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Epistemic vs. Aleatory: Case of Interval
Uncertainty

Marina Tuyako Mizukoshi, Weldon Lodwick, Martine Ceberio, Olga Kosheleva,
and Vladik Kreinovich

Abstract Interval computations usually deal with the case of epistemic uncertainty,
when the only information that we have about a value of a quantity is that this
value is contained in a given interval. However, intervals can also represent aleatory
uncertainty – when we know that each value from this interval is actually attained
for some object at some moment of time. In this paper, we analyze how to take
such aleatory uncertainty into account when processing data. We show that in case
when different quantities are independent, we can use the same formulas for dealing
with aleatory uncertainty as we use for epistemic one. We also provide formulas for
processing aleatory intervals in situations when we have no information about the
dependence between the inputs quantities.

1 Outline

There exist many algorithm for dealing with epistemic uncertainty, when we do not
have full information about the actual value of a physical quantity x. An important
case of such uncertainty is the case of interval uncertainty when all we know is the
lower and upper bounds x and x on the actual (unknown) value x. This case is called
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interval uncertainty, because in this case the set of possible values of x forms an
interval [x,x].

In the case of epistemic uncertainty, we have a single (unknown) actual value,
and the only thing we know about this value is that it belongs to the given interval.
However, intervals emerge also in other situations, e.g., when we actually have sev-
eral different values of the physical quantity, and the interval represents the range of
these actual values. This situation is known as aleatory uncertainty. In this paper,
we analyze how to take aleatory uncertainty into account during data processing.

2 Epistemic Interval Uncertainty: A Brief Reminder

What is epistemic interval uncertainty: a reminder. In many practical situations,
we do not know the exact value of a physical quantity x, the only thing we know
about this value x is an interval [x,x] that contains this value; see, e.g., [13]. In this
case, the interval represents our lack of knowledge and is, thus, a particular case of
epistemic uncertainty.

How to process data under epistemic interval uncertainty: general case. In gen-
eral, data processing means that we apply an algorithm f (x1, . . . ,xn) to some values
x1, . . . ,xn, and get the result y = f (x1, . . . ,xn). This procedure allows us, given the
values xi, to find the value of a quantity y whose values are related to xi by the algo-
rithm y = f (x1, . . . ,xn). For example, if we know the resistance x1 and the current
x2, then we can use the known dependence y = x1 · x2 (Ohm’s law) to compute the
voltage y.

In case of epistemic interval uncertainty, we only know the intervals [xi,xi] that
contain the actual (unknown) values xi. Thus, the only thing that we can conclude
about the value y = f (x1, . . . ,xn) is that this value is contained in the set

{ f (x1, . . . ,xn) : x1 ∈ [x1,x1], . . . ,xn ∈ [xn,xn]}. (1)

This set is usually called the y-range.

Definition 1. By a y-range of a function y = f (x1, . . . ,xn) on the intervals [x1,x1],
. . . , [xn,xn], we mean the set

f ([x1,x1], . . . ,xn ∈ [xn,xn])
def
= { f (x1, . . . ,xn) : x1 ∈ [x1,x1], . . . ,xn ∈ [xn,xn]}. (2)

Data processing functions y = f (x1, . . . ,xn) are usually continuous. For such func-
tions, the following fact is known from calculus:

Proposition 1. For each continuous function f (x1, . . . ,xn) and for all intervals
[x1,x1], . . . , [xn,xn], the y-range is an interval.
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In the following text, we will denote the endpoints of the y-range by y and y.
Then, the y-range is equal to the interval [y,y]. Computing this interval y-range is
knows as interval computations [4, 8, 9, 10].

In general, the interval computation problem is NP-hard already for quadratic
functions y = f (x1, . . . ,xn); see, e.g., [6]. This means that unless P = NP (which
most computer scientists believe not to be true), no feasible algorithm can compute
all the y-ranges. However, there are many efficient algorithms that help to solve
many practical cases of this general problem; see, e.g., [4, 8, 9, 10].

Linearized case. In the important and frequent case when we know the values xi
with a good accuracy, there exist feasible algorithms – actually, straightforward for-
mulas – for interval computations. This case is known as the linearized case, and
the corresponding techniques is known as linearization; see, e.g., [5, 6, 11].

To explain these formulas, we need to take into account that each interval [xi,xi]
can be presented as [x̃i −∆i, x̃i +∆i], where

x̃i
def
=

xi + xi

2
(3)

is the interval’s midpoint and

∆i
def
=

xi − xi

2
(4)

is the interval’s half-width. Each value xi from this interval can be represented as
x̃i +∆xi, where the difference

∆xi
def
= xi − x̃i (5)

satisfies the condition |∆xi| ≤ ∆i. In these terms, each value y = f (x1, . . . ,xn) takes
the form

y = f (x̃1 +∆x1, . . . , x̃n +∆xn).

Since the values ∆xi are small, we can expand this expression in Taylor series
and keep only linear terms in this expansion. Thus, we get

y = f (x̃1 +∆x1, . . . , x̃n +∆xn) = ỹ+
n

∑
i=1

ci ·∆xi,

where we denoted
ỹ def
= f (x̃1, . . . , x̃n) (6)

and

ci
def
=

∂ f
∂xi |x1=x̃1,...,xn=x̃n

. (7)

In other words, the data processing function y = f (x1, . . . ,xn) becomes linear:

y = ỹ+
n

∑
i=1

ci · (xi − x̃i), (8)

For such linear functions, there exists a known explicit formula for their y-ranges:
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Proposition 2. The y-range of a linear function (8) on intervals [x̃1 −∆1, x̃1 +∆1],
. . . , [x̃n −∆n, x̃n +∆n] is equal to [ỹ−∆ , ỹ+∆ ], where ỹ = f (x̃1, . . . , x̃n) and

∆ =
n

∑
i=1

|ci| ·∆i. (9)

Comment. This proposition is known (see, e.g., [5, 6, 11]), but for completeness, we
include its proof. For readers’ convenience, all the proofs are placed in the special
(last) Proofs section.

3 Aleatory Interval Uncertainty: Towards the Precise
Formulation of the Problem

Why interval uncertainty in the aleatory case. Aleatory uncertainty means that in
different situations, we have different actual values of the corresponding quantity.
What can we say about the set of these actual values?

For each physical quantity, there are usually bounds; see, e.g., [3, 14]: for exam-
ple, all speeds are limited by the speed of light, all distances are bounded by the
size of the Universe, etc. So, for each physical quantity, its set of actual values is
bounded.

For each physical quantity x, its values change with time x(t), and in physics,
these changes are usually continuous; see, e.g., [3, 14]. As we have mentioned, the
range of a continuous function x(t) on any time interval is an interval. So, we can
conclude that the set of all actual values of a quantity is an interval.

Comment. In this section, we consider the situation when all the values from this
interval actually occur for some objects at some moments of time. Of course, in
quantum physics, changes may be discrete, and we may have a discrete set of values.
The following text analyzes what happens if we take into account that not all the
values from the interval are physically possible.

Notations. To distinguish an aleatory interval from the epistemic one, we will de-
note aleatory intervals with capital letters. For example, while the epistemic interval
for a quantity x is denoted by [x,x], its aleatory interval will be denoted by [X ,X ].

Resulting problem: informal description. How can we take aleatory interval un-
certainty into account in data processing, when:

• we have aleatory information about the quantities x1, . . . ,xn,
• we have a data processing algorithm y = f (x1, . . . ,xn), and
• we want to find out what aleatory knowledge we have about the quantity y.

To be more precise: for each of n quantities x1, . . . ,xn, we know an aleatory inter-
val [X i,X i], i.e., we know that all the values xi from this interval [X i,X i] are actually
occurring. We want to known which values y are actually occurring.
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Strictly speaking, to find out which values y occur, we need to know which n-
tuples (x1, . . . ,xn) occur, i.e., we need to know the set S of all the actually occurring
n-tuples (x1, . . . ,xn). Once we know this set, we can conclude that the set of actual
values of y is equal to

f (S) def
= { f (x1, . . . ,xn) : (x1, . . . ,xn) ∈ S}.

We do not know this set S, we only have three pieces of information about this set:

• first, since we only know that the values xi ∈ [xi,xi] actually occur, the set S is
contained in the “box”

[X1,X1]× . . .× [Xn,Xn]

of all the n-tuples for which xi ∈ [X i,X i] for all i;
• second, since each values xi from each aleatory interval [X i,X i] is actually occur-

ring, for each i and for each value xi ∈ [X i,X i], there must exist an n-tuple in the
set S for which the i-th component is equal exactly to this value;

• third, since we consider the case when all dependencies are continuous, we can
conclude that the set S is connected – as the set of values of a continuous function
over a time interval.

We will call sets S satisfying these three properties conceivable sets.
A value y is definitely attained if y is contained in f (S) for all conceivable sets.

Thus, we arrive at the following definition.

Definition 2. Let [X1,X1], . . . , [Xn,Xn] be intervals, and let f (x1, . . . ,xn) be a con-
tinuous real-valued function of n real variables.

• We say that a set S ⊆ [X1,X1]× . . .× [Xn,Xn] is conceivable if this set is con-
nected and for every i and for every value xi ∈ [X i,X i], there exists an n-tuple
(x1, . . . ,xi, . . . ,xn) ∈ S whose i-th component is equal to this value xi.

• By the aleatory y-set, we mean the set of all the real numbers y for which, for
every conceivable set S, there exists an n-tuple (x1, . . . ,xn) ∈ S for which

f (x1, . . . ,xn) = y.

Notation. In the following text, we will denote the aleatory y-set by

fa([X1,X1], . . . , [Xn,Xn]).

Proposition 3. The aleatory y-set is either an interval, or an empty set.

Comment. An example when the aleatory y-set is empty will be given in the follow-
ing section.

Notation. Because of this result, in the following text, we will also call the aleatory
y-set the aleatory y-interval. We denote this interval by [Y ,Y ].
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4 How to Compute the Aleatory y-Interval: Linearized Case

Let us denote the midpoint of the i-th aleatory interval by X̃i and its half-width by
δi > 0. Let us consider the linearized case, when the data processing algorithm takes
the form

y = Ỹ +
n

∑
i=1

ci · (xi − X̃i), (10)

where X̃i is the midpoint of the aleatory interval [X i,X i],

ci
def
=

∂ f
∂xi |x1=X̃1,...,xn=X̃n

,

and
Ỹ def
= f (X̃1, . . . , X̃n). (11)

In this case, we can efficiently compute the aleatory y-interval by using the following
result.

Proposition 4. Suppose that we have n intervals

[X̃1 −δ1, X̃1 +δ1], . . . , [X̃n −δn, X̃n +δn],

and the function y = f (x1, . . . ,xn) has the form (10). Let us denote

δ
def
= 2 · max

i=1,...,n
|ci| ·δi −

n

∑
i=1

|ci| ·δi.

Then, the aleatory y-interval has the following form:

• if δ < 0, then fa([X̃1 −δ1, X̃1 +δ1], . . . , [X̃n −δn, X̃n +δn]) = /0; and
• if δ ≥ 0, then fa([X̃1 −δ1, X̃1 +δ1], . . . , [X̃n −δn, X̃n +δn]) = [Ỹ −δ ,Ỹ +δ ].

Corollary 1. For the case when we have two intervals [X1,X1] and [X2,X2] and
f (x1,x2) = x1 + x2, we get the aleatory y-interval

[Y ,Y ] = [X1,X1]+a [X2,X2] = [min(X1 +X2,X1 +X2),max(X1 +X2,X1 +X2)].

Corollary 2. For the case when we have two intervals [X1,X1] and [X2,X2] and
f (x1,x2) = x1 − x2, we get the aleatory y-interval

[Y ,Y ] = [X1,X1]−a [X2,X2] = [min(X1 −X2,X1 −X2),max(X1 −X2,X1 −X2)].

Example. For intervals [0,2] and [1,4], we get

[0,2]+a [1,4] = [min(0+4,2+1),max(0+4,2+1)] =
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[min(3,4),max(3,4)] = [3,4].

This is clearly different from the usual interval addition

[0,2]+ [1,4] = [0+1,2+4] = [1,6]

corresponding to epistemic or independent aleatory case.

5 Computing the Aleatory y-Interval Is, in General, NP-Hard

Discussion. In the previous section, we showed that when the function y =
f (x1, . . . ,xn) is linear, we can effectively compute the resulting aleatory y-interval.
It turns out that – similarly to the above-mentioned case of epistemic interval uncer-
tainty, if we consider the next-in-complexity class of functions – quadratic functions
– the problem becomes NP-hard.

Proposition 5. For quadratic functions f (x1, . . . ,xn), the problem of computing the
aleatory y-interval is NP-hard.

6 Case of Partial or Full Independence

Discussion. In the above development, we considered the case when all we know
is the set of actual values for each quantity xi, and we do not know whether there
is any dependence between these quantities. Because we allow cases of possible
dependence, we can have somewhat counter-intuitive conclusions. For example, for
the function f (x1,x2)= x1 ·x2 and aleatory intervals [X1,X1] = [0,a1] and [X2,X2] =
[0,a2] for some ai > 0, the aleatory y-interval consists of a single value 0.

Indeed, in this case, each conceivable set S contains a 2-tuple (0,x2) for which
x1 ·x2 = 0. Thus, all y-ranges contain 0 and hence, the aleatory y-interval – which is
the intersection of these y-ranges – also contains 0.

On the other hand, the set S consisting of all the points (0,x2) and (x1,0) is
conceivable. For this set, f (S) = {0}. Thus, the intersection of all y-ranges cannot
contain any non-zero values and is, thus, indeed equal to [Y ,Y ] = [0,0].

In some cases, however, we know that some sets of quantities are independent,
i.e., that the fact that one of them has a value xi should not affect the set of actually
occurring values of other quantities x j from this set. In such cases, all possible com-
binations (xi,x j, . . .) of actually occurring values are also actually occurring. So, we
get the following modification of Definition 2.

Definition 3. Let [X1,X1], . . . , [Xn,Xn] be intervals, let f (x1, . . . ,xn) be a con-
tinuous real-valued function of n real variables, and let F be a class of subsets
F ⊆ {1, . . . ,n} that contains all 1-element subsets {1}, . . . ,{n}.

• We say that a set S ⊆ [X1,X1]× . . .× [Xn,Xn] is F -conceivable if:
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– this set is connected, and
– for each set F = {i1, i2, . . .} ∈ F and for each combination (xi1 ,xi2 , . . .) of

values xik ∈ [X ik ,X ik ], there exists an n-tuple (x1, . . . ,xi, . . . ,xn) ∈ S with these
values xi1 ,xi2 , . . .

• By the F -aleatory y-set, we mean the set of all the real numbers y for which, for
every conceivable set S, there exists an n-tuple (x1, . . . ,xn) ∈ S for which

f (x1, . . . ,xn) = y.

Notation. In the following text, we will denote the F -aleatory y-set by

f F
a ([X1,X1], . . . , [Xn,Xn]).

Proposition 6. The F -aleatory y-set is either an interval, or an empty set.

Notation. Because of this result, in the following text, we will also call the F -
aleatory y-set the F -aleatory y-interval. We denote this interval by [Y ,Y ].

Case of full independence. In the case of full independence, when the class F
contains the set {1, . . . ,n}, all n-tuples are conceivable, and there is only one con-
ceivable set – the set of all combinations of the actual values of xi:

S = [X1,X1]× . . .× [Xn,Xn].

Thus, the F -aleatory y-interval is equal to the y-range of the function f (x1, . . . ,xn)
on these intervals:

f ([X1,X1], . . . ,xn ∈ [Xn,Xn])
def
= { f (x1, . . . ,xn) : x1 ∈ [X1,X1], . . . ,xn ∈ [Xn,Xn]}.

This is exactly the same formula as for the epistemic uncertainty. Thus, in this case
of full independence, to compute the aleatory y-interval, we can use the same inter-
val computations techniques as for epistemic intervals.

Linearized case. In the linearized case, there are explicit formulas for the F -
aleatory y-interval:

Proposition 7. Suppose that we have n intervals

[X̃1 −δ1, X̃1 +δ1], . . . , [X̃n −δn, X̃n +δn],

and the function y = f (x1, . . . ,xn) has the form (10). Let us denote

δ
def
= 2 ·max

F∈F
∑
i∈F

|ci| ·δi −
n

∑
j=1

|c j| ·δ j.

Then, the F -aleatory y-interval has the following form:
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• if δ < 0, then fa([X̃1 −δ1, X̃1 +δ1], . . . , [X̃n −δn, X̃n +δn]) = /0; and
• if δ ≥ 0, then fa([X̃1 −δ1, X̃1 +δ1], . . . , [X̃n −δn, X̃n +δn]) = [Ỹ −δ ,Ỹ +δ ].

7 What If We Take Discreteness Into Account

In the previous text, we assumed that all the changes are continuous and thus, that
all the ranges are connected. As we have mentioned, according to quantum physics,
there can be discrete transitions. In most cases, however, these transitions are small,
so that the distance between the previous state and the new state does not exceed
some small number ε > 0. In this case, for the set of actual combinations of values,
instead of the original connectedness, we have a similar notion of ε-connectedness:

Definition 4. Let ε > 0 be a real number. We say that a set S ⊆ IRn is ε-
connected if every two points x,x′ ∈ S can be connected by a sequence x =
x(1),x(2), . . . ,x(m−1),x(m) = x′ for which d(x(i),x(i+1)) ≤ ε for all i = 1, . . . ,m− 1.

It turns out that such sets can be approximated by connected sets:

Definition 5. We say that a connected set C is ε-close to the set S if S ⊆C and every
element of C is ε-close to some element of the set S.

Comment. In particular, we say that an interval [X ,X ] is an ε-aleatory interval if for
every value x from this interval, there is an ε-close actual value.

Proposition 8. For every ε-connected set S, there exists an ε-close connected set C.

One can easily see that for continuous functions f (x1, . . . ,xn), the image of an
ε-connected set is ε ′-connected, for an appropriate ε ′.

Proposition 9. For each box

B = [X1,X1]× . . .× [Xn,Xn]

and for every ε-connected set S ⊆ B, the y-range f (S) is ε ′-connected, for

ε
′ = c f (ε)

def
= sup{d( f (x), f (x′)) : d(x,x′)≤ ε}. (12)

Thus, we arrive at the following definition:

Definition 6. Let ε > 0 be given, let [X1,X1], . . . , [Xn,Xn] be intervals for which
X i −X i ≥ 2ε , and let f (x1, . . . ,xn) be a continuous real-valued function of n real
variables.
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• We say that a set S ⊆ [X1,X1]× . . .× [Xn,Xn] is ε-conceivable if this set is con-
nected and for every i and for every value xi ∈ [X i,X i], there exists an n-tuple
(x1, . . . ,xi, . . . ,xn) ∈ S whose i-th component is ε-close to this value.

• By the ε-aleatory y-set, we mean the set of all the real numbers y for which, for
every ε-conceivable set S, there exists an n-tuple (x1, . . . ,xn) ∈ S for which

f (x1, . . . ,xn) = y.

Notation. In the following text, we will denote the ε-aleatory y-set by

fa,ε([X1,X1], . . . , [Xn,Xn]).

Discussion. From the computational viewpoint, this case can be reduced to the con-
tinuous case:

Proposition 10. For every function f (x1, . . . ,xn) and for all intervals [X1,X1], . . . ,
[Xn,Xn], the ε-aleatory y-set has the form

fa,ε([X1,X1], . . . , [Xn,Xn]) = fa([X1 + ε,X1 − ε], . . . , [Xn + ε,Xn − ε]).

What if we allow discontinuities of arbitrary size? In this case, there is no jus-
tification for connectedness or ε-connectedness, so we can have the following new
definition, in which ∗ indicates that we no longer require connectedness:

Definition 7. Let [X1,X1], . . . , [Xn,Xn] be intervals, and let f (x1, . . . ,xn) be a con-
tinuous real-valued function of n real variables, and let ε > 0.

• We say that a set S ⊆ [X1,X1]× . . .× [Xn,Xn] is ∗-conceivable if for every i and
for every value xi ∈ [X i,X i], there exists an n-tuple (x1, . . . ,xi, . . . ,xn) ∈ S whose
i-th component is ε-close to this value.

• By the ∗-aleatory y-set, we mean the set of all the real numbers y for which, for
every ∗-conceivable set S, there exists an n-tuple (x1, . . . ,xn) ∈ S for which

f (x1, . . . ,xn) = y.

In some cases, we still have a non-empty ∗-aleatory y-set: e.g., in the above ex-
ample of multiplication and [X i,X i] = [0,ai], we still have [0,0] as the ∗-aleatory
y-set. However, in the linearized case, this definition does not lead to any meaning-
ful result: this set is always empty.

Proposition 11. For each linear function f (x1, . . . ,xn) of n ̸= 2 variables that ac-
tually depends on all its variables – i.e., for which all the coefficients are different
from 0 – the ∗-aleatory y-set is empty.
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8 Proofs

Proof of Proposition 2. The largest value of the expression (8) is attained when
each term ci ·∆xi in the sum is the largest.

• When ci is positive, this largest value is attained when ∆xi is the largest, i.e.,
when ∆xi = ∆i.

• When ci is negative, this largest value is attained when ∆xi is the smallest, i.e.,
when ∆xi =−∆i.

In both cases, the largest value of this term is equal to |ci| ·∆i, so the largest value
of y is equal to ỹ+∆ , where we denoted

∆ =
n

∑
i=1

|ci| ·∆i.

Similarly, we can show that the smallest value of y is equal to ỹ− ∆ . Thus, the
range of conceivable values of y is indeed equal to [ỹ−∆ , ỹ+∆ ]. The proposition is
proven.

Proof of Proposition 3. By Definition 2, a real number y belongs to the aleatory y-
set if and only if for every conceivable set S, there exists an n-tuple (x1, . . . ,xn) ∈ S
for which f (x1, . . . ,xn) = y, i.e., for which y belongs to the y-range

f (S) = {y = f (x1, . . . ,xn) : (x1, . . . ,xn) ∈ S}.

This means that the aleatory y-set is the intersection of y-ranges f (S) corresponding
to all conceivable sets S.

Each conceivable set S is bounded – since it is contained in the bounded box
[X1,X1]× . . .× [Xn,Xn] – and connected. The function f (x1, . . . ,xn) is continuous,
thus the corresponding range f (S) is also bounded and connected, i.e., is an interval.

Intersection of intervals is either an interval or an empty set. The proposition is
proven.

Proof of Proposition 4. In this proof, we use ideas from [7].

1◦. One can see that to prove the proposition, we need to prove the following two
statements:

• that when δ ≥ 0 and |y− Ỹ | ≤ δ , then, for each conceivable set S, we have y =
f (x1, . . . ,xn) for some n-tuple (x1, . . . ,xn) ∈ S, and

• that when |y− Ỹ |> δ , there exists a conceivable set S for which, for all n-tuples
(x1, . . . ,xn) ∈ S, we have y ̸= f (x1, . . . ,xn).

Let us prove these two statements one by one.

2◦. Let us first prove that if δ ≥ 0 and |y − Ỹ | ≤ δ , then the aleatory y-interval
contains the corresponding value y.

2.1◦. Let is first prove that the aleatory y-interval contains both values Ỹ − δ and
Ỹ +δ , i.e., that for every conceivable set S, the range f (S) contains both these values.
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To prove this, let us denote by i0 the index at which the product |ci| ·δi attains its
maximum:

|ci0 | ·δi0 = max
i

|ci| ·δi.

In these terms, the expression for δ has the following form

δ = 2 · |ci0 | ·δi0 −
n

∑
i=1

|ci| ·δi.

The sum in the right-hand side can be represented as

n

∑
i=1

|ci| ·δi = |ci0 | ·δi0 + ∑
i̸=i0

|ci| ·δi,

thus
δ = |ci0 | ·δi0 − ∑

i ̸=i0

|ci| ·δi.

Let us also denote, by si, the sign of the coefficient ci, i.e.:

• si = 1 if ci ≥ 0, and
• si =−1 if ci < 0.

In this case, for all i, we have ci · si = |ci|.
Since the set S is conceivable, there exists an n-tuple (x1, . . . ,xn) for which xi0 =

X̃i0 + si0 ·δi0 and |xi − X̃i| ≤ δi for all other i. For this n-tuple, we have

f (x1, . . . ,xn) = Ỹ + ci0 · (xi0 − X̃i0)+ ∑
i̸=i0

ci · (xi − X̃i). (13)

Here,
ci0 · (xi0 − X̃i0) = ci0 · si0 ·δi0 = |ci0 | ·δi0 , (14)

and for each i ̸= i0, we have

ci · (xi − X̃i)≥−|ci · (xi − X̃i)|=−|ci| · |xi − X̃i| ≥ −|ci| ·δi. (15)

Due to (14) and (15), we have

f (x1, . . . ,xn)≥ Ỹ + |ci0 | ·δi0 − ∑
i ̸=i0

|ci| ·δi,

i.e., f (x1, . . . ,xn) ≥ Ỹ + δ . Thus, for each conceivable set S, the y-range f (S) con-
tains a value which is larger than or equal to Ỹ +δ . Let us denote this value by y+.

Since the set S is conceivable, there exists an n-tuple (x1, . . . ,xn) for which xi0 =

X̃i0 − si0 · δi0 and |xi − X̃i| ≤ δi for all other i. For this n-tuple, we have the formula
(13). Here,

ci0 · (xi0 − X̃i0) = ci0 · (−si0 ·δi0) =−|ci0 | ·δi0 , (16)
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and for each i ̸= i0, we have

ci · (xi − X̃i)≤ |ci · (xi − X̃i)|= |ci| · |xi − X̃i| ≤ |ci| ·δi. (17)

Due to (16) and (17), we have

f (x1, . . . ,xn)≤ Ỹ −|ci0 | ·δi0 + ∑
i ̸=i0

|ci| ·δi,

i.e., f (x1, . . . ,xn) ≤ Ỹ − δ . Thus, for each conceivable set S, the y-range f (S) con-
tains a value which is smaller than or equal to Ỹ −δ . Let us denote this value by y−.

The y-range f (S) contains the values y+ and y− for which

y− ≤ Ỹ −δ ≤ Ỹ +δ ≤ y+.

Since the y-range f (S) is an interval, it must also contain both intermediate values
Ỹ −δ and Ỹ +δ . So, this statement is proven.

2.2◦. Let us now prove that, once we have a value y for which |y− Ỹ | ≤ δ , the
aleatory y-interval contains the value y.

Indeed, the inequality |y−Ỹ | ≤ δ means that Ỹ −δ ≤ y ≤ Ỹ +δ . We have proved
that the aleatory y-interval contains both values Ỹ − δ and Ỹ + δ . Thus, since the
aleatory y-set is an interval, it should also contain the intermediate value y. The first
part of the statement 1◦ is proven.

3◦. Let us now prove that if |y− Ỹ | > δ , then there exists a conceivable set S for
which, for all n-tuples (x1, . . . ,xn) ∈ S, we have f (x1, . . . ,xn) ̸= y.

Without loss of generality, we can consider the case when y−Ỹ > δ . In this case,
y > Ỹ +δ . The case when y− Ỹ <−δ can be proven the same way.

Let us take, as S, the set consisting of all n-tuples of the type

(X̃1 − s1 ·δ1, . . . , X̃i−1 − si−1 ·δi−1,xi, X̃i+1 − si+1 ·δi+1, . . . , X̃n − sn ·δn), (18)

for all i and for all xi ∈ [X̃i −δi, X̃i +δi].
This set consists of n connected components corresponding to different values i.

All these components have a common point (X̃1−s1 ·δ1, X̃2−s2 ·δ2, . . . , X̃n−sn ·δn)
through which we can connect points from the two different component sets. Thus,
the whole set S is connected.

It is easy to see that for every i, for every point xi ∈ [X̃i − δi, X̃i + δi], there ex-
ists an n-tuple from the set S with exactly this value of xi – namely, we can take
the corresponding point from the i-th component of the set S. Thus, the set S is
conceivable.

Let us show that for all n-tuples (x1, . . . ,xn) from this set S, we have
f (x1, . . . ,xn) ≤ Ỹ + δ and thus, f (x1, . . . ,xn) < y and f (x1, . . . ,xn) ̸= y. Since the
value y does not belong to the y-range f (S) for one of the conceivable sets, this
means that this value y does not belong to the y-aleatory interval [Y ,Y ] which is the
intersection of the y-ranges corresponding to all conceivable sets.

Indeed, for each n-tuple (18), we have
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f (x1, . . . ,xn) = Ỹ +
n

∑
j=1

c j · (x j − X̃ j) = Ỹ + ci · (xi − X̃i)+∑
j ̸=i

c j · (x j − X̃ j) =

ỹ+ ci · (xi − X̃i)+∑
j ̸=i

c j · s j · (−δ j) = ỹ+ ci · (xi − X̃i)−∑
j ̸=i

|c j| ·δ j.

Here, |xi − X̃i| ≤ δi, so ci · (xi − X̃i)≤ |ci| ·δi and thus,

f (x1, . . . ,xn)≤ ỹ+ |ci| ·δi −∑
j ̸=i

|c j| ·δ j = Ỹ +

(
2 · |ci| ·δi −

n

∑
j=1

|c j| ·δ j

)
.

We have
|ci| ·δi ≤ max

j
|c j| ·δ j,

therefore

f (x1, . . . ,xn)≤ Ỹ +

(
2 ·max

j
|c j| ·δ j −

n

∑
j=1

|c j| ·δ j

)
= Ỹ +δ .

The statement is proven, and so is the Proposition.

Proof of Corollary 1.

1◦. For the sum function f (x1,x2) = x1 + x2, we have n = 2 and c1 = c2 = 1. In this
case, the expression for δ takes the form

δ = 2 ·max(δ1,δ2)− (δ1 +δ2).

The expression max(δ1,δ2) is equal either to δ1 or to δ2 – depending on which
of these values is larger. Let us consider both case δ1 ≥ δ2 and δ1 < δ2.

1.1◦. Let us first consider the case when δ1 ≥ δ2.
In this case, max(δ1,δ2) = δ1, and we have δ = 2δ1 − (δ1 +δ2) = δ1 −δ2. Here,

Ỹ = X̃1 + X̃2, so

Y = Ỹ −δ = X̃1 + X̃2 −δ1 +δ2 = (X̃1 −δ1)+(X̃2 +δ2) = X1 +X2

and similarly,

Y = Ỹ +δ = X̃1 + X̃2 +δ1 −δ2 = (X̃1 +δ1)+(X̃2 −δ2) = X1 +X2.

Since always Y ≤ Y , we thus have X1 +X2 ≤ X1 +X2.

1.2◦. Similarly, when δ1 ≤ δ2, we get Y = X1 +X2 ≤ Y = X1 +X2.

2◦. In both cases,

Y = min(X1 +X2,X1 +X2) and Y = max(X1 +X2,X1 +X2).

The corollary is proven.
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Proof of Corollary 2. The difference x1 − x2 can be represented as x1 + (−x2),
where the set of known actual values of −x2 is equal to

{−x2 : x2 ∈ [X2,X2]}= [−X2,−X2].

If we apply the formula from Corollary 1 to this expression, we get exactly the
expression from Corollary 2. The statement is proven.

Proof of Proposition 5.

1◦. By definition, a problem is NP-hard if every problem from the class NP can be
reduced to this problem; see, e.g., [6, 12]. Thus, to prove that our problem is NP-
hard, it is sufficient to show that a known NP-hard problem can be reduced to our
problem. Then, for any problem from the class NP, by combining the reduction to
the known problem with the reduction of the known problem, we will get the desired
reduction to our problem – and thus, prove that our problem is NP-hard.

In this proof, as a known NP-hard problem, we take the following partition prob-
lem: given m positive integers s1, . . . ,sm, divide them into two groups with equal
sum. If we move all the terms of the desired equality

∑
i∈G

si = ∑
j ̸∈G

s j

to the left-hand side, we get an equivalent equality

n

∑
i=1

ηi · si = 0, (19)

where ηi = 1 if i ∈ G and ηi =−1 otherwise. Thus, the partition problem is equiva-
lent to checking whether there exist values ηi ∈ {−1,1} for which the equality (19)
is true.

Let us show that each instance of this problem can be reduced to the following
instance of the problem of computing the aleatory y-interval: n = m+1,

• [X i,X i] = [−si,si] for all i ≤ m, and

[Xm+1,Xm+1] = [0,s], (20)

where we denoted

s def
=

1
m
·

m

∑
i=1

s2
i , (21)

and
•

f (x1, . . . ,xm,xm+1) = xm+1 −V, (22)

where

V def
=

1
m
·

m

∑
i=1

x2
i −

(
1
m
·

m

∑
i=1

xi

)2

. (23)
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Comment. In the following text, we will use the fact that the expression V – which
is actually the expression for sample variance – can be equivalently reformulated as

1
m
·

m

∑
i=1

(
xi −

1
m
·

m

∑
j=1

x j

)2

,

and is, thus, always non-negative: V ≥ 0.

2◦. Let us recall – see, e.g., [1, 2] – that for the maximum

M def
= max

xi∈[−si,si]
V, (24)

we have the following property:

• if the original instance of the partition problem has a solution, then M = s, and
• if the original instance of the partition problem does not have a solution, then

M < s.

Indeed, since |xi| ≤ si, we have x2
i ≤ s2

i and thus,

V =
1
m
·

m

∑
i=1

x2
i −

(
1
m
·

m

∑
i=1

xi

)2

≤ 1
m
·

m

∑
i=1

x2
i ≤

1
m
·

m

∑
i=1

s2
i = s. (25)

Hence, the maximum M of this expression is always smaller than or equal to s.
When the original instance of the partition problem has a solution ηi, then for

xi = ηi · si, we have
m

∑
i=1

xi =
m

∑
i=1

ηi · si = 0 (26)

and x2
i = s2

i , thus

V =
1
m
·

m

∑
i=1

x2
i −

(
1
m
·

m

∑
i=1

xi

)2

=
1
m
·

m

∑
i=1

x2
i =

1
m
·

m

∑
i=1

s2
i = s.

Thus, in this case, the maximum M is indeed equal to s.
Vice versa, if the maximum M is equal to s, this means that for some n-tuples

(x1, . . . ,xn), we have equality in both inequalities that form the formula (25). The
fact that we have equality in the first inequality means that we have x2

i = s2
i for all i,

i.e., that xi =±si, i.e., that we have xi = ηi · si for some ηi ∈ {−1,1}. The fact that
we have equality in the second inequality means that we have equality (26), i.e., that
the values ηi form a solution to the original instance of the partition problem.

Thus, if the original instance of the partition problem does not have a solution,
we cannot have M = s. Since we always have M ≤ s, this means that in this case,
we must have M < s. The statement is proven.
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Comment. As shown in [1, 2], we can feasibly compute the value δ > 0 such that if
the original instance of the partition problem does not have a solution, then we have

M ≤ s−δ .

3◦. Let us prove that for the above problem, the aleatory y-interval is equal to

[0,s−M].

3.1◦. First, let us prove that for every conceivable set S, the y-range f (S) contains
the interval [0,s−M].

3.1.1◦. Let us first prove that the y-range f (S) contains a value which is larger than
or equal to s−M.

Indeed, by definition of a conceivable set, the set S contains an n-tuple for which
xm+1 = s. The value y+

def
= f (x1, . . . ,xm,s) corresponding to this n-tuple is obtained

by subtracting, from xm+1 = s, the expression V whose maximum is M. Thus, V ≤
M, and therefore, y+ = s−V ≥ s−M. So, the y-range f (S) contains a value y+ ≥
s−M.

3.1.2◦. Let us first prove that the y-range f (S) contains a value which is smaller than
or equal to 0.

Indeed, by definition of a conceivable set, the set S contains an n-tuple for which
xm+1 = 0. The value y−

def
= f (x1, . . . ,xm,0) corresponding to this n-tuple is obtained

by subtracting, from xm+1 = 0, a non-negative expression V . Thus, y− = 0−V ≤ 0.

3.1.3◦. The interval f (S) contains a value y− ≤ 0 and a value y+ ≥ s−M, thus this
interval must contain all the values between y− and y+, including all the values from
the interval [0,s−M]. The Statement 3.1 is proven.

3.2◦. Let us now prove that there exists a conceivable set S for which the y-range
f (S) does not contain any values larger than s−M.

Indeed, let xopt
1 , . . . ,xopt

m be an n-tuple at which the expression V attains its maxi-
mum M. Then, we can take the set U consisting of:

• all the (m+1)-tuples (xopt
1 , . . . ,xopt

m ,xm+1) corresponding to all the values xm+1 ∈
[0,s] and

• all the (m+1)-tuples (x1, . . . ,xm,0) corresponding to all m-tuples (x1, . . . ,xm).

One can easily check that this set is conceivable.

• For n-tuples from the first component of this set, we have y = xm+1−M ≤ s−M.
• For n-tuples from the second component of this set, we have y = 0−V ≤ 0 and

thus, y ≤ s−M.
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Thus, for this set S, all the values from the y-range f (S) are indeed smaller than or
equal to s−M.

3.3◦. Let us prove that there exists a conceivable set S for which the y-range f (S)
does not contain any negative values.

Indeed, let us take the set S consisting of:

• all the (m+1)-tuples (0, . . . ,0,xm+1) corresponding to all the values xm+1 ∈ [0,s]
and

• all the (m+1)-tuples (x1, . . . ,xm,s) corresponding to all m-tuples (x1, . . . ,xm).

One can easily check that this set is conceivable.

• For (m+1)-tuples from the first component of this set, we have V = 0, thus

y = xm+1 −V = xm+1 ≥ 0.

• For (m+1)-tuples from the second component of this set, we have y = s−V and,
since V ≤ M, we have y ≥ s−M ≥ 0.

Thus, for this set S, all the values from the y-range f (S) are indeed non-negative.

3.4◦. Due to Parts 3.1–3.3 of this proof, the aleatory y-interval – which is equal to
the intersection of all the y-ranges f (S) corresponding to conceivable sets S:

• contains the interval [0,s−M] but
• does not contain any values outside this interval.

Thus, indeed, the aleatory y-interval is equal to [0,s−M].

4◦. Now we can prove the desired reduction.
If we could compute the aleatory y-range, we would then be able to compute the

value s−M and thus, we would be able to check whether s−M > 0, i.e. whether
M < s or M = s. Due to Part 2 of this proof, we would then be able to check whether
the original instance of the partition problem has a solution.

So, we indeed have a reduction of a known NP-hard problem to our problem.
Thus, the problem of computing the aleatory y-interval is NP-hard. The proposition
is proven.

Proof of Proposition 6 is similar to the proof of Proposition 3.

Proof of Proposition 7 is similar to the proof of Proposition 4.

Proof of Proposition 8. It is sufficient to take, as the desired set C, the union of all
straight line segments that connect all the ε-close pairs of points x,x′ ∈ S. One can
easily see that this set is connected and ε-close to the original set S.

Proof of Proposition 10. An ε-conceivable set S must contain, for each i:

• n-tuples for which xi is ε-close to X i, i.e., for which xi ≤ X i + ε , and
• n-tuples for which xi is ε-close to X i, i.e., for which xi ≥ X i − ε .
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Since the set S is connected, the set Si of all values xi corresponding to its n-tuples
is also connected, i.e., is an interval containing points xi ≤ X i + ε and xi ≥ X i − ε .
Thus, the set Si contains all the values from the “ε-reduced” interval [X i+ε,X i−ε],
so it must be conceivable for the reduced intervals.

Vice versa, if we have a set S which is conceivable for the reduced intervals, then,
as one can easily check, this set S is ε-conceivable for the original intervals [X i,X i].
Thus, the desired equality follows from Definition 2.

Proof of Proposition 11. Connected sets are a particular case of general sets, so
the ∗-aleatory y-interval is a subset of the aleatory y-interval [Y ,Y ]. To prove the
proposition, we need to prove that for every y ∈ [Y ,Y ], there exists a ∗-conceivable
set S for which y ̸∈ f (S). As such a set, let us take

S = {(x1, . . . ,xn) : f (x1, . . . ,xn) ̸= y}.

The only thing we need to check is that for each i, all the values xi ∈ [X i,X i] are
represented by n-tuples from this set, Indeed, otherwise, if some value x(0)i was
not represented, this would mean that f (x1, . . . ,xi−1,x

(0)
i ,xi+1, . . . ,xn) = y for all

combinations (x1, . . . ,xi−1,xi+1, . . . ,xn) – but for a linear function, this would mean
that this function does not depend on the variables x1, . . . ,xi−1,xi+1, . . . ,xn at all –
which contradicts to our assumption. The proposition is proven.

Comment. For a non-linear function, as the example of multiplication shows, the
∗-aleatory y-interval can be non-empty – exactly because for multiplication, there is
a value x(0)1 = 0 for which f (x(0)1 ,x2) = 0 · x2 = 0 for all x2.
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