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Abstract. In many practical situation, control experts can only for-
mulate their experience by using imprecise (�fuzzy�) words from natural
language. To incorporate this knowledge in automatic controllers, Lot�
Zadeh came up with a methodology that translate the informal expert
statements into a precise control strategy. This methodology � and its
following modi�cations � is known as fuzzy control. Fuzzy control often
leads to a reasonable control � and we can get an even better control re-
sult by tuning the resulting control strategy on the actual system. There
are many parameters that can be changed during tuning, so tuning usu-
ally is rather time-consuming. Recently, it was empirically shown that
in many cases, quite good results can be attained by using a special 1-
parametric tuning procedure called fractional fuzzy inference � we get
up to 40% improvements just by selecting the proper value of a single
parameter. In this paper, we provide a theoretical explanation of why
fractional fuzzy inference works so well.

Keywords: Fuzzy control · Fractional fuzzy inference · Tuning.

1 Formulation of the Problem

Need for expert knowledge in control. In some cases � e.g., in controlling
a spaceship � we know the exact equations describing the spaceship's trajectory,
we know how exactly the spaceship will react to di�erent controls. In such cases,
selection of a proper control becomes a mathematical problem.

However, there are also many control situations when an exact model is not
known. Such situations are typical in many areas, e.g., in chemical engineering, in
medicine, etc. In many such situations, the control is implemented by experts.

⋆ This work was supported in part by the project of the Guoqiang Research Institute
of Tsinghua University (No. 2020GQG1001), by the National Science Foundation
grants 1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes),
and by the AT&T Fellowship in Information Technology. It was also supported by
the program of the development of the Scienti�c-Educational Mathematical Center
of Volga Federal District No. 075-02-2020-1478, and by a grant from the Hungarian
National Research, Development and Innovation O�ce (NRDI).
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The problem is that experts di�er in their experience, and there are usually
very few top experts, not enough to cover all possible control applications. It is
therefore desirable to incorporate the knowledge of top experts into an automatic
system that would help others share the bene�t of the top expert's knowledge.

Need for fuzzy techniques. Most experts are willing to share their expertise:
most of them actually teach students and others. The problem is that they cannot
formulate their knowledge in precise numerical terms. This makes perfect sense;
e.g., in the US, the vast majority of people can drive, but hardly anyone can
answer a question that would naturally arise in automatic control: if you are on
a freeway at 100 km/hr, and the car 10 meters in front of you slows down to
95 km/hr, with how many kiloNewtons of force and for how many milliseconds
should you press the brake pedal? A natural answer that most driver will give is
�press a little bit, for a short time�. Such answers � expressed by using imprecise
(�fuzzy�) words from natural language � are rather typical.

So, to incorporate expert knowledge into a precise control strategy, we need
to translate such imprecise statements into precise terms. Techniques for such a
translation � pioneered by Lofti Zadeh � are known as fuzzy techniques, see, e.g.,
[1, 4, 7�9, 12].

Need for tuning. In many practical situations, fuzzy techniques provide a rea-
sonable control strategy. However, the resulting control � based on approximate
imprecise expert rules � is usually not optimal. To improve the quality of the
resulting control, it is necessary to apply it to a real-life system and to �tune it�
� i.e., to modify the control strategy based on the results of this application.

Fractional fuzzy techniques are surprisingly successful. A control strat-
egy is a function that assign, to each possible state of the system, an appropriate
value(s) of the control. To uniquely determine a function, we need to describe
in�nitely many numerical values � e.g., the values of this function at all rational
inputs. Not surprisingly, most currently used tuning methods tune the values of
a large number of parameters � parameters of the corresponding membership
functions, etc. (see detailed explanation in the following text). Because we need
to determine the values of many di�erent parameters, tuning usually requires a
signi�cant amount of computation time.

Interestingly, recently a new tuning technique has been developed � called
fractional fuzzy technique � that allows to drastically improve the quality of the
resulting control by tuning the value of only one parameter; see, e.g., [5, 6]. For
example, for the inverted pendulum, this simple 1-parametric tuning leads to a
40% improvement in control quality.

Remaining challenge and what we do in this paper. While fractional
fuzzy technique has been empirically successful, there has been no convincing
theoretical explanation for its success. In this paper, we provide such an expla-
nation.

The structure of this paper is as follows. To make our explanations clear, in
Section 2, we brie�y recall how fuzzy techniques work. In Section 3, we describe
our main idea � the use of natural invariance, and we show that invariance
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requirement indeed leads to a few-parametric family that includes fractional
fuzzy techniques as a particular case. In Section 4, we show that techniques
from this family are actually optimal � in some reasonable sense.

2 Fuzzy Control Techniques: A Brief Reminder

How experts present their knowledge. We want to describe, for each state
x � characterized by the values x1, . . . , xn of the corresponding parameters � the
approprimate value of the control y. We want to extract such a strategy from
the expert statements, and these statements are usually formulated by if-then
rules:

if x1, . . . , xn have certain property, then some restrictions are placed on y.

By de�nition, fuzzy techniques transform expert knowledge into a precise
control strategy. So, to describe fuzzy techniques, it is important to recall how
experts present their knowledge. This knowledge is usually represented by if-then
rules. The most typical situation is when both the conditions and the conclusions
of the rules are described by imprecise natural language terms, i.e., when all the
rules have the form

if x1 is A1 and . . . and xn is An, then y is B,

where Ai and B are the corresponding terms. For example, we can have a rule

if x1 is small positive, then y is small negative.

In some cases, experts have a more detailed approximate description of the
conclusion, i.e., use rules of the following type

if x1 is A1 and . . . and xn is An, then y is approximately equal to f(x1, . . . , xn),

for some function f(x1, . . . , xn).

What needs to be done to transform this knowledge into a precise

control strategy. The expert rules are formed by using imprecise natural-
language terms by applying logical connectives like �and� and �if-then�. Thus, to
transform the experts' if-then rules into a precise control strategy, we need:

� �rst, to describe natural-language terms like �small� in precise terms, and
� second, to describe how logical connectives � that are usually applied to

precise statements � can be applied to the resulting imprecise statements.

Let us describe these two stages one by one.

How to describe natural-language terms like �small� in precise terms.

In the original fuzzy technique, to describe an imprecise property A, we assign,
to each real number x, the degree (from the interval [0, 1]) to which the value x
has this property � for example, to which x is small. Here:
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� the degree 1 means that we are absolutely sure that x has this property,
� the degree 0 means that we are absolutely sure that x does not have this

property, and
� values between 0 and 1 correspond to intermediate degrees of belief.

For most properties, as the input x increases, the degree �rst (non-strictly)
increases, then (non-strictly) decreases. Such properties are known as fuzzy num-
bers.

Where do we get these degrees from? For some values x, we can ask the
expert to provide such degrees by marking a number on the scale from 0 to 1.
However, there are in�nitely many real numbers, and we can only ask �nitely
many questions. Thus, in practice, we ask the expert about several values, and
then use some extrapolation/interpolation techniques to estimate the other de-
grees. The resulting function assigning a degree d(x) to each real number x is
called a membership function, or, alternatively, a fuzzy set.

For example:

� if we know that the degree d(x) is equal to 0 for x = x−, to 1 for x = m,
and to 0 for x = x+, for some x− < m < x+, then linear interpolation leads
to a so-called triangular membership function;

� if d(x−) = d(x+) = 0 and d(m−) = d(m+) = 1 for some x− < m− <
m+ < x+, then linear interpolation leads to a so-called trapezoidmembership
function.

For continuous fuzzy numbers, and for each degree α > 0, the set of all the
values x for which µ(x) ≥ α is an interval. This interval is known as an α-
cut of the original fuzzy set. Alpha-cuts are nested: if α < α′, then the α-cut
corresponding to α′ is a subset of the α-cut corresponding to α. Once we know
all α-cuts x(α), we can uniquely reconstruct the original membership function
as d(x) = sup{α : x ∈ x(α)}. Thus, the nested family of α-cuts provides an
alternative representation of the fuzzy set. This representation is useful in many
applications � since it often makes computations easier.

How to describe logical connectives and what to do after that. In
situations when each statement is either true or false, the truth value of each
composite statement like A&B is uniquely determined by the truth values of the
component statements A and B. In our case, we only have degrees of con�dence
in statements A and B, and this information does not uniquely determine the
expert's degree of con�dence in A&B.

In the ideal world, we should ask the expert about all such computations.
However, in practice, there are too many such combinations, and it is not possible
to ask the expect about all of them. It is therefore necessary to be able to
estimate the degree of con�dence in a combination like A&B based only on the
available information, i.e., only on the experts' degrees of certainty a and b in
the statements A and B. The function that assigns, to each pair of numbers a
and b, the corresponding degree is called an �and�-operation, or, for historical
reasons, a t-norm. We will denote the value of the t-norm by f&(a, b).
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Similarly, if all we know are the degrees of con�dence a and b in statements
A and B, then our estimate for the degree of con�dence in a statement A ∨ B
will be denoted by f∨(a, b), and our estimate for the degree of con�dence in an
implication A → B will be denoted by f→(a, b).

How can we use these operations? For the general case, when we have rules
with imprecise conclusions

if x1 is Ak1 and . . . and xn is Akn, then y is Bk,

for k = 1, . . . ,K, there are two approaches: logical and Mamdani.
In the logical approach, we estimate the degree of belief dk(x1, . . . , xn, y) that

the k-th rule is satis�ed as

dk(x1, . . . , xn, y) = f→(f&(Ak1(x1), . . . , Akn(xn)), Bk(y)),

and then compute the degree of belief d(x1, . . . , xn, y) that y is a reasonable
control for given data xi as

d(x1, . . . , xn, y) = f&(d1(x1, . . . , xn, y), . . . , dK(x1, . . . , xn, y)).

In the Mamdani approach, we take into account that y is reasonable if one of
the rules is applicable, i.e., if for one of the rules, all conditions are satis�ed, and
the conclusion is satis�ed too. In this case, the degree of belief dk(x1, . . . , xn, y)
that the k-th rule is satis�ed is equal to

dk(x1, . . . , xn, y) = f&(Ak1(x1), . . . , Akn(xn), Bk(y)),

and the degree of belief d(x1, . . . , xn, y) that y is a reasonable control for given
data xi is equal to

d(x1, . . . , xn, y) = f∨(d1(x1, . . . , xn, y), . . . , dK(x1, . . . , xn, y)).

In both cases, for each input x1, . . . , xn, we get a membership function

m(y)
def
= d(x1, . . . , xn, y) that describes to what extent di�erent values y are

possible. For automatic control, we need to select a single control value y. The
procedure of transforming a (fuzzy) membership function into a single value is
known as defuzz�cication. One of the most widely used defuzzi�cation methods
is centroid defuzzi�cation, where

y =

∫
y ·m(y) dy∫
m(y) dy

.

In situations when we know an exact description of the conclusion, i.e., when
we have rules of the type

if x1 is Ak1 and . . . and xn is Akn, then y is approximately equal to
fk(x1, . . . , xn),
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we �rst compute the degree dk(x1, . . . , xn) to which the conditions of each rule
are satis�ed:

dk(x1, . . . , xn) = f&(Ak1(x1), . . . , Akn(xn)),

and then generate the following control value:

y =

K∑
k=1

dk(x1, . . . , xn) · fk(x1, . . . , xn)

K∑
k=1

dk(x1, . . . , xn)

.

Need for tuning. In the above description, we only took into account the
expert's imprecise knowledge. To get a more adequate control, we need to test
it on a real-life system, and make adjustments if needed. This real-system-based
procedure is known as tuning.

3 Fractional Fuzzy Techniques: Motivations, Description,

Successes, and Remaining Challenge

Motivations: need for faster tuning techniques. In general, there are many
parameters to tune: e.g., the parameters describing all the membership functions
Aki(xi) and Bk(y). Such tuning takes a lot of computation time. To speed up
computations, it is therefore desirable to come up with tuning methods that
require only a small number of parameters.

Fractional fuzzy techniques: description. Recently, a new few-parametric
tuning method was proposed; see, e.g., [5, 6]. There are, three versions of this
method:

� In the �rst version, we select a real number β+ > 0, and we replace each
α-cut interval [x, x] with a new interval [x, x+ β+ · (x− x)].

� In the second version, we select a real number β− < 1, and we replace each
α-cut interval [x, x] with a new interval [x+ β− · (x− x), x].

� In the combined third version, we select two numbers β− ≤ β+, and we
replace each α-cut interval [x, x] with a new interval

[x+ β− · (x− x), x+ β+ · (x− x)].

In each version of this method, we replace each α-cut with its fraction; thus, this
method is known as fractional fuzzy technique.

Fractional fuzzy techniques: successes. Practical applications show that
these techniques work very well. For example, for the inverted pendulum, each
of the �rst two versions � corresponding to 1-parametric tuning � leads to a 40%
improvement in control quality [5, 6].

Fractional fuzzy techniques: remaining challenge, and what we do in

this paper. A natural question is: how can we explain this empirical success?
In this paper, we explain why this method is so successful.
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4 Our Main Idea and How It Explains the Empirical

Success of Fractional Fuzzy Techniques

Experts are not perfect. Suppose that the best estimate of the corresponding
quantity is x̃, and the actual uncertainty � that can be derived from what we
know � is ±∆, meaning that the actual value of the quantity x is somewhere in
the interval [x̃−∆, x̃+∆]. This is what an ideal expert should return.

Actual experts are not perfect, they produce intervals [x0 − δ, x0 + δ] which
are, in general, di�erent from the ideal interval:

� an expert may overestimate the value of the quantity x, by producing a
larger value x0 > x̃;

� an expert may underestimate this value, by producing x0 < x̃;
� an expert may overestimate the inaccuracy, by producing a value δ > ∆;
� an expert may underestimate the inaccuracy, by producing a value δ < ∆.

In all these cases, the interval [x0 − δ, x0 + δ] produced by an expert is di�erent
from the desired interval [x̃−∆, x̃+∆].

So, to make a control more adequate, a natural idea is to take this into
account and to transform the expert's interval back into the desired interval.
For this purpose, we need to come up with a transformation T that transforms
intervals into intervals.

Natural properties of the transformation T . Both inputs and outputs of
the transformation T are intervals of values of a physical quantity, i.e., intervals
for which both endpoints are values of this quantity. We would like to deal with
the actual values, but in practice, we can only deal with numerical values, and
numerical values depend on what unit we choose for this quantity and what
starting point we choose.

If we select a measuring unit which is λ times smaller than the original one,
then all the numerical values are multiplied by λ: x 7→ λ · x. For example, if we
replace meters with centimeters, then 1.7 m becomes 1.7 · 100 = 170 cm.

If we select a new starting point which is x0 units smaller than the original
one, then this value x0 is added to all the numerical values: x 7→ x + x0. For
example, if we replace Celsius scale for temperature to Kelvin, then we need to
add 273 to all the numerical values.

The choices of a measuring unit and of a starting point are often arbitrary,
coming from a reasonably arbitrary agreement. It is therefore reasonable to re-
quire that the desired transformation T lead to the same interval of real values.
So, we arrive at the following de�nitions.

De�nition 1. We say that the mapping T from intervals to intervals is scale-
invariant if for every interval [a, b] and for every real number λ > 0, the equality
[c, d] = T ([a, b]) implies that [c′, d′] = T ([a′, b′]), where we denoted a′ = λ · a,
b′ = λ · b, c′ = λ · c, and d′ = λ · d.

De�nition 2. We say that the mapping T from intervals to intervals is shift-
invariant if for every interval [a, b] and for every real number x0, the equality
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[c, d] = T ([a, b]) implies that [c′, d′] = T ([a′, b′]), where we denoted a′ = a + x0,
b′ = b+ x0, c

′ = c+ x0, and d′ = d+ x0.

Comment. Similar invariance conditions were used in [2] to explain another
empirically successful interval transformations [3, 10, 11]. However, these papers
only dealt with overestimation or underestimation of uncertainty. Our analysis
analyzes a more general situation, where the estimate itself can also be biased.

Proposition 1. A mapping T is scale- and shift-invariant if and only if it has
the form

T ([a, b]) = [a+ β− · (b− a), a+ β+ · (b− a)]

for some β− ≤ β+.

Comment.

� For β− = 0, we get the �rst version of the fractional fuzzy techniques.

� For β+ = 1, we get the second version of the fractional fuzzy techniques.

� In general, we get the third (combined) version of these techniques.

Thus, indeed, this proposition provides an explanation for fractional fuzzy tech-
niques.

Proof. Let us denote the endpoint of the interval T ([0, 1]) by, correspondingly,
β− and β+, i.e., T ([0, 1]) = [β−, β+]. Let us show that for every interval [a, b],
the result T ([a, b]) of applying this transformation has the desired form.

Indeed, due to scale-invariance for λ = b− a, we have

T ([0, b− a]) = [β− · (b− a), β+ · (b− a)].

Now, due to shift-invariance with x0 = a, we get the desired formula

T ([a, b]) = [a+ β− · (b− a), a+ β+ · (b− a)].

The proposition is proven.

5 Fractional Fuzzy Techniques Are Optimal � In Some

Reasonable Sense

What do we mean by optimal. Usually, when people talk about optimality,
they assume that there is some numerical criterion, and the optimal alternative is
the one that has the largest (or the smallest) value of this criterion. For example:

� an optimal path may be the shortest path,

� an optimal investment portfolio is the one with the largest expected gain,
etc.
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However, this is not the most general description of optimality. For example,
if we have two alternative investment portfolios with the same expected gain,
it is reasonable to select the one with the smallest expected deviation from this
gain, etc. Thus, the optimality criterion can be more complicated than simply
comparing numerical values.

In general, what we want from an optimality criterion is that it should allow
us, at least for some pairs of alternatives a, a′ to decide:

� whether a is better than a′ (we will denote it by a′ < a)
� or a′ is better than a (a < a′),
� or a and a′ are the same quality to the user (we will denote it by a ∼ a′).

Of course, there should be natural transitivity requirements: e.g., if a is better
than a′ and a′ is better than a′′, then a should be better than a′′.

As we have mentioned in the beginning of the previous paragraph, if we have
several alternatives which are optimal with respect to some optimality criterion,
this means that this criterion is not �nal: we can use this non-uniqueness to
optimize something else. So, when the criterion is �nal, there is exactly one
alternative that is optimal with respect to this criterion. Thus, we arrive at the
following de�nitions.

De�nition 3. By an optimality criterion on a set A, we mean a pair (<,∼) of
binary relations on this set gthat satisfy the following properties:

� if a < b and b < c, then a < c;
� if a < b and b ∼ c, then a < c;
� if a ∼ b and b < c, then a < c;
� if a ∼ b and b ∼ c, then a ∼ c;
� if a < b then a ̸∼ b;
� if a ∼ b, then b ∼ a;
� always a ∼ a.

De�nition 4. We say that an alternative a is optimal with respect to an op-
timality criterion (< . ∼) if for every b ∈ A, we have either b < a or b ∼ a.

De�nition 5. We say that an optimality criterion (<,∼) is �nal if there is
exactly one alternative that is optimal with respect to this criterion.

The optimality criterion should be invariant. In our case, alternatives are
transformation functions. It is reasonable to require that if one transformation is
better than another one, then it will still be better if we use a di�erent measuring
unit or a di�erent starting point. Let us describe this in precise terms.

Suppose that we have an interval [a, b] expressed in the original units. If we
use a new measuring unit which is λ times smaller, then the interval becomes

λ · [a, b] def
= [λ · a, λ · b]. If we apply a transformation T to this new interval, we

get the interval T ([λ · a, λ · b]). This interval is in the new units; in the original
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units, it will have the form λ−1 · T ([λ · a, λ · b]). This is equivalent to using a
transformation Tλ for which

Tλ([a, b]) = λ−1 · T ([λ · a, λ · b]). (1)

In these terms, invariance means that:

� if T < T ′, then we should have Tλ < T ′
λ, and

� if T ∼ T ′, then we should have Tλ ∼ T ′
λ.

Similarly, suppose that we have an interval [a, b] corresponding to the original
starting point. If we use a new starting point which is x0 units smaller, then the

interval becomes [a, b] + x0
def
= [a + x0, b + x0]. If we apply a transformation T

to this new interval, we get the interval T ([a + x0, b + x0]). The endpoints of
this interval correspond to the new starting point; with respect to the original
starting point, it will have the form T ([a + x0, b + x0]) − x0. This is equivalent
to using a transformation T(x0) for which

T(x0)([a, b]) = T ([a+ x0, b+ x0])− x0. (2)

In these terms, invariance means that:

� if T < T ′, then we should have T(x0) < T ′
(x0)

, and

� if T ∼ T ′, then we should have T(x0) ∼ T ′
(x0)

.

De�nition 6. We say that an optimality criterion on the set of all interval-to-
interval transformation is scale-invariant if for every two transformations T and
T ′ and for every real number λ > 0,

� T < T ′ implies Tλ < T ′
λ and

� T ∼ T ′ implies Tλ ∼ T ′
λ,

where Tλ and T ′
λ are described by the formula (1).

De�nition 7. We say that an optimality criterion on the set of all interval-to-
interval transformations is shift-invariant if for every two transformation T and
T ′ and for every real number x0,

� T < T ′ implies T(x0) < T ′
(x0)

and

� T ∼ T ′ implies T(x0) ∼ T ′
(x0)

,

where T(x0) and T ′
(x0)

are described by the formula (2).

Proposition 2. For every scale-invariant, shift-invariant, and �nal optimality
criterion, the optimal transformation has the form

t([a, b]) = [a+ β− · (b− a), a+ β+ · (b− a)]

for some β− ≤ β+.
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Comment. The optimal transformation has exactly the form used in fractional
fuzzy techniques. Thus, this result provides a theoretical explanation for the
empirical fact that these techniques work well in many control situations.

Proof. Let (<,∼) be scale-invariant, shift-invariant, and �nal optimality crite-
rion, and let t be optimal with respect to this criterion.

Let us prove that t is scale-invariant, i.e., that for all λ, we have tλ = t. Indeed,
since t is optimal, for every T , we have T < t or T ∼ t. In particular, this is true
for Tλ−1 , i.e., we have Tλ−1 < t or Tλ−1 ∼ t. Due to the fact that the optimality
criterion is scale-invariant, we conclude that for every T , we have either T < tλ
or T ∼ tλ. By de�nition of optimality, this means that the transformation tλ is
optimal. However, t is also optimal, and we assumed that the optimality criterion
is �nal, i.e., that there is only one optimal alternative. Thus, tλ = t.

Similarly, we can prove that the transformation t is shift-invariant. Thus, by
Proposition 1, the transformation t has the desired form.

6 Conclusions

In many areas of human activity, there are people who are very good in the
corresponding tasks: top medical doctors excel in diagnosing and treating dis-
eases, top pilots excel in piloting planes, etc. It is desirable to incorporate their
expertise into automated systems that would help others make similarly e�ective
decisions � or even make these decision by themselves, without the need for a
human controller. These top folks are usually willing to share their knowledge
and their skills, but the problem is that they often formulate a signi�cant part of
their skills not in precise numerical terms, but by using imprecise (�fuzzy�) words
from natural language, like �small�. To transform such knowledge into numerical
computer-understandable form, Lot� Zadeh invented fuzzy techniques. In these
techniques, we �rst translate expert knoweldge into numerical terms, and then
tune the resulting control so as to make it as e�ective as possible.

This procedure has led to many successful applications. However, in many
cases, achieving this success required a lot of time and e�orts: indeed, there are
usually many parameters to tune, and, as a result, tuning is often very time-
consuming. To speed up the tuning process, it is desirable to come up with
e�ective few-parametric tuning procedures. In this paper, we analyze one such
procedure � known as fractional fuzzy techniques � in which we replace each
α-cut interval with its (appropriately de�ned) fraction. This procedure turned
out to be very e�ective � e.g., it improves the quality of decisions by up to 40%
in the case of the reverse pendulum problem.

A natural question is: how to explain this empirical success? In this paper,
we provide a theoretical explanation for this success: namely, we show that the
corresponding few-parametric family of tunings is, in some reasonable sense,
optimal.
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