
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

12-1-2022

Standard Interval Computation Algorithm Is Not Inclusion-Standard Interval Computation Algorithm Is Not Inclusion-

Monotonic: Examples Monotonic: Examples

Marina Tuyako Mizukoshi
Federal University of Goias, tuyako@ufg.br

Weldon Lodwick
University of Colorado Denver, weldon.lodwick@ucdenver.edu

Martine Ceberio
The University of Texas at El Paso, mceberio@utep.edu

Olga Kosheleva
The University of Texas at El Paso, olgak@utep.edu

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Sciences Commons, and the Mathematics Commons

Comments:

Technical Report: UTEP-CS-22-125

Recommended Citation Recommended Citation
Mizukoshi, Marina Tuyako; Lodwick, Weldon; Ceberio, Martine; Kosheleva, Olga; and Kreinovich, Vladik,
"Standard Interval Computation Algorithm Is Not Inclusion-Monotonic: Examples" (2022). Departmental
Technical Reports (CS). 1782.
https://scholarworks.utep.edu/cs_techrep/1782

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1782?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1782&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Standard Interval Computation Algorithm Is
Not Inclusion-Monotonic: Examples

Marina Tuyako Mizukoshi, Weldon Lodwick, Martine Ceberio, and Vladik
Kreinovich

Abstract When we usually process data, we, in effect, implicitly assume that we
know the exact values of all the inputs. In practice, these values comes from mea-
surements, and measurements are never absolutely accurate. In many cases, the only
information about the actual (unknown) values of each input is that this value be-
longs to an appropriate interval. Under this interval uncertainty, we need to compute
the range of all possible results of applying the data processing algorithm when the
inputs are in these intervals. In general, the problem of exactly computing this range
is NP-hard, which means that in feasible time, we can, in general, only compute ap-
proximations to these ranges. In this paper, we show that, somewhat surprisingly,
the usual standard algorithm for this approximate computation is not inclusion-
monotonic, i.e., switching to more accurate measurements and narrower subinter-
vals does not necessarily lead to narrower estimates for the resulting range.

1 Formulation of the Problem

Need for data processing. In many practical situations, we are interested in a qual-
ity y that is difficult – or even impossible – to directly measure, e.g., tomorrow’s
temperature or the distance to a faraway star.

Since we cannot measure y directly, the only way to estimate y is:

Marina Tuyako Mizukoshi
Federal University of Goias, Brazil, e-mail: tuyako@ufg.br

Weldon Lodwick
Department of Mathematical and Statistical Sciences, University of Colorado Denver,
1201 Larimer Street, Denver, Colorado 80204, USA, e-mail: weldon.lodwick@ucdenver.edu

Martine Ceberio and Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA,
e-mail: mceberio@utep.edu, vladik@utep.edu

1

2 M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

• to find some easier-to-measure quantities x1, . . . ,xn that are related to y by a
known dependence y = f (x1, . . . ,xn), and

• to use the results x̃i of measuring xi to produce an estimate ỹ = f (x̃1, . . . , x̃n).

Computation of this estimate is an important example of data processing.

Need for interval computation. Measurements are never absolutely accurate, there
is usually a non-zero measurement error ∆xi

def
= x̃i − xi, the difference between the

measurement result x̃i and the actual (unknown) value xi of the corresponding quan-
tity.

In many practical situations, the only information that we have about each mea-
surement error ∆xi is the upper bound ∆i on its absolute value: |∆xi| ≤ ∆i; see, e.g.,
[9]. In such situations, once we know the measurement result x̃i, the only informa-
tion that we have about the actual value xi is that it belongs to the interval

xi = [xi,xi]
def
= [x̃i −∆i, x̃i +∆i].

In this case, the only information that we can have about the value of the desired
quantity y is that this value belongs to the following y-range:

y = f (x1, . . . ,xn)
def
= { f (x1, . . . ,xn) : x1 ∈ x1, . . . ,xn ∈ xn}.

When the function y = f (x1, . . . ,xn) is continuous – and most data processing func-
tions are continuous – this y-range is an interval. Because of this, computation of
the y-range y is known as interval computations; see, e.g., [2, 6, 7, 8].

Comment about notations. In this paper, we will follow the usual practice of interval
computations, where bold-face letters indicate intervals. For example:

• xi is a number while
• xi is an interval.

Range is inclusion-monotonic. By definition of the range, we can easily see that
the y-range is inclusion-monotonic in the sense that if for some intervals x1, . . . ,xn,
X1, . . . ,Xn, we have xi ⊆ Xi for all i, then we should have

f (x1, . . . ,xn)⊆ f (X1, . . . ,Xn).

Need for approximate algorithms. It is known – see, e.g., [5] – that computing the
y-range is, in general, NP-hard: it is actually NP-hard already for quadratic functions
y = f (x1, . . . ,xn). This means, in effect, that we cannot compute the exact y-range
in feasible time: the only thing we can do is use approximate algorithms, i.e., algo-
rithms that compute the approximate y-range. We will denote these algorithms by
fapprox(x1, . . . ,xn); here,

fapprox(x1, . . . ,xn)≈ f (x1, . . . ,xn).

Standard Interval Computation Algorithm Is Not Inclusion-Monotonic: Examples 3

Natural question: are approximate interval computation algorithms inclusion-
monotonic? A natural question is whether these approximate algorithms are
inclusion-monotonic, i.e., whether the fact that xi ⊆ Xi for all i implies that

fapprox(x1, . . . ,xn)⊆ fapprox(X1, . . . ,Xn).

What we do in this paper. In this paper, we consider the standard algorithm for
computing the approximation for the interval y-range. We show that while many
components of this algorithm are inclusion-monotonic, the algorithm itself is not:
there are simple counter-examples.

2 Standard Interval Computations Algorithm: Reminder

Interval arithmetic. Let us first start with describing the standard interval compu-
tation algorithm.

To describe this algorithm, we will first describe preliminary algorithms of which
this standard algorithm is composed. For each preliminary algorithm, we will also
explain its motivations.

Taking monotonicity into account. Many functions are increasing or decreasing.
We say that a function y = f (x1, . . . ,xn) is (non-strictly) increasing with respect to
the variable xi if for all possible values x1, . . . ,xi−1,xi,Xi,xi+1, . . . ,xn the inequality
xi ≤ Xi implies that

f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)≤ f (x1, . . . ,xi−1,Xi,xi+1, . . . ,xn).

Similarly, we say that a function f (x1, . . . ,xn) is (non-strictly) decreasing with re-
spect to the variable xi if for all possible values x1, . . . ,xi−1,xi,Xi,xi+1, . . . ,xn the
inequality xi ≤ Xi implies that

f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)≥ f (x1, . . . ,xi−1,Xi,xi+1, . . . ,xn).

If a function is increasing or decreasing in xi, we say that it is monotonic in xi.
For example, when x1 > 0 and x2 > 0, then:

• the function y = f (x1,x2) = x1 · x2 is increasing in each of the inputs x1 and x2,
while

• the function y = f (x1,x2) = x1/x2 is increasing in x1 and decreasing in x2.

When the function y = f (x1, . . . ,xn) is monotonic – (non-strictly) increasing or
(non-strictly) decreasing – with respect to each variable, then its y-range can be
easily computed by considering the corresponding endpoints.

4 M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

For example, suppose that a function y = f (x1, . . . ,xn) is increasing with respect
to each of its variables, and we have a combination of values (x1, . . . ,xn) for which
xi ≤ xi ≤ xi for all i. Then:

• monotonicity with respect to x1 implies that

f (x1,x2, . . . ,xn)≤ f (x1,x2,x3, . . . ,xn);

• monotonicity with respect to x2 implies that

f (x1,x2,x3, . . . ,xn)≤ f (x1,x2,x3, . . . ,xn);

• . . . , and
• monotonicity with respect to xn implies that

f (x1, . . . ,xn−1,xn)≤ f (x1, . . . ,xn−1,xn).

So, we have:

f (x1,x2, . . . ,xn)≤ f (x1,x2,x3, . . . ,xn)≤ f (x1,x2,x3, . . . ,xn)≤ . . .≤

f (x1, . . . ,xn−1,xn)≤ f (x1, . . . ,xn−1,xn)

and thus, by transitivity of inequality:

f (x1, . . . ,xn)≤ f (x1, . . . ,xn).

Similarly:

• monotonicity with respect to x1 implies that

f (x1,x2, . . . ,xn)≤ f (x1,x2,x3, . . . ,xn);

• monotonicity with respect to x2 implies that

f (x1,x2,x3, . . . ,xn)≤ f (x1,x2,x3, . . . ,xn);

• . . . , and
• monotonicity with respect to xn implies that

f (x1, . . . ,xn−1,xn)≤ f (x1, . . . ,xn−1,xn).

So, we have:

f (x1,x2, . . . ,xn)≤ f (x1,x2,x3, . . . ,xn)≤ f (x1,x2,x3, . . . ,xn)≤ . . .≤

f (x1, . . . ,xn−1,xn)≤ f (x1, . . . ,xn−1,xn)

and hence, by transitivity of inequality:

Standard Interval Computation Algorithm Is Not Inclusion-Monotonic: Examples 5

f (x1, . . . ,xn)≤ f (x1, . . . ,xn).

Thus, we always have

f (x1, . . . ,xn)≤ f (x1, . . . ,xn)≤ f (x1, . . . ,xn),

so the y-range of possible values of y = f (x1, . . . ,xn) is contained in the interval
[f (x1, . . . ,xn), f (x1, . . . ,xn)]. On the other hand, both endpoints of this interval are
clearly part of the desired y-range, so the y-range is simply equal to this interval:

f ([x1,x1], . . . , [xn,xn]) = [f (x1, . . . ,xn), f (x1, . . . ,xn)].

This general fact have the following immediate implications.

Interval arithmetic. For example, the function y = f (x1,x2) = x1+x2 is increasing
in x1 and in x2, so, according to the above formula, its y-range is equal to

f ([x1,x1], [x2,x2]) = [f (x1,x2), f (x1,x2)],

i.e., we have
[x1,x1]+ [x2,x2] = [x1 + x2,x1 + x2].

Similarly, the function y = f (x1,x2) = x1 − x2 is increasing in x1 and decreasing
in x2, so we have

[x1,x1]− [x2,x2] = [x1 − x2,x1 − x2].

Similarly, we get:

[x1,x1] · [x2,x2] = [min(x1 ·x2,x1 ·x2,x1 ·x2,x1 ·x2),max(x1 ·x2,x1 ·x2,x1 ·x2,x1 ·x2)];

1
[x1,x1]

=

[
1
x1
,

1
x1

]
if 0 ̸∈ [x1,x1]; and

[x1,x1]

[x2,x2]
= [x1,x1] ·

1
[x2,x2]

.

All these formulas are known as interval arithmetic.

Comment. Similar formulas can be described for monotonic elementary functions
such as exp(x), ln(x), xm for odd m, and for elementary function y = f (x) which are
monotonic on known x-intervals such as xm for even m, sin(x), etc.

First preliminary algorithm – straightforward interval computation: idea. In a
computer, the only hardware supported operations are arithmetic operations. Thus,
no matter what we want to compute, the computer will actually perform a sequence
of arithmetic operations. For example, if we ask a computer to compute exp(x), most
computers will simply compute the sum of the first few (N) terms of this function’s
Taylor series:

exp(x)≈ 1+
x1

1!
+

x2

2!
+ . . .+

xN

N!
.

6 M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

So, we arrive at the following natural idea known as straightforward interval
computations.

Straightforward interval computations: algorithm. In this algorithm, we replace
each arithmetic operation with a corresponding operation of interval arithmetic.

Important comments.

• It is known that, as a result of straightforward interval computations, we get an
enclosure Y = fapprox(x1, . . . ,xn) for the desired y-range y, i.e., an interval Y for
which y ⊆ Y.

• We can also replace the application of elementary functions with the correspond-
ing interval expressions.

Straightforward interval computations: first example. For example, if we want
to compute the y-range of the function y = f (x1) = x1 · (1 − x1) on the interval
x1 = [0,1], we take into account that computing this function involves:

• first subtraction r def
= 1− x1 and

• then subtraction y = x1 · r.

So, according to the general description of straightforward interval computations:

• we first compute

r = 1−x1 = 1− [0,1] = [1,1]− [0,1] = [1−1,1−0] = [0,1],

and
• then we compute

Y = x1 ·r = [0,1] · [0,1] = [min(0 ·0,0 ·1,1 ·0,1 ·1),max(0 ·0,0 ·1,1 ·0,1 ·1)] =

[min(0,0,0,1),max(0,0,0,1)] = [0,1].

In this example, the actual y-range – as one can easily check – is [0,0.25], which is
much narrower than our estimate.

Straightforward interval computations: second example. Similarly, to compute
the y-range of the function y = f (x1) = x1 · (1− x1) on the interval x1 = [0,0.5],

• we first compute

r = 1− [0,0.5] = [1,1]− [0.0.5] = [1−0.5,1−0] = [0.5,1],

and
• then we compute

Y = x1 · r = [0,0.5] · [0.5,1] = [0,0.5].

The actual y-range is [0,0.25].

Straightforward interval computations: third example. Finally, to compute the
y-range of the function y = f (x1) = x1 · (1− x1) on the interval x1 = [0.4,0.8],

Standard Interval Computation Algorithm Is Not Inclusion-Monotonic: Examples 7

• we first compute

r = 1−x1 = 1− [0.4,0.8] = [1,1]− [0.4,0.8] = [1−0.8,1−0.4] = [0.2,0.6],

and
• then we compute

Y = x1 · r = [0.4,0.8] · [0.2,0.6] = [0.08,0.48].

The actual y-range is [0.16,0.25].

Need to go beyond straightforward interval computations. In all these examples,
the actual y-range is much narrower than our estimate.

So, clearly, we need a better algorithm.

Checking monotonicity. So far, we have only used the monotonicity idea for func-
tions corresponding to elementary arithmetic operations. A natural idea is to use
monotonicity for other functions as well.

How can we check whether the function y = f (x1, . . . ,xn) is monotonic with
respect to some of the variables?

• According to calculus, a function y = f (x1, . . . ,xn) is (non-strictly) increasing
with respect to xi if and only if the corresponding partial derivative

∂ f
∂xi

is non-negative for all possible values xi ∈ xi.
• Similarly, a function y = f (x1, . . . ,xn) is (non-strictly) decreasing with respect to

xi if and only if the corresponding partial derivative

∂ f
∂xi

is non-positive for all possible values xi ∈ xi.

We cannot directly check the corresponding inequalities for all the infinitely many
combinations of xi ∈ xi, but what we can do is use straightforward interval compu-
tations to find the enclosure di = [di,di] for the range of this partial derivatives over
the whole box

x1 × . . .×xn.

If di ≥ 0, this means that the partial derivative is always non-negative and thus,
that the function y = f (x1, . . . ,xn) is (non-strictly) increasing in xi. Since xi ≤ xi, this
means, in particular, that for all possible values x1, . . . ,xn from the corresponding
intervals, we have

f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)≤ f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn).

8 M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

Thus, wherever value f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn) of the function we have, there is
a smaller (or equal) value of the type f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn). Thus, to com-
pute the smallest possible value y of the function y = f (x1, . . . ,xn), it is sufficient to
only consider the values of the type f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn). In other words,
to compute y, it is sufficient to consider the y-range of the function

x1, . . . ,xi−1,xi+1, . . . ,xn 7→ f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)

of n−1 variables.
Similarly, since xi ≤ xi, for all possible values x1, . . . ,xn from the corresponding

intervals, we have

f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)≤ f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn).

Thus, wherever value f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn) of the function we have, there
is a larger (or equal) value of the type f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn). Thus, to com-
pute the largest possible value y of the function y = f (x1, . . . ,xn), it is sufficient to
only consider the values of the type f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn). In other words,
to compute y, it is sufficient to consider the y-range of the function

x1, . . . ,xi−1,xi+1, . . . ,xn 7→ f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)

of n−1 variables.
When di ≤ 0, this means that the partial derivative is always non-positive and

thus, that the function f (x1, . . . ,xn) is (non-strictly) decreasing in xi. Since xi ≤ xi,
this means, in particular, that for all possible values x1, . . . ,xn from the correspond-
ing intervals, we have

f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)≤ f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn).

Thus, wherever value f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn) of the function we have, there
is a larger (or equal) value of the type f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn). Thus, to com-
pute the largest possible value y of the function y = f (x1, . . . ,xn), it is sufficient to
only consider the values of the type f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn). In other words,
to compute y, it is sufficient to consider the y-range of the function

x1, . . . ,xi−1,xi+1, . . . ,xn 7→ f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)

of n−1 variables.
Similarly, since xi ≤ xi, for all possible values x1, . . . ,xn from the corresponding

intervals, we have

f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)≤ f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn).

Thus, wherever value f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn) of the function we have, there is
a smaller (or equal) value of the type f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn). Thus, to com-
pute the smallest possible value y of the function y = f (x1, . . . ,xn), it is sufficient to

Standard Interval Computation Algorithm Is Not Inclusion-Monotonic: Examples 9

only consider the values of the type f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn). In other words,
to compute y, it is sufficient to consider the y-range of the function

x1, . . . ,xi−1,xi+1, . . . ,xn 7→ f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)

of n−1 variables.
Thus, we arrive at the following algorithm.

Second preliminary algorithm: taking monotonicity into account. We select one
of the variables xi, and we use straightforward interval computations to find the
enclosure di = [di,di] for the range of the i-th partial derivative

∂ f
∂xi

(x1, . . . ,xn).

If di ≥ 0 of di ≥ 0, then we reduce the original problem with n variables to two
problems of finding the following y-ranges of functions of n−1 variables:

f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)

and
f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn).

• When di ≥ 0, we produce the interval formed by the lower endpoint of the first
y-range and the upper endpoint of the second y-range as the desired estimate for
the y-range of the original function.

• When di ≤ 0, we produce the interval formed by the lower endpoint of the second
y-range and the upper endpoint of the first y-range as the desired estimate for the
y-range of the original function.

For each of the resulting functions of n− 1 variables – or, if no monotonicity was
discovered, for the original function y = f (x1, . . . ,xn) – we check monotonicity with
respect to other variables, etc.

At the end, when we have checked monotonicity with respect to all the variables
and we are still left with the need to estimate the y-range, we use straightforward
interval computations.

Second preliminary algorithm: example. Let us find the y-range of the function
y = f (x1) = x1 · (1− x1) on the interval [0,0.5].

The standard differentiation algorithm leads to the derivative

f ′(x1) = 1 · (1− x1)+ x1 · (−1) = 1−2x1.

For this derivative, straightforward interval computations lead to the range

d1 = 1−2 · [0,0.5] = [1,1]− [0,1] = [1−1,1−0] = [0,1].

Here, d1 ≥ 0, so we conclude that this function is monotonic with respect to d1 and
thus, its y-range is equal to

10 M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

[f (x1), f (x1)] = [f (0), f (0.5)] = [0,0.25].

So, in this case, we get the exact y-range – which is much better than a wider enclo-
sure that we got when we use straightforward interval computations.

Need for a better algorithm. For estimating the y-range of the function y= f (x1) =
x1 · (1− x1) on the interval [0,0.5], where this function is monotonic, using mono-
tonicity leads to a better result. However, for the other two intervals [0,1] and
[0.4,0.8] the given function is not monotonic. Accordingly, our ranges for the deriva-
tive are equal to

d1 = [d1,d1] = 1−2 · [0,1] = [1,1]− [0,2] = [−1,1]

and to

d1 = [d1,d1] = 1−2 · [0.4,0.8] = [1,1]− [0.8,1.6] = [−0.6,0.2].

In both case, we have neither d1 ≥ 0 nor d1 ≤ 0.
Thus, the second preliminary algorithm still leads to the same straightforward

interval computations that led to a very wide enclosure. So, it is still desirable to
have better estimates for the y-range.

Centered form: idea. Each value xi ∈ xi = [xi,xi] = [x̃i −∆i, x̃i +∆i] can be repre-
sented as xi = x̃i +∆xi, where |∆xi| ≤ ∆i. It is know that for each combination of
such values, we have

f (x1, . . . ,xn) = f (x̃1 +∆x1, . . . , x̃n +∆xn) =

f (x̃1, . . . , x̃n)+
n

∑
i=1

∂ f
∂xi

(x̃1 +ζ1, . . . , x̃n +ζn) ·∆xi,

for some ζi ∈ [−∆i,∆i].
Each value x̃i+ζi belongs to the interval xi. Thus, the corresponding value of the

partial derivative belongs to the range

∂ f
∂xi

(x1, . . . ,xn)

and thence, belongs to the enclosure di of this range. The values ∆xi belong to
the interval [−∆i,∆i]. Hence, for every combination of values xi ∈ xi, the value
f (x1, . . . ,xn) belongs to the interval

f (x̃1, . . . , x̃n)+
n

∑
i=1

di · [−∆i,∆i].

This interval contains the whole desired y-range of the function y= f (x1, . . . ,xn) and
is, therefore, an enclosure for this y-range. This enclosure is known as the centered
form. By using this enclosure, we get the following algorithm.

Standard Interval Computation Algorithm Is Not Inclusion-Monotonic: Examples 11

Third preliminary algorithm.

• First, we check monotonicity – as in the second preliminary algorithm.
• Once we are left with box or boxes on which there is no monotonicity, we use

the centered form to compute the enclosure.

Third preliminary algorithm: first example. For estimating the y-range of the
function y = f (x1) = x1 · (1−x1) on the interval [0,1], for which x̃1 = 0.5 and ∆1 =
0.5, and we which we already know that d1 = [−1,1], the centered form leads to

f (0.5)+ [−1,1] · [−0.5,0.5] = 0.25+[−0.5,0.5] = [−0.25,0.75].

This is still much wider than the actual y-range [0,0.25], but much narrower than
the enclosure [0,1] obtained by straightforward interval computations.

Third preliminary algorithm: second example. For estimating the y-range of the
function y = f (x1) = x1 − x2

1 on the interval [0.4,0.8], for which x̃1 = 0.6 and ∆1 =
0.2, and we which we already know that d1 = [−0.6,0.2], the centered form leads
to

f (0.4)+ [−0.6,0.2] · [−0.2,0.2] = 0.24+[−0.12,0.12] = [0.12,0.36].

This is still much wider than the actual y-range [0.16,0.25], but much narrower than
the enclosure [0.08,0.48] obtained by straightforward interval computations.

Need for a better algorithm. The estimates for the desired y-ranges are still too
wide, so we need better estimates.

Bisection: idea. The centered form means, in effect, that we approximate the orig-
inal function by linear terms of its Taylor expansion. Thus, the inaccuracy of this
method is of the same size as the largest ignored terms in this expression – i.e.,
quadratic terms. These terms are proportional to ∆ 2

i . Thus, to decrease these terms,
a natural idea is to decrease ∆i.

A natural way to do it is to bisect, i.e., to divide one of the intervals into two
equal halves, with half-size value of ∆i. By using this idea, arrive at the following
standard interval computations algorithm.

Standard interval computations algorithm. First, we follow the third preliminary
algorithm. If we are not satisfied with the result:

• select one of the variables i,
• we divide the corresponding interval xi into two equal-size sub-intervals [xi, x̃i]

and [x̃i,xi], and
• we apply the third preliminary algorithm to estimate the y-ranges

f (x1, . . . ,xi−1, [xi, x̃i],xi+1, . . . ,xn)

and
f (x1, . . . ,xi−1, [x̃i,xi],xi+1, . . . ,xn).

12 M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

We then take the union of these two y-range estimates as the enclosure for the de-
sired y-range.

If we are still no happy with the result, we again apply bisection, etc.

Standard algorithm: first example. Let us consider the problem of estimating the
y-range of the function y = f (x1) = x1 · (1− x1) on the interval [0,1].

For this problem, since we did not get monotonicity, a reasonable idea is to try
at least one bisection. In this case, there is only one variable x1, so bisection simply
means considering two intervals [0,0.5] and [0.5,1].

For the interval [0,0.5], the range of the derivative f ′(x1) = 1−2x1 is estimated
as

[d1,d1] = 1−2 · [0,0.5] = 1− [0,1] = [1−1,1−0] = [0,1].

In this case, d1 ≥ 0, so the function y = f (x1) is increasing, and its y-range is equal
to

f ([0,0.5]) = [f (0), f (0.5)] = [0,0.25].

For the interval [0.5,1], the range of the derivative f ′(x1) = 1−2x1 is estimated
as

[d1,d1] = 1−2 · [0.5,1] = 1− [1,2] = [1−2,1−1] = [−1,0].

In this case, d1 ≤ 0, so the function y = f (x1) is decreasing, and its y-range is equal
to

f ([0.5,1]) = [f (1), f (0.5)] = [0,0.25].

The y-range f ([0,1]) of this function on the whole interval [0,1] can be computed
as the union of its y-ranges on the two subintervals:

f ([0,1]) = f ([0,0.5])∪ f ([0.5,1]) = [0,0.25]∪ [0,0.25] = [0,0.25].

In this example, we get the exact y-range.

Standard algorithm: second example. Let us now consider the problem of esti-
mating the y-range of the function y = f (x1) = x1 · (1−x1) on the interval [0.4,0.8].

For this problem, since we did not get monotonicity, a reasonable idea is to try
at least one bisection. In this case, there is only one variable x1, so bisection simply
means considering two intervals [0.4,0.6] and [0.6,0.8].

For the interval [0.4,0.6], the range of the derivative f ′(x1) = 1−2x1 is estimated
as

[d1,d1] = 1−2 · [0.4,0.6] = 1− [0.8,1.2] = [1−1.2,1−0.8] = [−0.2,0.2].

The range includes both positive and negative values, so we cannot use monotonic-
ity, we have to use the centered form. In this case, midpoint x̃1 of the interval is
x̃1 = 0.5 and its half-width ∆1 is ∆1 = 0.1, so the centered form leads to the follow-
ing estimate:

f (0.5)+ f ′([0.4,0.6]) · [−0.1,0.1] = 0.25+[−0.2,0.2] · [−0.1,0.1] =

Standard Interval Computation Algorithm Is Not Inclusion-Monotonic: Examples 13

0.25+[−0.02,0.02] = [0.23,0.27].

For the interval [0.6,0.8], the range of the derivative f ′(x1) = 1−2x1 is estimated
as

[d1,d1] = 1−2 · [0.6,0.8] = 1− [1.2,1.6] = [1−1.6,1−1.2] = [−0.6,−0.2].

In this case, d1 ≤ 0, so the function y = f (x1) is decreasing, and its y-range is equal
to

f ([0.6,0.8]) = [f (0.8), f (0.6)] = [0.16,0.24].

The range f ([0.4,0.8]) of this function on the whole interval [0.4,0.8] can be
estimated as the union of its y-ranges on the two subintervals:

fapprox([0.4,0.8])= fapprox([0.4,0.6])∪ f ([0.6,0.8])= [0.23,0.27]∪[0.16,0.24] = [0.16,0.27].

This is better than without bisection (we got [0.12,0.36] there), but still wider than
the actual y-range [0.16,0.25].

To get a better estimate, we can again apply bisection: namely, we bisect the
interval [0.4,0.6]. (By the way, after this second bisection, the standard algorithm
leads to the exact y-range.)

3 Inclusion Monotonicity: What Is Known and New
Counterexamples

What is known. One can show – by induction over the number of arithmetic steps
– that the straightforward interval computations algorithm is inclusion-monotonic.

It is also known that the centered form itself is inclusion-monotonic [3, 4]; see
also [1, 10].

First counter-example. As we have mentioned earlier, for estimating the y-range
of the function y = f (x1) = x1 · (1− x1) on the interval [0,1], the standard interval
computations algorithm with one bisection computes the exact y-range

fapprox([0,1]) = f (0,1]) = [0,0.25].

Let us show that when we use the same one-bisection version of the standard in-
terval computations algorithm to estimate the y-range of this function on the subin-
terval [0,0.8]⊂ [0,1], we do not get a subinterval of [0,0.25].

Indeed, in this case the range d1 of the derivative on this interval is estimated as

1−2 · [0,0.8] = 1− [0,1.6] = [−0.6,1].

This range contains both positive and negative values, so there is no monotonicity,
and thus, we need to bisect.

14 M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

Bisecting means dividing the interval [0,0.8] into two subintervals [0,0.4] and
[0.4,0.8].

For the interval [0,0.4], the range of the derivative f ′(x1) = 1−2x1 is estimated
as

[d1,d1] = 1−2 · [0,0.4] = 1− [0,0.8] = [1−0.8,1−0] = [0.2,1].

In this case, d1 ≥ 0, so the function y = f (x1) is increasing, and its y-range is equal
to

f ([0,0.4]) = [f (0), f (0.4)] = [0,0.24].

For the interval [0.4,0.8], the range of the derivative f ′(x1) = 1−2x1 is estimated
as

[d1,d1] = 1−2 · [0.4,0.8] = 1− [0.8,1.6] = [1−1.6,1−0.8] = [−0.6,0.2].

The range includes both positive and negative values, so we cannot use monotonic-
ity, we have to use the centered form. In this case, the midpoint x̃1 of the interval is
x̃1 = 0.6 and its half-width ∆1 is ∆i = 0.2, so the centered form leads to the following
estimate for the y-range:

f (0.6)+ f ′([0.4,0.8]) · [−0.2,0.2] = 0.24+[−0.6,0.2] · [−0.2,0.2] =

0.24+[−0.12,0.12] = [0.12,0.36].

The y-range f ([0,0.8]) of this function on the whole interval [0,0.8] can be esti-
mated as the union of its y-ranges estimates corresponding to the two subintervals:

fapprox([0,0.8]) = f ([0,0.4])∪ fapprox([0.4,0.8]) = [0,0.16]∪ [0.12,0.36] = [0,0.36].

This is clearly not a subinterval of the interval estimate [0,0.25] corresponding to
the wider input [0,1].

So, we have [0,0.8]⊆ [0,1], but

fapprox([0,0.8]) = [0,0.36] ̸⊆ [0,0.25] = fapprox([0,1]),

so the range is not inclusion isotonic.

Second counter-example. The previous example may create a false impression that
the presence of bisection was essential for such an example. To avoid this impres-
sion, let us provide a counter-example that does not use bisection.

In this example, the function whose y-range we want to estimate is

y = f (x1,x2) = x1 +0.5 · x4
2 · (1− x2

1).

As a larger input x-ranges, we take X1 = [−1,1] and X2 = [−1,1]. For the smaller
input x-ranges, we take x1 = [−1,0] and x2 = [−1,1].

Let us first consider the case of the larger input x-ranges X1 = [−1,1] and X2 =
[−1,1]. In this case, the partial derivative with respect to x1 has the form

Standard Interval Computation Algorithm Is Not Inclusion-Monotonic: Examples 15

∂ f
∂x1

= 1+0.5 · x4
2 · (−2x1) = 1− x4

2 · x1.

By using straightforward interval computations, we can estimate the range of this
derivative as

[d1,d1] = 1− [−1,1] · [−1,1] · [−1,1] · [−1,1] · [−1,1] =

[1,1]− [−1,1] = [1−1,1− (−1)] = [0,2],

so the function y = f (x1,x2) is (non-strictly) increasing with respect to x1.

Comment. It is important to mention that we will get the same conclusion if, instead
of interpreting x4

2 as the result of three multiplications, we use the known estimate
for the range of this term, which in this case is equal to [0,1].

Thus, to estimate the lower endpoint of the y-range, it is sufficient to consider
only the value x1 = x1 =−1. For this value, the function is simply equal to

f (−1,x2) =−1+0.5 · x4
2 · (1− (−1)2) =−1,

so −1 is the lower endpoint of the desired y-range.
To estimate the upper endpoint of the y-range, it is sufficient to consider only the

value x1 = x1 = 1. For this value, the function is simply equal to

f (1,x2) = 1+0.5 · x4
2 · (1−12) = 1,

so 1 is the upper endpoint of the desired y-range. Thus, the desired y-range is equal
to [−1,1] – and this is the exact value of this y-range.

Let us now consider the smaller x-ranges x1 = [−1,0] and x2 = [−1,1]. In this
case, we still have monotonicity with respect to x1. Thus, to estimate the lower
endpoint of the y-range, it is sufficient to consider only the value x1 = x1 =−1. For
this value, as we have mentioned, the function y = f (x1,x2) is simply equal to −1,
so this is the lower endpoint of the desired y-range.

Similarly, to estimate the upper endpoint of the y-range, it is sufficient to consider
only the value x1 = x1 = 0. For this value, the original function is equal to

f (0,x2) = 0+0.5 · x4
2 · (1−02) = 0.5 · x4

2.

So, to find the upper endpoint of the y-range, we need to find the range of the func-
tion f (x2) = 0.5 · x4

2 on the interval [−1,1].
The derivative of this function is equal to 2 ·x3

2, thus the range d2 of this derivative
on the interval [−1,1] is equal to

d2 = 2 · [−1,1] · [−1,1] · [−1,1] = [−2,2].

This range contains both positive and negative values, so, according to the standard
algorithm, we need to use the centered form.

16 M. Mizukoshi, W. Lodwick, M. Ceberio, V. Kreinovich

Here, x̃2 = 0 and ∆2 = 1, so the centered form leads to the following estimate for
the y-range:

f (0)+b2 · [−∆2,∆2] = 0+[−2,2] · [−1,1] = [−2,2].

This estimate for the y-range is clearly wider than what we got when we consider
the wider x-range of x1 – so inclusion monotonicity is clearly violated here:

x1 = [−1,0]⊂ X1 = [−1,1]

and
x2 = [−1,1]⊆ X2 = [−1,1],

but for the corresponding y-range estimates fapprox we do not have inclusion:

fapprox([−1,0], [−1,1]) = [−2,2] ̸⊆ fapprox([−1,1], [−1,1]) = [−1,1].

Comment. It is important to mention that we will get the exact same conclusion if,
instead of treating x3

2 as the result of two multiplications, we take into account that
the function x1 7→ x3

1 is increasing and thus, its range of the interval [−1,1] is equal
to [(−1)3,13] = [−1,1].

Remaining open question. We showed the existence of counter-examples to inclu-
sion monotonicity for the standard interval computations algorithm. A natural ques-
tion is: are there other feasible algorithms that provide the same asymptotic approx-
imation accuracy as the standard algorithm, but which are inclusion-monotonic?

Our hypothesis is that no such algorithms are possible.

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI Includes), and
by the AT&T Fellowship in Information Technology.

It was also supported by the program of the development of the Scientific-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478,
and by a grant from the Hungarian National Research, Development and Innovation
Office (NRDI).

Standard Interval Computation Algorithm Is Not Inclusion-Monotonic: Examples 17

References

1. M. Gavriliu, Towards More Efficient Interval Analysis: Corner Forms and a Remainder Inter-
val Newton Method, PhD Dissertation, California Institute of Technology, Pasadena, Califor-
nia, 2005.

2. L. Jaulin, M. Kiefer, O. Didrit, and E. Walter, Applied Interval Analysis, with Examples in
Parameter and State Estimation, Robust Control, and Robotics, Springer, London, 2001.

3. R. Krawczyk, “Centered forms and interval operators”, Computing, 1985, Vol. 34, pp. 234–
259.

4. R. Krawczyk and K. Nickel, “Die zentrische Form in der Intervallarithmetik, ihre quadratische
Konvergenz und ihre Inklusionsisotonie”, Computing, 1982, Vol. 28, pp. 117–127.

5. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasibility
of Data Processing and Interval Computations, Kluwer, Dordrecht, 1998.

6. B. J. Kubica, Interval Methods for Solving Nonlinear Contraint Satisfaction, Optimization,
and Similar Problems: from Inequalities Systems to Game Solutions, Springer, Cham, Switzer-
land, 2019.

7. G. Mayer, Interval Analysis and Automatic Result Verification, de Gruyter, Berlin, 2017.
8. R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis, SIAM,

Philadelphia, 2009.
9. S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and Practice, Springer Ver-

lag, New York, 2005.
10. V. Stahl, Interval Methods for Bounding the Range of Polynomials and Solving Systems of

Nonlinear Equations, PhD Dissertation, Johannes Kepler University, Linz, Austria, 1995.

	Standard Interval Computation Algorithm Is Not Inclusion-Monotonic: Examples
	Recommended Citation

	tmp.1673038804.pdf.w9maZ

