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People Prefer More Information About
Uncertainty, But Perform Worse When Given
This Information: An Explanation for the
Paradoxical Phenomenon

Jieqiong Zhao, Olga Kosheleva, and Vladik Kreinovich

Abstract In a recent experiment, decision makers were asked whether they would
prefer having more information about the corresponding situation. They confirmed
this preference, and such information was provided to them. However, strangely, the
decisions of those who received this information were worse than the decisions of
the control group – that did not get this information. In this paper, we provide an
explanation for this paradoxical situation.

1 Formulation of the Problem

When making a decision, it is desirable to have as much information as pos-
sible. To make a decision, it is desirable to have as much information about the
decision making situation as possible: additional information can help make a bet-
ter decision.

This desirability has been confirmed by many polls; see, e.g., [17].

This includes the need for more information about uncertainty. In complex situ-
ations, to make decisions, we usually use computers. In general, computers process
numbers. Thus, the information about a situation usually consists of several num-
bers, e.g., the values of the corresponding physical quantities. These values usually

Jieqiong Zhao
School of Computing and Augmented Intelligence, Arizona State University
699 S Mill Ave, Tempe, AZ 85281, USA, e-mail: jieqiong.zhao@asu.edu

Olga Kosheleva
Department of Teacher Education, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: olgak@utep.edu

Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: vladik@utep.edu

1



2 Jieqiong Zhao, Olga Kosheleva, and Vladik Kreinovich

come from measurements – it could be direct measurement or so-called indirect
measurement, i.e., processing of measurement results.

Measurements are never absolutely accurate, there is always a non-zero differ-
ence ∆x def

= x̃− x between the measurement result x̃ and the actual (unknown) value
x of the corresponding quantity; see, e.g., [14]. This difference is known as the mea-
surement error.

In view of the desirability to get as much information as possible, it is desirable
to provide the users not only the measurement results, but also with the informa-
tion about the measurement error. The desirability of this information was indeed
confirmed by the polls; see, e.g., [17].

What do we know about the measurement errors: probabilistic and interval
uncertainty. Ideally, we should know what are the possible values of the measure-
ment error, and what is the frequency (probability) with which each of these values
will appear in the actual measurements. In other words, ideally, we should know the
probability distribution of the measurement errors.

To determine this probability distribution, we need to calibrate the measuring
instrument, i.e., to compare the values x̃k measured by this instrument and the values
x′k measured (for the same actual quantity) by a much more accurate measuring
instrument (known as standard). The standard measuring instrument (SMI) is so
much more accurate that, in comparison with the measurement errors of the tested
measuring instrument (MI), we can safely ignore the measurement errors of the
SMI and assume that SMI’s measurement results x′k are equal to the corresponding
actual values xk. Thus, the differences x̃k − x′k can be safely assumed to equal to the
values of the measurement errors x̃k − xk. So, from the resulting sample of these
differences, we can determine the desired probability distribution.

This procedure is rather time-consuming and expensive – since the use of the
complex standard measuring instruments is not cheap. As a result, in practice, such
a detailed calibration is often not performed. Instead, the manufacturer of the mea-
suring instruments provides a guaranteed upper bound ∆ on the absolute value of
the measurement error: |∆x| ≤ ∆ . Under this information, after we perform the mea-
surement and get the measurement result x̃, the only information that we have about
the actual (unknown) value of the measured quantity is that this value lies some-
where in the interval [x,x] def

= [x̃−∆ , x̃+∆ ]. This uncertainty is known as interval
uncertainty; see, e.g., [4, 6, 8, 9].

Probability distribution of the measurement error is often Gaussian. In many
practical cases, the measurement error is caused by the large number of small in-
dependent factors. It is known that the probability distribution of the joint effect of
many independent small factors is close to Gaussian; the corresponding mathemati-
cal result is known as the Central Limit Theorem; see, e.g., [16]. Thus, we can safely
assume that the measurement error is distributed according to the normal (Gaussian)
distribution.

This assumption is in good accordance with the empirical data, according to
which in the majority of the cases, the distribution is indeed Gaussian [12, 13].
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The Gaussian distribution is uniquely determined by two parameters: mean µ and
standard deviation σ . By testing the measuring instrument – i.e., by comparing its
results with the results of a much more accurate (“standard”) measuring instrument,
we can determine the bias – as the arithmetic average of the observed differences
between the measurements by two instruments:

µ ≈ 1
n
·

n

∑
k=1

(
x̃k − x′k

)
.

Once we know µ , we can recalibrate the scale – i.e., subtract this mean value µ from
each measurement result, i.e., replace each value x̃ with x̃′ def

= x̃− µ . After that, the
mean will be 0.

Also, we can determine the standard deviation as the mean squared value of the
(re-calibrated) difference

σ ≈

√
1
n
·

n

∑
k=1

(
x̃′k − x′k

)2
.

So, it makes sense to assume that the measurement error is normally distributed with
mean 0 and the known standard deviation σ .

Confidence intervals. It is known that with high probability, all the values of the
normally distributed random variable are located within the interval

[µ − ko ·σ ,µ + k0 ·σ ]

for an appropriate k0: for k0 = 2, this is true with probability 95%, for k0 = 3, this
is true with probability 99.9%, and for k0 = 6, this is true with probability 1 −
10−8. These intervals are particular case of confidence intervals. These intervals is
what is often supplied to the users as a partial information about the probability
distributions.

What happened when decision maker received confidence intervals: paradoxi-
cal situation. Since the decisions makers expressed the desire to receive information
about uncertainty, they were supplied, in addition to measurement results, with the
corresponding confidence intervals. And here, a strange thing happened. One would
expect that this additional information would help the decision makers make better
decisions – or at least did not degrade the quality of their decisions. However, in
reality, the decisions of those users who got this additional information were worse
than the decisions make by users from the control group – that did not receive this
information. How can we explain this paradoxical phenomenon?
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2 Our Explanation

Preliminaries. To understand the above paradoxical phenomenon, let us recall how
rational people make decisions. Let us start with the case of full information, when
we know all the probabilities.

How rational people make decisions under full information: reminder. Accord-
ing to decision theory (see, e.g., [1, 2, 5, 7, 10, 11, 15]), preferences of each rational
person can be described by assigning, to each alternative x, a numerical value u(x)
called its utility. To assign these numerical values, one need to select two alterna-
tives: a very good alternative A+ which is better than anything that the decision
maker will actually encounter, and a very bad alternative A− which is worse than
anything that the decision maker will actually encounter. Once these two alterna-
tives are selected, we can form, for each value p from the interval [0,1], a lottery
L(p) in which we get A+ with probability p and A− with the remaining probability
1− p.

For any actual alternative x, when p is close to 0, the lottery L(p) is close to
A− and is, thus, worse than x: A− < x. When p is close to 1, the lottery L(p) is
close to A+ and is, thus, better than x: x < A+. When we move from 0 to 1, there
is a threshold value at which the relation L(p) < x is replaced with x < L(p). This
threshold value u(x) is what is called the utility of x. By definition of utility, each
alternative x is equivalent, to the decision maker, to a lottery L(u(x)) in which we
get A+ with probability u(x) and we get A− with the remaining probability 1−u(x).

In general, the larger the probability p of getting the very good alternative A+,
the better the lottery. Thus, if we need to select between several lotteries of this type,
we should select the lottery with the largest values of the probability p. Since each
alternative x is equal to the lottery L(p) with probability p = u(x), this means that
we should always select the alternative with the largest value of utility.

What is the utility of an action in which we get n possible outcomes, for each
of which we know its probability pi and its utility ui? By definition of utility, each
outcome is equivalent to a lottery L(ui) in which we get A+ with probability ui and
A− wioth probability 1− ui. Thus, to the user, the action is equivalent to a 2-stage
lottery in which we first select each i with probability pi and then, depending on
what i we selected on the first stage, select A+ with probability ui and A− with
probability 1−ui. As a result of this two-stage lottery, we get either A+ or A−, and
the probability u of getting A+ is determined by the formula of full probability:

u = p1 ·u1 + . . .+ pn ·un.

Thus, by definition of utility, this value u is the utility of the action under considera-
tion. The right-hand side of the formula for u is the expected value of the utility. So,
we can conclude that the utility of an action with random consequences is equal to
the expected value of the utility of different consequences.

Comment. The numerical value of the utility depends on the selection of the alterna-
tives A+ and A−. If we select a different pair A′

+ and A′
−, then we will have different
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numerical values u′(x). It turns out that for every two pairs of alternatives, there ex-
ist real numbers a > 0 and b for which, for each x, we have u′(x) = a ·u(x)+ b. In
other words, utility is defined modulo a linear transformation.

This is similar to the fact that, e.g., the numerical value of the moment of time
also depends on what starting point we use to measure time and what measuring
unit we use, and all the scales are related to each other by an appropriate linear
transformation t ′ = a · t +b for some a > 0 and b.

How rational people make decisions under interval uncertainty. As we have
mentioned, in many practical situations, we only know the values of the quantities
(that describe the state of the world) with interval uncertainty. In this case, we can
describe the consequences – and their utility – also under interval uncertainty. In
other words, for each possible decision x, instead of the exact value u(x) of the cor-
responding utility, we only know the interval [u(x),u(x)] of possible utility values.

How can we make a decision in this case? To make a decision, we need to assign,
to each interval [u,u], an equivalent numerical value u(u,u). As we have mentioned,
utility is defined modular a linear transformation. There is no fixed selection of the
alternatives A+ and A−, so it makes sense to require that the function u(u,u) remains
the same for all the scales, i.e., that if u = u(u,u), then for all a > 0 and b, we should
have u′ = u(u′,u′), where u′ = a ·u+b, u′ = a ·u+b, and u′ = a ·u+b.

Let us denote α
def
= u(0,1). If we know that the utility is between 0 and 1, then the

situation is clearly better (or at least as good) than when utility is 0, and worse (or at
least as good) then when utility is 1. Thus, we must have 0 ≤ α ≤ 1. Every interval
[u,u] can be obtained from the interval [0,1] by a linear transformation u 7→ a · t +b
for a = u−u and b = u. Thus, due to invariance, from α = u(0,1), we can conclude
that

u(u,u) = a ·α +b = α · (u−u)+u = α ·u+(1−α) ·u.

This formula was first proposed by the Nobelist Leo Hurwicz and is thus known as
Hurwicz optimism-pessimism criterion; see, e.g., [3, 5, 7]. The name comes from
the fact that for α = 1, this means only taking into account the best-case value u –
the case of extreme optimism, while for α = 0, this means only taking into account
the worst-case value u – the case of extreme pessimism. The value α is different for
different decision makers, depending on their level of optimism and pessimism.

Finally, an explanation. Now we are ready to produce the desired explanation. Let
us consider the simplest possible setting, when the decision maker is directly pro-
vided with the information about his/her utility u(x) of each possible decision x,

and the difference ∆u(x) def
= ũ(x)− u(x) between the estimated utility ũ(x) and the

actual utility value u(x) (corresponding to the actual –unknown – values of the cor-
responding quantities) is distributed according to normal distribution with 0 mean
and standard deviation σ .

In the ideal case, when the decision maker knows this distribution, his/her equiv-
alent utility of each possible decision x is equal to the expected value of the random
utility value u(x) = ũ(x)−∆u(x), i.e., to the value ũ(x).
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This was the ideal case. In the above experiment, we never report the whole
distribution to the decision maker. Instead, we report either a single value ũ(x) or
the confidence interval [ũ(x)− k0 ·σ , ũ(x)+ k0 ·σ ].

In the first case, when we supply no information about uncertainty, the decision
maker uses the provided value ũ(x) in his/her decisions. It so happens that this value
is exactly what we would get if we knew the exact distributions. In other words, in
this case, the decision maker makes an optimal decision.

On the other hand, if we provide the decision maker with the confidence interval,
the decision maker – using Hurwicz criterion – will assign, to each possible decision
x, an equivalent value

α · (ũ(x)+ k0 ·σ)+(1−α) · (ũ(x)− k0 ·σ) = ũ(x)+(2α −1) · k0 ·σ .

Thus, for almost all possible values α from the interval [0,1] – with the only ex-
ception of the value α = 0.5 – this value will be different from the optimal value
(corresponding to the full information). So, the decision based on such values will
be not as good as the optimal decision – and this is exactly what we observe in the
above-described seemingly paradoxical experiment.

Comment. Note that the worsening of the decision happens when we provide the
decision make with partial information about uncertainty. If we provide the decision
maker with full information, the decision will, of course, be optimal.
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