
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

12-1-2022 

Data Processing under Fuzzy Uncertainty: Towards More Data Processing under Fuzzy Uncertainty: Towards More 

Accurate Algorithms Accurate Algorithms 

Marina Tuyako Mizukoshi 
Federal University of Goias, tuyako@ufg.br 

Weldon Lodwick 
University of Colorado Denver, weldon.lodwick@ucdenver.edu 

Martine Ceberio 
The University of Texas at El Paso, mceberio@utep.edu 

Olga Kosheleva 
The University of Texas at El Paso, olgak@utep.edu 

Vladik Kreinovich 
The University of Texas at El Paso, vladik@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Sciences Commons, and the Mathematics Commons 

Comments: 

Technical Report: UTEP-CS-22-124 

Recommended Citation Recommended Citation 
Mizukoshi, Marina Tuyako; Lodwick, Weldon; Ceberio, Martine; Kosheleva, Olga; and Kreinovich, Vladik, 
"Data Processing under Fuzzy Uncertainty: Towards More Accurate Algorithms" (2022). Departmental 
Technical Reports (CS). 1781. 
https://scholarworks.utep.edu/cs_techrep/1781 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1781?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1781&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Data Processing under Fuzzy Uncertainty:
Towards More Accurate Algorithms

Marina Tuyako Mizukoshi, Weldon Lodwick, Martine Ceberio, Olga Kosheleva,
and Vladik Kreinovich

Abstract Data that we process comes either from measurements or from experts – or
from the results of previous data processing that were also based on measurements
and/or expert estimates. In both cases, the data is imprecise. To gauge the accuracy
of the results of data processing, we need to take the corresponding data uncertainty
into account. In this paper, we describe a new algorithm for taking fuzzy uncertainty
into account, an algorithm that, for small number of inputs, leads to the same or even
better accuracy than the previously proposed methods.

1 Outline

In many practical situations, our information about the values of physical quantities
x1, . . . ,xn comes from experts, and experts usually describe their estimates by using
imprecise (“fuzzy”) words from natural language. A natural way to describe this
information in computer-understandable terms is to use fuzzy techniques. When we
process this data, i.e., when we estimate the quantity y which is related to xi by a

Marina Tuyako Mizukoshi
Federal University of Goias, Brazil, e-mail: tuyako@ufg.br

Weldon Lodwick
Department of Mathematical and Statistical Sciences, University of Colorado Denver,
1201 Larimer Street, Denver, Colorado 80204, USA, e-mail: weldon.lodwick@ucdenver.edu

Martine Ceberio and Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA,
e-mail: mceberio@utep.edu, vladik@utep.edu

Olga Kosheleva
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: olgak@utep.edu

1



2 M. Mizukoshi, W. Lodwick, M. Ceberio, O. Kosheleva, V. Kreinovich

known dependence y = f (x1, . . . ,xn), we need to take the expert’s imprecision into
account.

Algorithms for computing the corresponding information about the desired quan-
tity y are usually based on interval computations; these algorithms are described in
Section 2. In general, the problem of interval computations is NP-hard, so all known
feasible algorithms provide only an approximate estimate for y’s information.

If we want more accurate estimates, we can, in principle, use more accurate (and
more time-consuming) interval computation techniques. What we show in this paper
is that for applications to data processing under fuzzy uncertainty, there are other
approaches to improve the accuracy, approaches that, for small numbers of inputs,
are comparable in accuracy – or even more accurate – that the currently used ones.

2 Data Processing under Fuzzy Uncertainty: Definitions, State of
the Art, and Remaining Problems

Need for data processing. In many practical situations, we want to know the value
of a quantity y which is difficult or even impossible to measure directly. For ex-
ample, we want to know tomorrow’s temperature or a distance to a faraway star.
Since we cannot measure the desired quantity directly, a natural idea is to estimate
it indirectly:

• find easier-to-measure-or-estimate quantities x1, . . . ,xn that are related to y by a
known relation y = f (x1, . . . ,xn),

• estimate xi, and
• use the resulting estimates for xi and the known relation between y and xi to

estimate y.

This is an important case of data processing.

Need for data processing under fuzzy uncertainty. In many cases, the only way to
estimate the values xi is to ask experts, and expert’s estimates are often given not in
precise terms, but rather by using imprecise (“fuzzy”) words from natural language.
For example, an expert may say that the value of a quantity is very small, or that
this value is close to 0.1. In this case, to find a resulting estimate for y, we need to
perform data processing under such fuzzy uncertainty.

Fuzzy techniques: main idea. To process such estimates, Lotfi Zadeh proposed
a technique that he called fuzzy; see, e.g., [1, 3, 7, 10, 11, 12]. In this technique,
for each imprecise natural-language term P like “very small” and for each possi-
ble value x of the corresponding quantity, we ask an expert to estimate, on a scale
from 0 to 1, the degree µP(x) to which this value can be described by this term.
Of course, there are infinitely many possible values x, and we cannot ask infinitely
many questions to an expert; so:

• we ask this question about finitely many values, and then



Data Processing under Fuzzy Uncertainty: Towards More Accurate Algorithms 3

• we use some interpolation/extrapolation algorithm to estimate the degrees for all
other values x.

The resulting function µP(x) is called a membership function or a fuzzy set.

Fuzzy “and”- and “or”-operations. In many cases, the expert’s rules involve log-
ical connectives like “and” and “or”. For example the rule may explain what to do
if the car in front is close and it slows down a little bit. Ideally, we could ask the
expert to estimate his/her degree of confidence in all such complex statements, but
there are too many such possible complex statements, and it is not feasible to ask the
expert about all of them. So, we need to be able, given the degrees of confidence a
and b in statements A and B, to compute the estimates for the expert’s degree of con-
fidence in statements A&B and A∨B. The algorithms for computing such estimates
are known as, correspondingly, “and”-operations f&(a,b) (also known as t-norms)
and “or”-operations f∨(a,b) (also known as t-conorms). The simplest “and”- and
“or”-operations are f&(a,b) = min(a,b) and f∨(a,b) = max(a,b).

Data processing under fuzzy uncertainty. Suppose that have fuzzy information
µi(xi) about each input xi. What can we say about the value y = f (x1, . . . ,xn)?

A number y is a possible value of the resulting quantity if for some tuple
(x1, . . . ,xn) for which y = f (x1, . . . ,xn), x1 is a possible value of the first input, and
x2 is a possible value of the second input, . . . We know the degrees µi(xi) to which
each value xi is possible. Here, “for some” means “or”, so if we use min to describe
“and” and max to describe “or”, we get the following formula

µ(y) = sup
(x1,...,xn): f (x1,...,xn)=y

min(µ1(x1), . . . ,µn(xn)). (1)

This formula was first described by Zadeh and is thus known as Zadeh’s extension
principle.

Data processing under fuzzy uncertainty: reduction to interval computations. It
is known that the formula (1) becomes simpler if instead of the original membership
functions µi(xi), we consider its α-cuts

[xi(α),xi(α)]
def
= {xi : µi(xi)≥ α}

corresponding to different α ∈ (0,1].



4 M. Mizukoshi, W. Lodwick, M. Ceberio, O. Kosheleva, V. Kreinovich

-

6

x

µ(x)

�
�
�
�
�
�
�
�

�
�@

@
@

@
@
@

@
@
@

@

α

x(α) x(α)

It is convenient to denote each α-cut by

xi(α)
def
= [xi(α),xi(α).

In these notations, each α-cut y(α) = {y : µ(y)≥ α} corresponding to y is equal to

y(α) = f (x1(α), . . . ,xn(α)),

where for each tuple of sets X1, . . . ,Xn, the y-range f (X1, . . . ,Xn) is defined as

f (X1, . . . ,Xn)
def
= { f (x1, . . . ,xn) : x1 ∈ X1, . . . ,xn ∈ Xn}.

Usually, membership functions corresponding to terms like “very small” or
“close to 0.1” are first non-strictly increasing and then non-strictly decreasing. In
this case, each α-cut is an interval, and the problem of computing each α-cut y(α)
becomes the problem of computing the set f (X1, . . . ,Xn) for n intervals Xi = xi(α).
The problem of computing the y-range f (X1, . . . ,Xn) for intervals X1, . . . ,Xn is
known as the problem of interval computations; see, e.g., [2, 5, 6, 8].

Comment. To reconstruct the membership function exactly, we need to know the
α-cuts corresponding to all possible values α . Of course, there are infinitely real
numbers α in the interval (0,1], but at any period of time, we can only perform
finitely many computations. So, in practice, we compute the α-cuts for finitely many
values 0 < α1 < α2 < .. . < αm ≤ 1. We try to select these values αi to provide a
good approximation to the original membership function, so, to avoid large gaps,
we make sure that the differences αk+1 −αk between the consequent values of α

are small.

Interval computations: a brief reminder. In general, the interval computation
problem is NP-hard (see, e.g., [4]). This means, crudely speaking, that no fea-
sible algorithm can always compute the exact y-range f (X1, . . . ,Xn) for intervals



Data Processing under Fuzzy Uncertainty: Towards More Accurate Algorithms 5

Xi = [xi,xi]. Thus, each feasible algorithm provides only an approximation to the
y-range.

The usual algorithms for computing the y-range can be explained in several steps.
The first step is the fact that when the function f (x1,x2) corresponds to a sim-
ple arithmetic operation like addition, subtraction, multiplication, and division, the
range of the result can be explicitly computed:

[x1,x1]+ [x2,x2] = [x1 + x2,x1 + x2]; [x1,x1]− [x2,x2] = [x1 − x2,x1 − x2];

[x1,x1] · [x2,x2] = [min(x1 ·x2,x1 ·x2,x1 ·x2,x1 ·x2),max(x1 ·x2,x1 ·x2,x1 ·x2,x1 ·x2)];

1
[x1,x1]

=

[
1
x1
,

1
x1

]
if 0 ̸∈ [x1,x1]; and

[x1,x1]

[x2,x2]
= [x1,x1] ·

1
[x2,x2]

.

These formulas are known as interval arithmetic (sometimes called standard inter-
val arithmetic, to distinguish it from alternative techniques for processing intervals).

The second step is related to the fact that in a computer, arithmetic operations
are the only ones that are hardware supported. Thus, in a computer, every compu-
tation is actually a sequence of arithmetic operations. It is known that if we replace
each arithmetic operation with numbers with the corresponding operation of inter-
val arithmetic, then we get an enclosure Y for the desired range y, i.e., a set Y
for which y ⊆ Y. This procedure of replacing each arithmetic operation with the
corresponding operation of interval arithmetic is known as straightforward interval
computations. (This procedure is also known as naive interval computations, since
it is sometimes used – usually unsuccessfully – by people who naively think that
this is what interval computations are about – not realizing that they are missing an
important part of interval techniques.)

The third step is the so-called centered form, according to which the desired
range y = f (x1, . . . ,xn) is enclosed by the following interval:

y ⊆ ỹ+
n

∑
i=1

di · [−∆i,∆i],

where
∆i

def
=

xi − xi

2

is the half-width (= radius) of the i-th interval, ỹ def
= f (x̃1, . . . , x̃n), where

x̃i
def
=

xi + xi

2

is the midpoint of the i-th interval, and di is the result of applying straightforward
interval computations to estimate the range of the i-th partial derivative of f on the
intervals xi:

di ⊇
∂ f
∂xi

(x1, . . . ,xn).



6 M. Mizukoshi, W. Lodwick, M. Ceberio, O. Kosheleva, V. Kreinovich

(There is also an additional idea – that we can simplify computations if the func-
tion f (x1, . . . ,xn) is monotonic with respect to some of the variables – as was, e.g.,
the case of arithmetic operations.)

Since, as we have mentioned, the problem of computing the exact y-range is NP-
hard, the centered form leads, in general, to an approximation to the actual y-range.
What if we want a more accurate estimate? The approximation error of the cen-
tered form approximation can be estimated if we take into account that the centered
form is, in effect, based on the linear terms in the Taylor expansion of the function
f (x1, . . . ,xn) – and indeed, for linear functions f (x1, . . . ,xn), the centered form for-
mula leads to the exact range. Thus, the approximation error of this approximation is
of the same order of magnitude as the largest terms that we ignore in this approach –
i.e., quadratic terms, terms proportional to the products ∆i ·∆ j. From this viewpoint,
to get a more accurate estimate, we can:

• divide (bisect) one of the intervals into two equal parts,
• estimate the range corresponding to each of these parts, and then
• take the union of the corresponding y-ranges.

After bisection, the width of one of the intervals decreases in half, so some terms
in the general quadratic expression become smaller, and the approximation error
decreases.

Remaining problems. The current algorithm requires a certain computation time
and leads to a certain accuracy.

• In some cases, we need the results faster – and it is OK if the accuracy is slightly
lower; in this case, we can use an alternative algorithm described in [9].

• In other cases, we are interested in higher accuracy – even if it takes more com-
putation time. This is a problem with which we deal in this paper.

What we do in this paper. As we have mentioned, a general way to get more
accurate estimates is to apply bisection. In this paper, we propose another way of
increasing accuracy, which is specifically tailored to the case of fuzzy data process-
ing.

3 New Algorithm: Motivations, Description, and Comparative
Analysis

Motivations. For each αk, the corresponding y-α-cut y(αk) is equal to the y-range
f (B(αk)) of the function f (x1, . . . ,xn) over the corresponding x-range box

B(αk)
def
= [x1(αk),x1(αk)]× . . .× [xn(αk),xn(αk)].

For example, for n = 2, the x-range box has the following form:



Data Processing under Fuzzy Uncertainty: Towards More Accurate Algorithms 7

-

6

x2

x1x1(αk) x1(αk)

x2(αk)

x2(αk)

From the definition of the α-cut, we can conclude that the x-ranges corresponding
to different values αk are getting narrower as α increases:

B(α1)⊇ B(α2)⊇ . . .⊇ B(αm).

B(α1)�

B(α2)�

B(α3)�
. . .

Because of this, each x-range can be represented as a union of the differences:

B(αk) = B(αm)∪ (B(αm−1)−B(αm))∪ . . .∪ (B(αk)−B(αk+1)),

where, as usual, B(α j)−B(α j+1) denotes the difference between the two sets

B(α j)−B(α j+1)
def
= {a : a ∈ B(α j) and a ̸∈ B(α j+1)}.



8 M. Mizukoshi, W. Lodwick, M. Ceberio, O. Kosheleva, V. Kreinovich

B(α1)−B(α2)�

B(α2)−B(α3)�

B(α3)−B(α4)�
. . .

For example, for n = 1, we get:

-

6

x1

B(αm)

B(αm−1)−B(αm)

B(αm−2)−B(αm−1)

Thus, the desired y-range y(αk) can be represented as the union of the y-ranges
corresponding to the component sets:

f (B(αk)) = f (B(αm))∪ f (B(αm−1)−B(αm))∪ . . .∪ f (B(αk)−B(αk+1)). (2)

Each difference B(αk)−B(αk+1) is the union of (somewhat overlapping) 2n boxes
corresponding to i = 1, . . . ,n:

B−
i (αk) = [x1(αk),x1(αk)]× . . . [xi−1(αk),xi−1(αk)]× [xi(αk),xi(αk+1)]×

[xi+1(αk),xi+1(αk)] . . .× . . .× [xn(αk),xn(αk)] (3)

and

B+
i (αk) = [x1(αk),x1(αk)]× . . . [xi−1(αk),xi−1(αk)]× [xi(αk+1),xi(αk)]×

[xi+1(αk),xi+1(αk)] . . .× . . .× [xn(αk),xn(αk)]. (4)



Data Processing under Fuzzy Uncertainty: Towards More Accurate Algorithms 9

B+
1 (αk)�B−

1 (αk) -

B+
2 (αk)

?

B−
2 (αk)

6

Thus, the y-range corresponding to each difference B(αk)−B(αk+1) is equal to
the union of y-ranges corresponding to the component boxes:

f (B(αk)−B(αk+1)) =

f (B−
1 (αk))∪ f (B+

1 (αk))∪ . . .∪ f (B−
n (αk))∪ f (B+

n (αk)). (5)

So, we can compute the y-ranges over these component boxes, and then take the
union.

In each of the component boxes (3) and (4), the width of one of the sides is much
narrower than in the box B(αk). In this case, as we have mentioned, we get a more
accurate result. This leads us to the following algorithm.

Algorithm.

• We compute the y-range f (Bm) over the box

B(αm)
def
= [x1(αm),x1(αm)]× . . .× [xn(αm),xn(αm)]. (6)

• For each k from 1 to m−1 and for each i from 1 to n, we use the centered form
(or any other interval computation technique) to estimate the ranges f (B−

1 (αk))
and f (B+

1 (αk)) over the boxes (3) and (4).
• For each k from 1 to m−1, we compute the range f (B(αk)−B(αk+1)) by using

the formula (5).
• Finally, for each k from 1 to m− 1, we compute the y-range y(αk) = f (B(αk))

by using the formula (2).

Is this algorithm better than bisection? In the above-described usual algorithm
for data processing under interval uncertainty, we apply interval computations m
times – as many times as there are different values αk. In the new algorithm, we
apply it 1+(m− 1) · (2n) times. So, clearly, the new algorithm takes longer time:
approximately 2n times longer.



10 M. Mizukoshi, W. Lodwick, M. Ceberio, O. Kosheleva, V. Kreinovich

Similarly, if we use bisection, we get more accurate results, but also at the ex-
pense of a longer computation time. So, the question is which of these two algo-
rithms leads to more accurate estimates if we use the same computation time. Let us
analyze this question for different values n.

Case when n = 1: the new algorithm is more accurate. For n = 1, the new al-
gorithm requires 2n = 2 times longer than the original centered form. So, we need
to compare with the case when we apply bisection once – in this case we need two
applications of centered form, i.e., we also increase the computation time by a factor
of 2.

∆1/2 ∆1/2

The approximation error of the original centered form is proportional to ∆ 2
1 . If

we bisect, the width decreases to ∆1/2, so the approximation error of the bisection
result – which is proportional to (∆1/2)2 = ∆ 2

1/4 – decreases by a factor of 4. On
the other hand, for the new algorithm, the approximation error is proportional to the
square of much smaller widths like xi(αk)−xi(αk+1) which are, in general, m times
smaller than the original width. So, with the new algorithm, the approximation error
decreases by a factor of m2, which for usual m = 7± 2, is much better than for
bisection. Thus, for n = 1, the new method is much more accurate than bisection.

Case when n = 2: both algorithms are of the same accuracy. In this case, the new
algorithm requires 2n = 4 times longer than the original centered form. So, we need
to compare with the case when we apply bisection twice – then we also increase the
computation time by a factor of 4.

∆1/2 ∆1/2

∆2/2

∆2/2

In this case, we bisect both input intervals, so both widths are decreased by a fac-
tor of 2, and thus, all products ∆i ·∆ j involved in our estimate for the approximation
error also decrease by a factor of 4. Thus, for bisection, the new approximation error
is 4 times smaller than for the original centered form.

In the new method, on each of the four estimates, only one side has the original
width, the other side is much smaller. Thus, instead of the four terms ∆i ·∆ j (i, j =
1,2) forming the original approximation error, only one terms remains the same size
– all others are much smaller. So, the new method also decreases the approximation
error by a factor of 4. Thus, for n = 2, the two methods have comparable accuracy.



Data Processing under Fuzzy Uncertainty: Towards More Accurate Algorithms 11

Case when n = 3: both algorithms are of the same accuracy. In this case, the new
algorithm requires 2n = 6 times longer than the original centered form. So, we need
to compare with the case when we apply bisection and get 6 smaller boxes. This
way, for all resulting boxes, we can get the first two coordinates divided by two.
However, we do not have enough boxes to makes sure that for all the boxes, all the
widths are divided by 2 – this would require 8 boxes. Thus, at least for some of the
smaller boxes, we will have the third coordinate the same size as before.

So:

• for 4 terms ∆i ·∆ j corresponding to i, j ≤ 2, we get 1/4 of the original size,
• for 2 ·2 = 4 terms ∆i ·∆3 and ∆3 ·∆i, i ≤ 2, we get 1/2 of the original size, and
• the term ∆ 2

3 remains the same.

Thus, the overall approximation error – which was originally consisting of 3×3 = 9
original-size terms ∆i ·∆ j – is now reduced to

4 · (1/4)+4 · (1/2)+1 = 4

times the original product term. So, for bisection, the approximation error is smaller
by a factor of 9/4 = 2.25.

In the new method, for each box, we only have two sides of the original width, the
third side is much narrower. So, out of 9 products, only 4 products corresponding
to the original-width sides remains the same, the rest become much smaller and
can, thus, safely be ignored. Thus, for n = 3, the new method also decreases the
approximation error by the same factor of 9/4 = 2.25, so the two methods have
comparable accuracy.

Case of larger n: bisection is more accurate. In general, if we bisect the box over
v variables, we get 2v different boxes – and thus, 2v times longer computations. To
compare with the new algorithm that requires 2n times more computations, we need
to select v for which 2v = 2n, i.e., v = log2(2n). Here, v ≪ n. In this case:

• for v2 pairs of bisected variables, the product ∆i ·∆ j is decreased by a factor of 4;
• for 2v · (n−v) pairs of a bisected and non-bisected variable, the product ∆i ·∆ j is

decreased by a factor of 2; and
• for (n−v)2 pairs of non-bisected variables, the product ∆i ·∆ j remains the same.

Thus, after this bisection, instead of the sum of n2 products of the original size, have
the sum proportional to

1
4
· v2 +

1
2
·2 · v · (n− v)+(n− v)2 =

1
4
· v2 + v ·n− v2 +n2 −2 · v ·n+ v2 =

n2 − v ·n+ 1
4
· v2 = n2 − log2(2n) ·n+O(log2(n)).

On the other hand, for the new algorithm, for each box, n−1 sizes are the same, and
one is much smaller, so we reduce the sum of n terms to the sum of (n−1)2 terms,
i.e., to

(n−1)2 = n2 −2 ·n+1.



12 M. Mizukoshi, W. Lodwick, M. Ceberio, O. Kosheleva, V. Kreinovich

For large n, we have log2(2n)> 2, and thus, bisection leads to more accurate results.
This advantage starts with the case when n = 4. In this case, the new algorithm

requires 2n = 8 uses of the centered form. During this times, we can bisect each of
the first 3 inputs – this will also lead to 23 = 8 boxes and, thus, 8 uses of the centered
form. Without loss of generality, let us assume that we bisect the first three inputs.
Then:

• for 9 terms ∆i ·∆ j corresponding to i, j ≤ 3, we get 1/4 of the original size,
• for 2 ·3 = 6 terms ∆i ·∆4 and ∆4 ·∆i, i ≤ 2, we get 1/2 of the original size, and
• the term ∆ 2

3 remains the same.

Thus, the overall approximation error – which was originally consisting of 4×4 =
16 original-size terms ∆i ·∆ j – is now reduced to

9 · (1/4)+6 · (1/2)+1 = 6.25

times the original product term. So, for bisection, the approximation error is smaller
by a factor of 16/6.25 = 2.56.

On the other hand, in the new method, for each box, we only have 3 sides of the
original width, the 4th side is much narrower. So, out of 16 products, only 33 = 9
products corresponding to the original-width sides remains the same, the rest be-
come much small and can, thus, safely be ignored. Thus, for n = 4, the new method
also decreases the approximation error by the factor of 16/9 ≈ 1.78, not as good as
bisection.

Acknowledgments

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI Includes), and
by the AT&T Fellowship in Information Technology.

It was also supported by the program of the development of the Scientific-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478,
and by a grant from the Hungarian National Research, Development and Innovation
Office (NRDI).

References

1. R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A Historical
Perspective, Oxford University Press, New York, 2017.

2. L. Jaulin, M. Kiefer, O. Didrit, and E. Walter, Applied Interval Analysis, with Examples in
Parameter and State Estimation, Robust Control, and Robotics, Springer, London, 2001.

3. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle River, New
Jersey, 1995.



Data Processing under Fuzzy Uncertainty: Towards More Accurate Algorithms 13

4. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasibility
of Data Processing and Interval Computations, Kluwer, Dordrecht, 1998.

5. B. J. Kubica, Interval Methods for Solving Nonlinear Contraint Satisfaction, Optimization,
and Similar Problems: from Inequalities Systems to Game Solutions, Springer, Cham, Switzer-
land, 2019.

6. G. Mayer, Interval Analysis and Automatic Result Verification, de Gruyter, Berlin, 2017.
7. J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions,

Springer, Cham, Switzerland, 2017.
8. R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis, SIAM,

Philadelphia, 2009.
9. H. T. Nguyen, O. Kosheleva, and V. Kreinovich, “Data processing under fuzzy uncertainty:

towards more efficient algorithms”, Proceedings of the 2022 IEEE World Congress on Com-
putational Intelligence IEEE WCCI’2022, Padua, Italy, July 18–23, 2022.

10. H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy Logic, Chapman and
Hall/CRC, Boca Raton, Florida, 2019.

11. V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy Logic, Kluwer,
Boston, Dordrecht, 1999.

12. L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–353.


	Data Processing under Fuzzy Uncertainty: Towards More Accurate Algorithms
	Recommended Citation

	tmp.1673038804.pdf.Rnbv2

