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Abstract. It has been recently shown that in some applications, e.g.,
in ship navigation near a harbor, it is convenient to use combinations of
basic colors � red, green, and blue � to represent di�erent fuzzy degrees.
In this paper, we provide a natural explanation for the e�ciency of this
empirical fact: namely, we show: (1) that it is reasonable to consider
discrete fuzzy logics, (2) that it is reasonable to consider their interval-
valued and set-valued extensions, and (3) that a set-valued extension of
the 3-valued logic is naturally equivalent to the use of color combinations.

Keywords: Fuzzy logic · Set-valued extension · Interval-valued exten-
sion · Color optical computing

1 Formulation of the Problem

Color optical computing representation of fuzzy degrees. It has been
recently shown that in some practical applications of fuzzy logic � e.g., in ship
navigation near a harbor � it is convenient to represent di�erent fuzzy degrees
by colors, namely, by combinations of the three pure basic colors: red, green, and
blue; see, e.g., [10�13]. To be more precise, these papers use 23 = 8 combinations
of pure colors, where each of the three basic colors is either present or not present:

� black corresponding to no colors at all,

⋆ This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), and by the
AT&T Fellowship in Information Technology. It was also supported by the program
of the development of the Scienti�c-Educational Mathematical Center of Volga Fed-
eral District No. 075-02-2020-1478, and by a grant from the Hungarian National
Research, Development and Innovation O�ce (NRDI).
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� white corresponding to the presence of all three basic colors,

� three pure colors corresponding to the case when only one of the three basic
colors is present, and

� three combinations of two basic colors.

Question. This empirical success prompts a natural question: why is this rep-
resentation e�cient?

What we do in this paper. In this paper, we explain the empirical success of
color optical computing representation by showing how the main ideas behind
fuzzy logic naturally lead to this representation. Namely, we show:

� that it is reasonable to consider discrete fuzzy logics,

� that it is reasonable to consider interval-valued and set-valued extensions of
these logics, and

� that a set-valued extension of the 3-valued logic is naturally equivalent to
the use of combinations of pure colors.

We also show that the set-valued extensions of discrete fuzzy logics are related
to the formalism of Belnap's logic, that allows parts of the knowledge base to be
inconsistent.

2 Why Interval-Valued and Set-Valued Extensions of

Discrete Fuzzy Logics

Fuzzy degrees: a brief reminder. One of the main ideas behind fuzzy logic
is to assign, to each imprecise natural-language statement such as �John is tall�,
a degree describing to what extent this statement is true � e.g., to what extent
John is tall; see, e.g., [3�5, 8, 9, 14].

Need for discrete fuzzy logic. In the original fuzzy logic, these degrees were
represented by numbers from the interval [0, 1]. From the mathematical view-
point, this interval contains in�nitely many numbers. When the numbers are sig-
ni�cantly di�erent, they represent di�erent degrees of certainty. However, when
the two numbers are very close, we cannot distinguish the corresponding degrees:
e.g., hardly anyone can distinguish between degrees 0.80 and 0.81.

In general, according to psychological experiments, we can meaningfully dis-
tinguish at most 7±2 di�erent degrees: some of us can only distinguish 7−2 = 5
di�erent degrees, some can distinguish 7 + 2 = 9 di�erent degrees; see, e.g., [6,
7]. In other words, in practice, we use, in e�ect, a discrete set of fuzzy degrees.

Fuzzy degrees come with uncertainty. In the ideal case, we have a single
perfect expert who selects a single degree � and experts are perfect in the sense
that other experts would assign the exact same degree. In practice, the situation
is more complicated.
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� First, an expert can be unsure what exact degree to assign. At best, the
expert can provide a lower bound a and an upper bound b for this degree
� just like when estimating the height of a person entering the room, the
expert will not produce an exact value but rather a range of values. In this

case, possible degrees form an interval [a, b]
def
= {x : a ≤ x ≤ b}.

� Second, even if an expert produces an exact degree, other experts may pro-
duce di�erent degrees. In this case, to describe uncertainty, it is reasonable
to list all these degrees, i.e., to produce the set of experts' estimates. This
extension of fuzzy logic is known as hesitant fuzzy logic.

In the following text, we will analyze such interval-valued and set-valued versions
of the simplest discrete fuzzy logics, and we will show that this analysis indeed
naturally leads to color optical computing.

Comment. Following this line of reasoning, it is also possible to have several
experts producing intervals. This option may be worth exploring.

3 Interval-Valued and Set-Valued Extensions of 2-Valued

Logic

Why 2-valued logic. In general, a discrete fuzzy logic is a �nite subset of the
interval [0, 1] that contains both 0 (�false") and 1 (�true�). From this viewpoint,
the simplest case is when this subset contains only 0 and 1, i.e., when we have
a usual 2-valued logic.

Interval-values extension of 2-valued logic. In a logic consisting of two
elements 0 < 1, there are exactly three possible intervals:

� two degenerate intervals [0, 0] = {0} and [1, 1] = {1} consisting of a single
original value, and

� a non-degenerate interval [0, 1] = {0, 1} containing both values.

The general interpretation of interval-valued extensions � that was described in
the previous section � provides the following explanation for the new truth value
[0, 1]: this truth value corresponds to the case when we do not know whether the
statement is true or false � i.e., corresponds to uncertainty. Thus, we get a usual
3-valued logic with three possible truth values: true, false, and uncertain. These
values can be naturally described as 1, 0, and an intermediate value 0.5.

Set-valued extension of 2-valued logic. In a 2-valued logic with the set of
truth values {0, 1}, there are four subsets:

� two 1-elements subsets {0} and {1};
� the original set {0, 1}, and
� the empty set ∅.

The general interpretation of set-valued extensions � that was described in the
previous section � provides the following interpretation of these four subsets:



4 V. L. Timchenko, Y. P. Kondratenko, and V. Kreinovich

� the set {0} means that all experts agree that the statement is false;

� the set {1} means that all experts agree that the statement is true;

� the set {0, 1} means that some experts believe that the statement is true,
while some other experts believe that the statement is false;

� �nally, the empty set means that no experts have any opinion about this
statement.

Here, both the set {0, 1} and the empty set correspond to uncertainty, but there
is a di�erence between the two cases:

� the empty set means, in e�ect, that we know nothing about the statement;

� in contrast, the set {0, 1} means, in e�ect, that we have some arguments in
favor of the given statement, and some arguments against this statement.

How is this related to interval-valued fuzzy techniques. The need to
distinguish between these two types of uncertainty is often emphasized as the
need to go from the traditional fuzzy logic to its interval-valued version. Indeed,
in the traditional fuzzy logic, the same value 0.5 can mean two di�erent things:

� it can mean that we know nothing about the given statement, and

� it can also mean that we have as many arguments in favor of this statement
as against it.

In the interval-valued case:

� the �rst situation � when we know nothing, the statement can be false or
true � is naturally described by the interval [0, 1] containing all possible truth
values, while

� for the second situation, a value 0.5 � corresponding to the degenerate (1-
point) interval [0.5, 0.5] seems to be a better match.

How is this related to Belnap logic. The above four truth values have
been analyzed in a non-fuzzy context, under the name of Belnap logic [1, 2].
In this context, instead of expert opinions about the truth of a statement, we
consider the actual validity of this statement. In this interpretation, the set {0, 1}
corresponds to inconsistency � when our knowledge base mistakenly contains
both the information that this statement is true and the information that this
same statement is false.

The need to consider this logic was caused by the fact that in the usual
2-valued logic, once we have a single contradiction, we can conclude that all
statements are true � and that all statements are false. So, if we use the usual
logic, one wrong statement added to the database � e.g., that the train leaves
at 1 pm and that this same train leaves at 1.01 pm � would make the whole
knowledge base useless.
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4 Interval-Valued and Set-Valued Extensions of 3-Valued

Logic and Their Relation to Color Optical Computing

3-valued logic. After the simplest 2-valued logic, the next simplest is 3-valued
logic, when we add, to the usual 0 (�false") and 1 (�true�), and additional inter-
mediate degree corresponding to uncertainty. For simplicity, let us denote this
degree by 0.5.

Interval-valued extension of 3-valued logic. For this logic, with 3 truth
values 0 < 0.5 < 1, there are six possible intervals:

� the degenerate interval [0, 0] = {0} meaning that the expert believes that
the given statement is false;

� the degenerate interval [1, 1] = {1} meaning that the expert believes that
the given statement is true;

� the degenerate interval [0.5, 0.5] = {0.5} meaning that the expert is uncer-
tain;

� the interval [0, 0.5] = {0, 0.5} meaning the expert is uncertain but is leaning
towards �false�;

� the interval [0.5, 1] = {0.5, 1} meaning the expert is uncertain but is leaning
towards �true�; and

� the interval [0, 1] = {0, 0.5, 1} meaning that the expert is uncertain, but has
some arguments in favor and against the given statement.

Comment. In the 2-valued case, the interval extension did not allow us to dis-
tinguish between two di�erent situations:

� not having any information about a statement and
� having arguments for and argument against the statement.

To distinguish between these two cases, we had to consider set-valued extension
of the 2-valued logic.

Interesting, in the 3-valued case, already the interval extension enables us to
distinguish between these two situations.

Set-valued extension of 3-valued logic. In the set-valued extension of the 3-
valued logic, in addition to the six sets corresponding to interval-valued extension
of this logic, we have two more sets:

� the empty set ∅ corresponding to situations in which no expert has any
opinion, and

� the set {0, 1} corresponding to the polarized case when some experts strongly
believe that the given statement is true while others as strongly believe that
this statement is false � case typical in politics.

Set-valued extension of 3-valued logic naturally leads to color optical

computing. In color optical computing, we start with three basic colors read
(R), green (G), and blue (B) whose position on the spectrum is described as
R < G < B, and we consider combinations of some of these colors, i.e., all
subsets of the set {R,G,B}:
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� we can have three pure colors corresponding to three 1-element sets {R},
{G}, and {B};

� we can have white � a combination of all three basic colors � corresponding
to the set {R,G,B};

� we can have black � where there are no colors at all � corresponding to the
empty set; and

� we can also have combinations of two of three colors.

These 23 = 8 combinations are in natural 1-to-1 correspondence with eight
subsets that form the set-valued extension of the 3-valued logic. This provides a
natural explanation of the color optical interpretation of fuzzy logic.

5 Conclusions

In the classical logic, every statement is either true or false. In a computer, �true�
is usually represented by 1, and �false" by 0. In many practical situations, we
are unsure whether the statement is true or false. To describe di�erent degrees
of con�dence in a statement, Lot� Zadeh proposed to use real numbers between
0 and 1. From the purely mathematical viewpoint, there are in�nitely many real
numbers between 0 and 1. However, we humans can only meaningfully distin-
guish between a small number of di�erent degrees of con�dence. Thus, to make
the description of degrees of con�dence more adequate, it makes sense to restrict
ourselves to �nite (discrete) subsets of the interval [0, 1].

To make this description even more adequate, it is desirable to also take into
account that sometimes, experts are unsure which of the possible degrees better
describe their degree of con�dence. To cover such situations, we need to consider
subsets of the set of possible degrees � i.e., set-valued extensions of discrete
fuzzy logics. An important particular case is an interval-valued extension, when
we only consider intervals � the set of all the degrees between two bounds.

It turns out that these extension ideas naturally lead to several known ef-
fective techniques � and thus, provide an explanation for their e�ectiveness.
Namely:

� the set-theoretic extension of the 2-valued logic naturally leads to the known
technique of Belnap's logic, technique that enables us to allow knowledge
bases with inconsistencies, and

� the set-theoretic extension of the 3-valued discrete fuzzy logic naturally leads
to color optical computing � an empirically successful way of representing
and processing fuzzy degrees by di�erent colors.

Acknowledgements The authors are greatly thankful the anonymous referees
for valuable suggestions.
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