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Foundations of Neural Networks Explain the Empirical Success of the
“Surrogate" Approach to Ordinal Regression – and Recommend What

Next

Salvador Robles Herrera and Martine Ceberio and Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso

500 W. University, El Paso, TX 79968, USA
sroblesher1@miners.utep.edu,mceberio@utep.edu,vladik@utep.edu

Abstract

Recently, a new efficient semi-heuristic sta-
tistical method – called Surrogate Approach
– has been proposed for dealing with regres-
sion problems. How can we explain this em-
pirical success? And since this method is
only an approximation to reality, what can
we recommend if there is a need for a more
accurate approximation? In this paper, we
show that this empirical success can be ex-
plained by the same arguments that explain
the empirical success of neural networks –
and these arguments can also provide us with
possible more general techniques (that will
hopefully lead to more accurate approxima-
tion to real-life phenomena).

Keywords: Neural networks, Surrogate Ap-
proach, Machine Learning

1 Introduction

Need for regression: a brief reminder. In real life,
in many processes, many quantities are inter-related.
Often, we know that a quantity y is largely deter-
mined by the value of some other quantity x, but we
do not know the exact form of this dependence. In
other cases, we know that the value of the quantity y is
largely determined by the values of several quantities
x = (x1, . . . ,xn). In such situations, we need to deter-
mine this dependence y = f (x) based on the empirical
data, i.e., based on several (K) cases in which we know
both the value x(k) of the quantity x and the value y(k)

of the quantity y.

In statistics, the problem of determining f (x) from the
empirical data is known as regression. In computer
science, this problem is known as machine learning.

Statistical approach to regression. While the value

y is largely determined by the quantity x, it is usually
not uniquely determined by x – there are usually other
factors that affect the value y. In other words, in differ-
ent situations in which the value x is the same, we may
have different values of y. Once we know x, we cannot
uniquely predict the value y: we may have different
values y with different probability. At best, based on
the value x, we can predict the corresponding proba-
bility distribution on the set of possible y’s – e.g., the
probability density Fx(y).

If we know this probability distribution and we want to
select a single “most probable” value y, a natural idea
is to select the value y for which the probability is the
largest, i.e., for which the value Fx(y) is the largest.

Linear regression, logit-type regression, and surro-
gate approach. In many practical situations, the de-
pendence of y on x can be well described by a linear
function, i.e., by an expression

f (x)≈ a0 +a1 · x1 + . . .+an · xn.

One of the main reasons why linear dependencies are
ubiquitous is that real-world dependencies are usually
smooth (differentiable). Differentiable means that in a
small vicinity of each point, the graph of the function
is close to its tangent – i.e., to the graph of a linear
function. Thus, if the range of x is not too wide, the
values f (x) on this range are reasonably close to a lin-
ear expression; see, e.g., [2, 8].

So, if we know the probability density function F(∆y)
that describes the approximation error

∆y def
= y− (a0 +a1 · x1 + . . .+an · xn),

then for each x, the probability distribution of y has the
form

Fx(y) = F(y− (a0 +a1 · x1 + . . .+an · xn)).

This approach is known as linear regression.



In some cases, linear regression does not work well.
In such situations, practitioners often use a (general-
ized version of) so-called logit regression, in which the
probability distribution of y has the form

Fx(y) = F(g(y)− (a0 +a1 · x1 + . . .+an · xn))

for some function g(y).

In some cases, we only have an ordinal scale for the
quantity y, i.e., we have finitely many possible values
of y, and all we can say is that some of these values are
larger than others. In this case, we can assign numeri-
cal values but there are many values to do it: e.g., take
the smallest value as 0, the next smallest as 1, etc., or
we can use the values 20, 21, etc. To deal with such or-
dinal regression cases, recently, a new technique was
proposed – called surrogate approach – in which the
probability distribution of y has the form

Fx(y) = F(g(y)−h(a0 +a1 · x1 + . . .+an · xn))

for some functions g(y) and h(x); see, e.g., [6, 7]. It
turns out that this method describes the actual proba-
bilities very well.

Natural questions. The first natural question is: why
does the surrogate approach work well? Of course, the
surrogate approach is not an exact description of real-
ity: it is a good approximation. So, a natural next ques-
tion is: what model shall we use if we want a more ac-
curate description of the corresponding probabilities?

In this paper, we show that ideas from the foundations
of neural networks can provide reasonable answers to
these two questions.

2 Why Surrogate Approach Is
Successful: Possible Statistical
Explanation and Its Limitations

Towards a statistical explanation. Since we are talk-
ing about statistical techniques, let us first look for sta-
tistical explanations for the empirical success of the
surrogate approach.

As we have mentioned, in most practical situations, the
value y is not uniquely determined by the quantities
x1, . . . ,xn, there are other factors – that we will denote
by xn+1, xn+2, . . . – about which we have no informa-
tion but that affect the value y.In other words, we have

y = F(x1, . . . ,xn,xn+1,xn+2, . . .).

For small deviations, as we have mentioned, we can
approximate this dependence by a linear expression

y ≈ a0 +a1 · x1 + . . .+an · xn+

an+1 · xn+1 +an+1 · xn+2 + . . .

We do not know the values of the quantities xn+1, xn+2,
. . . So, from our viewpoint, the part

∆y def
= an+1 · xn+1 +an+1 · xn+2 + . . .

is unpredictable – i.e., random. In other words, the
dependence on y on x1, . . . ,xn has the form

y = a0 +a1 · x1 + . . .+an · xn +∆y

for a random variable

∆y = y− (a0 +a1 · x1 + . . .+an · xn).

As we have mentioned, if we know the probability den-
sity F(∆y) for this random variable, then for each val-
ues x1, . . . ,xn, the probability density of y has the form

F(y− (a0 +a1 · x1 + . . .+an · xn)).

This is the expression corresponding to the usual linear
regression.

In general, we may have different scales for measur-
ing y. For example, we can measure the energy of an
earthquake in Joules, but it often more convenient to
use a logarithmic scale – known as Richter scale. In
general, instead of the original value Y , we can use a
re-scaled value y = G(Y ), for some – generally, non-
linear – function G(y). In this case, if we know the
value y in the new scale, then we can reconstruct the
original value Y by applying the inverse transformation
Y = g(y), where g def

= G−1.

If in the original scale, the value Y was approximately
equal to the linear combination of xi, then, for each
combination of values x1, . . . ,xn, the probability distri-
bution for Y is described by the following formula:

F(Y − (a0 +a1 · x1 + . . .+an · xn)).

Substituting Y = g(y) into this formula, we get the ex-
pression

F(g(y)− (a0 +a1 · x1 + . . .+an · xn))

corresponding to the generalized logit regression. In
particular, in the 1D case n = 1, we get the expression

F(g(y)− (a0 +a1 · x)).

In addition to different scales for y, we can have dif-
ferent scales for measuring x. In general, instead of
the original value X , we can use a re-scaled value
x = H(X), for some – generally, non-linear – function
H(x). In this case, if we know the value x in the new
scale, then we can reconstruct the original value X by



applying the inverse transformation X = h0(x), where

h0
def
= H−1. Substituting X = h0(x) into the formula

F(g(y)− (a0 +a1 · x)), we get

F(g(y)− (a0 +a1 ·h0(x)),

i.e., F(g(y)−h(x)), where

h(x) def
= a0 +a1 ·h0(x).

This is exactly the surrogate approach.

Limitations of the statistical explanation. The above
statistical ideas:

• only explain the surrogate approach for the case
of a single variable, and

• do not provide any recommendations about what
to do if we want a more accurate description.

To overcome these limitations, we provide a new ex-
planation, an explanation that is based on the ideas un-
derlying neural networks.

3 Our Explanation and the Resulting
Recommendations

Why neural networks: a reminder. In order to come
up with our explanation, let us recall the foundations
of neural networks.

One of the main advantages of neural networks is that,
once trained, they compute the results really fast. This
computation speed is a feature that artificial neural net-
works share with biological neural networks: the reac-
tion time of each neuron is in dozens of milliseconds,
but since we have billions of neurons working in par-
allel, we can solve many problems – such as pattern
recognition – at the same speed as computers for which
each unit has nanosecond reaction time.

Not only neural networks are fast, but one can show
that the desire to make computations fast naturally
leads to neural networks; see, e.g., [5]. This argu-
ment is as follows. We want a computational device
that consists of many computational units working in
parallel. To speed up computations, we need to make
these units as fast as possible, and we need to have as
few sequential layers of these units as possible.

We want a deterministic computer, in which both the
intermediate results and the final result of the computa-
tion are uniquely determined by the inputs. This means
that for each computational unit, the result is uniquely
determined by its inputs. In mathematical terms, this
means that the output of the computational unit is a

function of its inputs. So, to decide which compu-
tational units are the fastest, we need to understand
which functions are the fastest to compute.

In general, functions can be linear or nonlinear.
Clearly, linear functions are easier to compute – and
thus, faster to compute. So, we definitely need to
have computational units that compute linear func-
tions. However, if we only have linear computational
units, we will only be able to compute compositions of
linear functions – and such compositions are also lin-
ear. But in practice, there are many nonlinear depen-
dencies. Thus, if we want to describe all dependencies
in the real world, then, in addition to linear computa-
tional units, we also need to have nonlinear units.

Which nonlinear functions are the easiest to compute?
In general, the more inputs the function has, the longer
it takes to compute the value of this function. Thus, if
we want to restrict ourselves to the fastest-to-compute
functions, we should thus consider only functions with
the smallest possible number of inputs – i.e., functions
of one variable.

So, we arrive at a scheme at which on each computa-
tional layer, we compute either a linear combination of
inputs, or a function s(x) of one variable.

• Since we want the fastest computations, it does
not make sense to have two consequent layers in
which we compute linear combinations – since a
linear combination of linear combinations is also
a linear combination of the original inputs, these
two layers can be replaced by a single linear layer.

• Similarly, it does not make sense to have two con-
sequent layers in which we compute a function of
one variables – since if we first compute y = f (x)
and then z = g(y), this is equivalent to compute
a single function of one variable z = g( f (x)), so
these two layers can also be replaced by a single
layer.

So, after a linear layer, we must have a nonlinear layer.
In each such two-layer fragment, first, a linear layer
computes a linear combination

y = a0 +a1 · x1 + . . .+an · xn,

and then a nonlinear layer applied some function z =
s(y) of one variable to this value y, resulting in the
value

z = s(a0 +a1 · x1 + . . .+an · xn).

This is exactly the usual formula for data processing
performed by a neuron [1, 3].

General idea behind our explanation. In general, we
want to process large amounts of data in reasonable



time. Thus, we want algorithms for processing data to
be as fast as possible. Many of these algorithms select
the most probable model, i.e.., the model for which the
value of the probability density is the largest. To find
such a model, we often need to compute the value of
the probability density for different models. Thus, this
computation should be as fast as possible.

In view of the above, this means that we need to have
expressions for this probability distribution in terms
of linear combinations and nonlinear functions of one
variable, expression that use as few such linear combi-
nations and functions of one variable as possible.

We need to have at least one nonlinear function. We
want an expression for a probability density function.
Probability density is always non-negative. Thus, we
need expressions which are always non-negative. If
we do not use nonlinear functions at all, then all we
get is a linear expression, and each non-constant linear
expression takes negative values. So, we need to have
at least one nonlinear function.

Fastest case: when we use only one nonlinear func-
tion. Let us first consider the case when we use only
one nonlinear function f (x). In line with the general
scheme, the input to this function can be a linear com-
bination of the values xi and y, resulting in

z = f (b · y+b0 +b1 · x1 + . . .+bn · xn).

After that, we can also have a linear combination of
this value z and the original inputs, resulting in

t =C · f (b · y+b0 +b1 · x1 + . . .+bn · xn)+

c · y+ c0 + c1 · x1 + . . .+ cn · xn.

The linear terms

c · y+ c1 · x1 + . . .+ cn · xn

in this expression can cause the whole result to be neg-
ative, so we cannot have them, and we must have

t =C · f (b · y+b0 +b1 · x1 + . . .+bn · xn)+ c0.

To simplify this expression, we can introduce a new
function

F(x) =C · f (b · x)+ c0.

In terms of this new function, the expression for t takes
the linear regression form

t = F(y− (a0 +a1 · x1 + . . .+an · xn)),

for ai
def
= −bi/b. Thus, in this case, the only option is

linear regression.

What if we can use two nonlinear functions. In this
case, one of possible expressions is the expression for
the generalized logit regression: it uses two nonlinear
functions F(x) and g(x) and two linear combinations.

For two nonlinear functions, in contrast to the case of
a single nonlinear function, this is not the only option.
In general, we can have a nonlinear function applied
to some linear combinations, and then we apply linear
combination to the result of this nonlinear function and
to the original values:

C1 · f1(b1 · y+b10 +b11 · x1 + . . .+b1n · xn)+

C2 · f2(b2 · y+b20 +b21 · x1 + . . .+b2n · xn+

B2 · f1(b1 · y+b10 +b11 · x1 + . . .+b1n · xn))+

c0 + c1 · x1 + . . .+ cn · xn.

Similarly to the case of a single nonlinear function, we
can conclude that the linear terms in the right-hand side
can be dismissed, and that the nonlinear terms can be
simplified, resulting in:

F1(y− (a10 +a1 · x1 + . . .+an · xn))+

F2(y− (a10 +a1 · x1 + . . .+an · xn)+

A2 ·F1(y− (a10 +a1 · x1 + . . .+an · xn))).

What if we use three (or more) nonlinear functions.
One the cases when we use three nonlinear functions
is exactly the case of the surrogate approach. If we are
not satisfied with the accuracy of this approximation,
we can, similarly to the 2-function cases, have other –
more general – case of using three nonlinear functions.
And if even these more general expressions do not lead
to sufficient accuracy, we can use four (or more) non-
linear functions.

It is known that, in general, every continuous functions
on a bounded domain can be approximated, with any
given accuracy, by a neural network [1, 3, 4] – i.e., as
we have mentioned, by compositions of linear func-
tions and nonlinear functions of one variable. Thus, as
we increase the number of nonlinear functions of one
variable in the expression for the probability density,
we can get approximations which are as accurate as
we require.

4 Conclusions

We started this paper by formulating two questions:
why surrogate approach works well, and what to do
if we need a more accurate description of the corre-
sponding probabilities. By using techniques form the
foundations of neural networks, we get answers to both
questions:



• The surrogate approach works well because it is,
in some reasonable sense, the fastest. Namely,
the fastest to compute are compositions of linear
functions and nonlinear functions of one variable,
and the largest part of computation time is spent
on computing functions of one variable. If we are
not satisfied with the accuracy of generalized logit
regression – that uses two nonlinear functions – a
natural next arrangement is to use three nonlin-
ear functions – which is exactly the surrogate ap-
proach.

• If we are not satisfied with the accuracy of the
surrogate approach – and of other arrangements
that use three nonlinear functions – a natural next
arrangement is to use four (or more) nonlinear
functions. The universal approximation theory for
neural networks implies that whatever accuracy
we desire, we can achieve this accuracy if we use
sufficiently many nonlinear functions.
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