for them the distance will be
smaller.

In mathematical terms, what we measure is not the actual distance d(a, b), but the upper bound d(a, b) on this
distance. Based on these upper bounds, we would like to reconstruct the actual distance – i.e., the length of the
shortest path that we can find between a and b if we use connections of all types.

What is known. In our previous work [2, 10] – including our joint work with Victor Selivanov [10] – we provided
an explicit formula for such reconstruction.

Remaining question. But can this formula help? For this formula to be helpful, we need to have an algorithm
reconstructing the actual distance from the measured upper bounds.

What we do in this paper. In this paper, we show that:

• while no general reconstruction algorithm is possible,
• a reconstruction algorithm is possible if we impose a lower limit on the distances between steps in a path.

Hopefully, this can help to eventually come up with faster computations.

The structure of this paper. In Section 2, we provide a detailed explanation of physics-based limitations on com-
puter speed. In Section 3, we use this explanation to analyze how physics can help speed up computations. In Section
4, we formulate the corresponding problem in precise terms, mention the previously known result, and describe our
new results about the computational aspects of metric reconstruction.

2. Physics-Based Limitation on Computer Speed: A Brief Reminder
Need for parallelization. When we have a task – e.g., cleaning the building at the end of the working day – that
would take too long for one person, a natural idea is to divide this task between several people working in parallel.
Similarly, if a computational task takes too much time on a single processor, a natural way to speed up computations
is to have several processors working in parallel. This is how high performance computers work: they consist of
thousands of processors working in parallel.

Comment. It should be mentioned that at present, this is the main way the computer speed increases: the computation
speed of a single processor has remained about the same for some time already.

Parallelization: an optimistic viewpoint. The possibilities of such parallelization are not yet exhausted: new high-
performance computers are still being designed that include more processors and that will further increase the
resulting computation speed. So, at first glance, it may seem that this way, we can achieve a potentially unlimited
speed-up.

Unfortunately, there is a limit on how parallelization can speed up computations. Let us show that a reasonably
simple analysis reveals that the speed of light imposes a restriction on the resulting computer speed; see, e.g., [18].

Indeed, suppose that to perform a computational task on a single processor, we need time Ts. How fast can we
compute this task if we have a potentially unlimited number of processors working in parallel? Let us assume that
we have a parallel computer that finishes this task in time Tp. This means that we start at some location, and get
the computation result at the same location after time Tp. During this time, only processors located at the distance
⩽ c · Tp could influence the result: indeed, processors located further away would require time larger than Tp to
make sure that their signals affect the observed computation result. Thus, only processor within the ball of radius
R = c · Tp can participate in this computation.

How many processors N can we fit into this ball? The volume V of this ball is equal to

V =
4

3
· π · R3 =

4

3
· π · c3 · T3

p .
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Let us denote the smallest possible volume of a processor (that we can design based on the current technology) by
∆V . The volume occupied by all these processors is greater than or equal to N · ∆V . Clearly, this volume cannot
exceed V , so we must have N ·∆V ⩽ V and thus

N ⩽
V
∆V

=
4 · π · c3

3 ·∆V
· T3

p . (1)

During the time Tp, each of these N processors performs at most Tp/∆t computational steps, where we denoted
the shortest time of a single computational operation (within given technology) by ∆t. Each parallel computation
that requires S steps on each of N processors can be naturally simulated on a single processor:

• first, we simulate the first step of the 1st processor, then the 1st step of the second processor, etc.;
• then, we simulate the second step of the 1st processor, then the 2nd step of the second processor, etc.

Each step of parallel computations can be thus simulated by N sequential steps of a single processor. Thus, the
computation time on a single processor is increased by no more than a factor of N: a task that required time Tp on
a parallel computer takes time ts ⩽ N · Tp on a sequential computer. From (2), we therefore conclude that we can
perform the original task on a sequential computer in time ts bounded by

ts ⩽ N · Tp ⩽
4 · π · c3

3 ·∆V
· T3

p · Tp = C · T4
p ,

where we denoted

C def
=

4 · π · c3

3 ·∆V
.

We know that computing the given task on a sequential computer requires at least time Ts, thus we have Ts ⩽ ts,
i.e., Ts ⩽ C · T4

p . Therefore, the parallel computation time Tp is indeed limited from below:

Tp ⩾ C−1/4 · T1/4
s .

3. So How Can We Speed Up Computations: Physical Analysis
Physical assumptions that lead to the above restriction on computation speed. The above restriction is based on
two physical assumptions:

• that all communication are limited by the speed of light, and
• the space in Euclidean, so the volume of the ball of radius R is equal to

4

3
· π · R3.

So, to find out how we can speed up computations, it is reasonable to check if these two assumptions can be violated.
Let us analyze these two restrictions one by one.

Can communications be faster than speed of light? Maybe. The reason why there is a restriction on the speed
of light is that in relativity theory, allowing communications which are faster that the speed of light will lead to
going to the past [8, 22]. While physicists seriously consider the possibility of travel to the past – see, e.g., a book
[21] by a Nobelist Kip Thorne – at this moment, these are mostly theoretical speculations, not yet supported by any
experimental evidence.

Can space be non-Euclidean? Absolutely, physical space actually is non-Euclidean. In contrast, the assumption
that the space is Euclidean is known to be only an approximation. According to general relativity theory, the actual
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space is curved, i.e., its geometry is different from Euclidean [8, 16, 22] – this is actually one of the main ideas
behind General Relativity.

This non-Euclidean character of space can potentially speed up computations. Since the above restriction on
computation speed is based in the assumption that the space is Euclidean, it is reasonable to conjecture that in non-
Euclidean spaces – at least in some of them – we can speed up computations. And indeed, many non-Euclidean
spaces can potentially lead to an exponential speed-up. For example, in the Lobachevsky space (historically the first
non-Euclidean space), the volume of a ball of radius R grows exponentially with R, so we can fit exponentially many
processors into the ball and thus, reach an exponential speedup; see, e.g., [12, 18].

The real space is not exactly Lobachevsky one, but there are other examples of physically meaningful non-
Euclidean spaces in which a drastic computational speed up is possible; see, e.g., [18].

Quantum effects add to the non-Euclidean character of physical space. The non-Euclidean character of space
is also occurs for very short distance, when quantum effects happen. At sufficiently small distances, space-time
becomes what is called a foam [16], where many points are connected by so-called wormholes [21], short “tunnels”
traveling through which requires much shorter distance than what we measure on the macro-level (i.e., without
taking these wormholes into account).

If we could use these microscopic wormholes to send signals, we would thus be able to effectively reduce the
distances between processors, reduce communication time, and thus, speed up computations.

4. Resulting Mathematical Problem: Formulation, Known Results, New Results
Mathematical formulation of the problem. Let us assume that we have a set X – its elements be called spatial
points, or, alternatively, spatial locations.

• What we know: for each pair of points a, b ∈ X, we know the value d(a, b) > 0.
• What we want: we want to compute, for each pair of point a, b ∈ X, the value

d(a, b) def
= inf

{
m−1∑
i=1

d(a0, ai+1)

}
, (2)

where the infimum is taken over all chains a0, a1, . . . , am for which a0 = a and am = b.

Comment. In [2], we have shown that the function d(a, b) described by the expression (2) is:

• symmetric, i.e., d(a, b) = d(b, a) and
• satisfies the triangle inequality d(a, c) ⩽ d(a, b) + d(b, c).

Thus, d(a, b) is what is called a pseudometric. When we also have d(a, b) > 0 for all a ̸= b, this becomes a metric.

Towards the formulation of the computational problem. The formula (2) implicitly assumes that for all a and b,
we know the exact value of the macro-distance d(a, b). However, our information about each value d(a, b) come from
measurements, and measurements are never 100% accurate, there is always a difference between the measurement
result d̃(a, b) and the actual value d(a, b) of the corresponding quantity; see, e.g., [20]. In many practical situations,
the only information that we have about this difference is the upper bound ∆ on its absolute value. In this case, once
we get the measurement result d̃(a, b), the only information that we have about the actual value d(a, b) is that it is
contained in the interval [d̃(a, b) − ∆, d̃(a, b) + ∆]. Such interval uncertainty is ubiquitous in practice; see, e.g.,
[9, 13, 15, 17].

At each moment of time, we only know the values d(a, b) with some accuracy ∆. We can perform the measure-
ments with higher and higher accuracy, but a question is: will there be a stage at which, based on this information,
we will be able to reconstruct at least some value d(a, b) with a desired accuracy ε?
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First (negative) result. The following negative result shows that, in general, reconstruction is not algorithmically
possible: namely, no matter with what accuracy ∆ we know the value d(a, b), all we can conclude about the recon-
structed value d(a, b) is that this value is somewhere between 0 and d(a, b). We will show that this is true even for
metrics which are close to the Euclidean metric dE(a, b) on an n-dimensional space IRn.

Proposition 1. Let n be an integer, let a0, b0 be two points in IRn, let d0 be a positive number between 0 and
dE(a0, b0), and let ∆ > 0. Then, there exists a function d(a, b) for which:

• for all a and b, we have d(a, b) ∈ [dE(a, b)−∆, dE(a, b) + ∆], and
• for the function d(a, b) described by the formula (2), we have

d(a0, b0) = d0.

Proof. Let us denote α def
= d0/dE(a0, b0), and let us define the following function d(a, b):

• for the points a and b for which d(a, b) > ∆, we take d(a, b) = dE(a, b), and
• for the points a and b for which d(a, b) ⩽ ∆, we take d(a, b) = α · dE(a, b).

One can see that this function is indeed ∆-close to dE(a, b).
The shortest distance d(a, b) corresponding to this function d(a, b) is obtained when all the pairs in the chain

ai are ∆-close, so we have d(a, b) = α · dE(a, b) for all a and b. In particular, for a = a0 and b = b0, we have
d(a0, b0) = α · dE(a0, b0). By definition of α, this means that d(a0, b0) = d0. The proposition is proven.

Second (positive) result. Let us now prove that the problem of reconstructing the metric d(a, b) becomes algorithmic
if, in the formula (2), we limit ourselves to chains in which there is a lower bound δ on each distance d(ai, ai+1).
Of course, this modification of the definition (2) only makes sense when d(a, b) > δ: for points a and b for which
d(a, b) ⩽ δ, already the chain a0 = a and a1 = b provides a better estimate than any chain with longer links.

To formulate (and prove) this result, we use constructive (computable) mathematics; see, e.g., [1, 3–7, 11, 14,
19, 23], in which it is defined what it means for a mathematical objects is computable.

Let us recall the definitions of computability that we will use. A real number x is called computable if there
exists an algorithm that, given a natural number n, returns a rational number rn for which |x − rn| ⩽ 2−n. A point in
an n-dimensional space IRn is called computable if all its coordinates are computable.

We say that a compact set S ⊆ IRn is computably compact if there is an algorithm that, given a natural number n,
returns a finite list of computable elements of S such that every elements from S is 2−n-close to one of the elements
from this finite list.

A function f (x) from a computably compact set S ⊆ IRn is called computable if the following two algorithms
exist:

• an algorithm that, given a point x ∈ S with rational coordinates and a natural number n, returns a rational
number yn for which | f (x)− yn| ⩽ 2−n, and

• an algorithm that, given a natural number n, returns a natural number m such that for all a, b ∈ S for dE(a, b) ⩽
2−m, we have | f (a)− f (b)| ⩽ 2−n.

There are known algorithms for computing minimum and maximum of a computable function.

Comment. As we have mentioned, in this paper, we only cite definitions that are needed for our purpose. In line with
this plan, what we have just described is the definition of a computable function of a computably compact set. This
is all we need in this paper; for clarity, it should be mentioned that in computable mathematics, there exist more
general definitions for functions defined on more general sets.
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Proposition 2. Let n be an integer, let S ⊆ IRn be a computably compact set, let d(a, b) be a computable function
for a, b ∈ S , and let δ > 0 be a computable number. Then, for each pair of computable elements a, b ∈ S for which
d(a, b) ⩾ δ and for each desired accuracy ε, we can compute a number D(a, b) which is ε-close to the value

d(a, b) def
= inf

{
m−1∑
i=1

d(a0, ai+1)

}
, (3)

where the infimum is taken over all chains a0, a1, . . . , am for which a0 = a, am = b, and dE(ai, ai+1) ⩾ δ for all i.

Proof. For each a and b for which d(a, b) ⩾ δ, by definition, we have d(a, b) ⩽ d(a, b). Since each distance
d(ai, ai+1) in an m-element chain is larger than or equal to δ, the whole length of this chain is larger than or equal to
m · d. Since we are looking for the infimum, it makes no sense to consider chains for which m · δ > d(a, b). Thus, it
is sufficient to only consider chains for which m · δ ⩽ d(a, b), i.e., for which m ⩽ d(a, b)/δ.

For each possible m, as one can easily check, the set of all corresponding chain is computably compact, and
the chain’s length is a computable function of a tuple consisting of the chain’s elements. So, we can compute the
smallest length over all chains of length m. Then, to find the desired minimu, we take the smallest of the minima
corresponding to the chains of all lengths m · δ ⩽ d(a, b). The proposition is proven.

Comment. A similar result holds if instead of subsets of Euclidean space, we consider functions on general com-
putably compact sets. In general, a metric space (X, ρ) with metric ρ(a, b) is called computable if there is a dense
sequence of elements xn in this set for which there is an algorithm that, given natural numbers n and m, computes
the distance ρ(xn, xm). (For real numbers, rational numbers form such a sequence.)

Other definitions are similar to definitions related to real numbers and Euclidean space, but with elements xn

instead of rational numbers or points with rational coefficients. An element x of the metric space is called computable
if for every natural number n there exists a natural number m for which ρ(x, xm) ⩽ 2−n. A function f (x) from a
computably compact metric space X is called computable if the following two algorithms exist:

• an algorithm that, given natural numbers n and m, returns a rational number yn for which | f (xm)− yn| ⩽ 2−n,
and

• an algorithm that, given a natural number n, returns a natural number m such that for all a, b ∈ S for ρ(a, b) ⩽
2−m, we have | f (a)− f (b)| ⩽ 2−n.

There are known algorithms for computing minimum and maximum of a computable function.
In this more general case, we also have a statement similar to Proposition 2, but slightly different:

Proposition 3. Let n be an integer, let (X, ρ) be a computably compact metric space, let d(a, b) be a computable
function for a, b ∈ S ,and let 0 < δ− < δ+ be computable numbers. Then, for each pair of computable elements
a, b ∈ S for which d(a, b) ⩾ δ+, we can compute a number δ ∈ (δ−, δ+) for which, for each desired accuracy ε,
we can compute a number D(a, b) which is ε-close to the value

d(a, b) def
= inf

{
m−1∑
i=1

d(a0, ai+1)

}
, (4)

where the infimum is taken over all chains a0, a1, . . . , am for which a0 = a, am = b, and ρ(ai, ai+1) ⩾ δ for all i.

Proof. The proof is similar to the proof of Proposition 2, the only difference is that we need to select a number
δ ∈ (δ−, δ+) for which the set of chains is computably compact. This selection is made possible by a result from
[4, 5] according to which for each computable function F(x) on computably compact metric space and for each pair
δ− < δ+ of computable real numbers, we can compute a value δ ∈ (δ−, δ+) for which the set {x : F(x) ⩾ δ} is
computably compact.
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