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Designing an Optimal Medicine Cocktail Is
NP-Hard

Luc Longpré and Vladik Kreinovich

Abstract In many cases, a combination of different drugs – known as a medicine
cocktail – is more effective against a disease than each individual drug. It is desirable
to find the most effective cocktail. This problem can be naturally formulated as
a problem of maximizing a quadratic expression under the condition that all the
unknowns (concentrations of different medicines) are non-negative. At first glance,
it may seem that this problem is feasible – since a similar economic problem of
finding the optimal investment portfolio is known to be feasible. However, it turns
out that the cocktail problem is different: it is NP-hard.

1 Formulation of the Problem

Need to find an optimal medicine cocktail. Nowadays, many people regularly take
several different medicines. The ubiquity of this phenomenon shows that such com-
bination is often more effective than taking a single medicine. However, sometimes,
such combinations often lead to problems, since some medicines are incompatible,
and this makes the resulting cocktail less effective. It is therefore desirable to find
an optimal medical cocktail, a cocktail that is the most effective against the disease;
see, e.g., [6].

Let us describe this problem in precise terms. Let us denote the number of ap-
propriate medicines by n. To describe a cocktail, we need to describe the amounts
x1 ≥ 0, . . . ,xn ≥ 0 of all these medicines in the cocktail. The effectiveness E of a
cocktail depends on these amounts: E = E(x1, . . . ,xn).

The amount of each medicine is usually reasonably small, so quadratic terms are
much smaller than linear ones, cubic terms are much smaller than quadratic ones,
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2 Luc Longpré and Vladik Kreinovich

etc. Thus, we can get a good approximation to the cocktail’s effectiveness if we
expand the dependence E(x1, . . . ,xn) in Taylor series and only retain the first few
terms in this expansion.

The simplest case if when we consider only linear terns, i.e., when we consider
a linear approximating expression

e0 + e1 · x1 + . . .+ en · xn.

However, under this approximation, we do not get a realistic solution to our prob-
lem: the maximum is attained when for each i, the amount xi is equal either to 0
(when the coefficient ei is negative) or to infinity (when ei > 0). So, to get a re-
alistic description of the problem, we need to also consider quadratic terms in the
Taylor expansion. In this case, we face a problem of maximizing the corresponding
quadratic expression

e0 + e1 · x1 + . . .+ en · xn+

e11 · x2
1 + e12 · x1 · x2 + . . .+ e1n · x1 · xn + . . .+ enn · x2

n (1)

under the constraints xi ≥ 0.

At first glance, it may seem that this problem is feasible. If we ignore the con-
straints xi ≥ 0, then maximizing a quadratic function is easy: we simply equate all n
partial derivatives of the quadratic expression to 0. A derivative of a quadratic func-
tion is linear, so we get a system of n linear equations with n unknowns – and there
exist efficient algorithms for solving such systems.

At first glance, it may seem that the presence of constraints should not lead to a
drastic change in computational complexity. For example, in economics, a problem
of optimal (least risky) portfolio of investments – pioneered by a Nobelist Harry
Max Markowitz – reduced to minimizing a quadratic expression for risk under a
linear constraint, and for this problem, feasible algorithms are well known; see, e.g.,
[1, 4].

What we show in this paper. In this paper, we show that this first impression is
wrong, and that, in general – in contrast to the Markowitz optimal portfolio problem
– the problem of finding the optimal medicine cocktail is NP-hard; see, e.g., [2, 3, 5].

Comments.

• Of course, we can feasibly solve the cocktail problem for small n. Indeed, once
we know the set Z of all the variables xi that are equal to 0, we can equate the
derivatives with respect to remaining variables to 0 and solve the resulting system
of equations. Thus, we can solve the cocktail problem by repeating this proce-
dure for all 2n sets Z ⊆ {1, . . . ,n}, and selecting the solution with the largest
effectiveness. This works for small n, but for reasonable-size n, the number of
linear systems that we need to solve grows exponentially and becomes unfeasi-
ble very fact.
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• The solution to a system of linear equation is a rational function of all the coeffi-
cients – indeed, it can be described, by Cramer’s Rule, as a ratio of two polyno-
mials. Thus, if all the coefficients are rational, the values at which the maximum
is attained are also rational, and thus, the largest value of the quadratic expression
– if it is finite – is also a rational number.

2 Main Result

Proposition. The following problem is NP-hard:

• Given: a quadratic expression (1) with rational coefficients ei and ei j, and a
rational number r.

• Task: check whether the supremum of the expression (1) is smaller than r.

Comment. This implies that computing the optimal values xi – for which the ex-
pression (1) attains its maximum – is also NP-hard: if we knew these maximizing
values, we would be able to compute the largest value of the expression (1) and thus,
compare this value with the given threshold r.

Proof.

1◦. By definition, a problem is NP-hard if every problem from the class NP can be
reduced to this problem. Thus, if a known NP-hard problem can be reduced to our
problem, then, by transitivity of reduction, we will ne able to deduce every problem
from the class NP to our problem – and hence, we will prove that our problem is
also NP-hard.

2◦. As a known NP-hard problem, let is consider the subset sum problem, where we
are given positive integers s1, . . . ,sm,S, and we need to find a subset of si’s that add
up to S, i.e., equivalently, to find the values z1, . . . ,zm ∈ {0,1} for which

M

∑
i=1

zi · si = S,

where zi = 1 if we select the i-th number and zi = 0 if we don’t.
Let us show how each instance of the subset sum problem can be re-

duced to an appropriate instance of our problem. For this purpose, we consider
the problem of maximizing the following quadratic expression with unknowns
x1, . . . ,xm,xm+1, . . . ,x2m:

1−

(
m

∑
i=1

xi · si −S

)2

−
n

∑
i=1

xi · xm+i −
m

∑
i=1

(xi + xm+i −1)2. (2)

Let us show that maximum of this function over all xi ≥ 0 is equal to 1 if and only
if the original instance of the subset sum problem has a solution.
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3◦. Let us first prove that the maximum of the expression (2) is always smaller than
or equal to 1.

Indeed, the above expression (2) is obtained by subtracting, from 1, a sum of non-
negative terms. Thus, the value of this expression is always smaller than or equal to
1. Hence, the maximum of this expression is also smaller than or equal to 1.

4◦. Let us prove that if the maximum of the expression (2) is equal to 1, then this
maximum is attained for some values xi.

Indeed, if for some i from 1 to m, the value xi is greater than 2, then we would
have xi + xm+i − 1 ≥ 1, thus (xi + xn+i − 1)2 ≥ 1, and the expression (2) is smaller
than or equal to 0. Thus, the values greater than 0 – that contribute to the maximum
– are attained only for xi ≤ 2.

Similarly, we can conclude that to find the maximum, it is sufficient to only con-
sider the values xm+i ≤ 2. So, to find the maximum, it is sufficient to limit ourselves
to the box [0,2]2m. This box is a bounded closed set, thus a compact set. The expres-
sion (2) is a continuous function, and it is known that for every continuous function
on a compact set, its maximum is attained at some point.

5◦. Now, we can prove that if the maximum of the expression (2) is equal to 1, then
the original instance of the subset sum problem has a solution.

If the maximum of the expression (2) is equal to 1, then, according to Part 4 of
this proof, there exists values xi for which this expression is equal to 1. Since the
expression (2) is obtained by subtracting non-negative terms from 1, the fact that
the value of this expression is equal to 1 means that all subtracted terms are 0s. In
particular, this means that xi +xm+i −1 = 0, i.e., that xm+i = 1−xi. The fact that the
product xi · xm+i = xi · (1− xi) is equal to 0 means that either xi = 0 or 1− xi = 0,
i.e., that each xi is equal either to 0 or to 1. In this case, the fact that

m

∑
i=1

xi · si −S = 0

means that the values x1, . . . ,xm provide the solution to the original instance of the
subset sum problem.

6◦. To complete the proof of the proposition, it is sufficient to prove that if the
original instance of the subset sum problem has a solution zi, then the maximum of
the expression (2) is equal to 1.

Indeed, the value of the expression (2) is equal to 1 when we take, for all i from
1 to m, xi = zi and xm+i = 1− zi.

The proposition is proven.

Comment. If the original instance of the subset sum problem does not have a solu-
tion, then the maximum of the expression (1) is not only smaller than 1, it is actually
smaller than 1−δ for some δ > 0. Let us find such δ .
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Indeed, suppose that, for some δ > 0, the expression (2) is larger than 1−δ . This
means, in particular, that each of the terms subtracted from 1 in this expression is
bounded by δ . In particular, it means that (xi+xm+1−1)2 ≤ δ , i.e., that |xi+xm+i−
1| ≤

√
δ , i.e., that

1− xi −
√

δ ≤ xm+1 ≤ 1− xi +
√

δ .

We also have xi ·xm+i ≤ δ . Let us consider two possible cases: xi ≤ 1/2 and xi ≥
1/2. Let us take δ ≤ 1/36, then

√
δ ≤ 1/6. For xi ≤ 1/2, from 1− xi −

√
δ ≤ xm+i

and
√

δ ≤ 1/6, we conclude that

1/3 = 1−1/2−1/6 ≤ 1− xi −
√

δ ,

so 1/3 ≤ xm+i and thus, 1/3 · xi ≤ xi · xm+i ≤ δ , hence xi ≤ 3δ .
Similarly, if xi ≥ 1/2, then we get 1− xi ≤ 3δ . In both cases, if we denote by zi

the integer closest to xi – which is equal to 0 or 1 – we get |xi − zi| ≤ 3δ .
We also have (

m

∑
i=1

xi · si −S

)2

≤ δ ,

hence ∣∣∣∣∣ m

∑
i=1

xi · si −S

∣∣∣∣∣≤√
δ .

From |xi − zi| ≤ 3δ , we conclude that∣∣∣∣∣
(

m

∑
i=1

xi · si −S

)
−

(
m

∑
i=1

zi · si −S

)∣∣∣∣∣≤ m

∑
i=1

si ·3δ ,

so ∣∣∣∣∣ m

∑
i=1

zi · si −S

∣∣∣∣∣≤√
δ +

m

∑
i=1

si ·3δ .

If we use δ for which
√

δ +
m

∑
i=1

si ·3δ < 1,

then we conclude that the absolute value of the integer

m

∑
i=1

zi · si −S

is smaller than 1, so this integer is equal to 0 – i.e., we have a solution to the original
instance of the subset sum problem.

Since
√

δ ≤ 1/6, the inequality

√
δ +

m

∑
i=1

si ·3δ < 1
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will be guaranteed if
1
6
+

m

∑
i=1

si ·3δ < 1,

i.e., if
m

∑
i=1

si ·3δ <
5
6

or, equivalently, if

δ ≤ 5

18 ·
m
∑

i=1
si

.

For such δ , if the maximum of the expression (2) is greater than or equal to 1− δ ,
then the original instance of the subset sum problem has a solution. Thus, if the
original instance does not have a solution, then the maximum of expression (2)
must be smaller than 1−δ .

Discussion. So how come the optimal portfolio problem is feasible? The answer
is that in the portfolio problem, the quadratic form is minus covariance matrix and
is, thus, negative definite, so the maximized expression is concave, and concave
optimization problems are feasible. In the cocktail problem, we can have a generic
quadratic expression which is not necessarily negative definite.
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