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An Argument in Favor of Piecewise-Constant
Membership Functions

Marina Tuyako Mizukoshi, Weldon Lodwick, Martine Ceberio, Olga Kosheleva,
and Vladik Kreinovich

Abstract Theoretically, we can have membership functions of arbitrary shape. How-
ever, in practice, at any given moment of time, we can only represent finitely
many parameters in a computer. As a result, we usually restrict ourselves to finite-
parametric families of membership functions. The most widely used families are
piecewise linear ones, e.g., triangular and trapezoid membership functions. The
problem with these families is that if we know a nonlinear relation y = f (x) be-
tween quantities, the corresponding relation between membership functions is only
approximate – since for piecewise linear membership functions for x, the resulting
membership function for y is not piecewise linear. In this paper, we show that the
only way to preserve, in the fuzzy representation, all relations between quantities is
to limit ourselves to piecewise constant membership functions, i.e., in effect, to use
a finite set of certainty degrees instead of the whole interval [0,1].
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1 Formulation of the Problem

Need for interpolation. In this paper, we consider fuzzy techniques; see, e.g.,
[2, 3, 4, 5, 6, 7]. A membership function µ(x) corresponding to a natural-language
property like “small” describes, for each real number x, the expert’s degree of con-
fidence that the given value x satisfies the corresponding property – e.g., that the
value x is small.

Of course, these are infinitely many real numbers x, but we cannot ask infinitely
many questions to the expert about all these values x. So, in practice, we ask finitely
many questions, and then apply some interpolation/extrapolation to get the values
µ(x) for all other x.

Typical example: linear interpolation. The simplest interpolation is linear inter-
polation. So, if we know:

• that some value x0 (e.g., x0 = 0) is absolutely small – i.e., µ(x0) = 1, and
• that some values x− < x0 and x+ > x0 are definitely not small – i.e.

µ(x−) = µ(x+) = 0,

then we can use linear interpolation and get frequently used triangular membership
functions. Similarly, if we know that a certain property holds for sure for two value
x−0 and x+0 , then linear interpolation leads to trapezoid membership functions.

General case. In general, since we can only ask finitely many questions and thus,
only get finitely many parameters describing a membership function, we must limit
ourselves to a finite-parametric class of membership functions.

Resulting problem. This idea of a linear interpolation works well when all we
have is unrelated fuzzy quantities. In this case, we can consider all quantities to be
described by either triangular or trapezoid membership functions. If we have more
values to interpolate from, by more general piecewise linear membership functions,
i.e., functions for which there exist values x1 < x2 < .. . < xn such that on each
interval (−∞,x1], [x1,x2], . . . , [xn−1,xn], [xn,∞) the function is linear; see, e.g., [1].

The situation becomes more complicated if we take into account that some
quantities are related to each other by non-linear dependencies y = f (x) (or y =
f (x1, . . . ,xn)). Indeed, it is desirable to require that if our knowledge about a quantity
x is described by a membership function from the selected family, then the resulting
knowledge about the quantity y = f (x) should also be described by a membership
function from this family.

It is straightforward, given a membership function µX (x) corresponding to x, to
compute a membership function µY (y) corresponding to y = f (x) – there is Zadeh’s
extension principle for this:

µY (y) = max{µX (x) : f (x) = y}. (1)

The problem is that:
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• when the membership function µX (x) is triangular, and f (x) is nonlinear, then
the resulting membership function for y is not piecewise linear, and,

• vice versa, if the membership for y is piecewise linear, then the corresponding
membership function for x = f−1(y) is not piecewise linear.

So, the class of all triangular functions does not satisfy the above property. How can
we find a finite-parametric class of membership functions for which for every non-
linear function f (x), the result of applying this function to a membership function
from this class would also lead to a membership function from this same class?

What we plan to do in this paper. In this paper, we show that the only way to
reach this goal is to limit ourselves to piecewise constant membership functions,
i.e., membership functions for which there exist values x1 < x2 < .. . < xn such that
on each interval (−∞,x1), (x1,x2), . . . , (xn−1,xn), (xn,∞) the function is constant:

-

6

x

y

2 Definitions

To formulate our result, let us define, in precise terms:

• what we mean by a finite-parametric family,
• what we mean by the requirement that this family should be closed under apply-

ing Zadeh’s extension principle, and
• what we mean by a piecewise constant membership function.
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2.1 What is a finite-parametric family

In general, a finite-parametric class of objects means that we have a continuous
mapping that assigns, to each tuples of real numbers (c1, . . . ,cn) from some open
set, a corresponding object. To describe what is a continuous mapping, we need
to have a metric on the set of all the objects. So, to describe what we mean by a
finite-parametric family of membership functions, we need to describe a reasonable
metric on the set of all membership functions, i.e., we need to describe, for each real
number ε > 0, what it means that two membership functions are ε-close.

Let us analyze what it means for two membership functions to be ε-close. Intu-
itively, two real numbers x1 and x2 are ε-close if, whenever we measure them with
some accuracy ε , we may not be able to distinguish between them. Similarly, the
two functions µ1(x) and µ2(x) are ε-close if, whenever we measure both real values
x and µi(x) with accuracy ε , we will not be able to distinguish these functions.

In precise terms, when we only know x1 with some accuracy ε , i.e., when we
only know that x1 ∈ [x̃1 −ε, x̃1 +ε] for the measurement result x̃1, then all we know
is that the value µ1(x1) is somewhere between the minimum and the maximum of
the function µ1(x) on this interval. If we know that the function µ2(x) is ε-close to
µ1(x), this means that the value µ1(x) is ε-close to one of the values µ2(x) for x from
the x-interval [x̃1 − ε, x̃1 + ε], i.e., that we have µ2(x′)− ε ≤ µ1(x)≤ µ2(x′′)+ ε for
some points x′ and x′′ from the above x-interval. Thus, we arrive at the following
definition.

Definition 1. We say that two membership functions µ1(x) and µ2(x) are ε-close if:

• for every real number x1, there exist ε-close values x′2 and x′′2 for which µ1(x1) is
ε-close to some number between µ2(x′2) and µ2(x′′2), and

• for every real number x2 there exist ε-close values x′1 and x′′1 for which µ2(x2) is
ε-close to some number between µ1(x′1) and µ2(x′′1).

We will denote this relation by µ1 ≈ε µ2.

Examples. If both membership functions are continuous – e.g., if both are triangular
– then we can simply take x′2 = x′′2 = x1.

Definition 2. By the distance d(µ1,µ2) between two membership functions, we mean
that infimum of all the values ε for which these functions are ε-close:

d(µ1,µ2)
def
= inf{ε : µ1 ≈ε µ2}.

One can prove that thus defined distance satisfies the triangle inequality and is,
therefore, a metric. Now, we are ready to define what we mean by a finite-parametric
family of membership functions.

Definition 3. By a finite-parametric family of membership functions, we mean a
continuous mapping from a open subset of IRn for some integer n to the class of all
membership functions with the metric defined by Definition 2.
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2.2 When is a family closed under applying Zadeh’s extension
principle

Definition 4. We say that a family of membership functions is closed under transfor-
mations if for every function µX (x) from this family and for every function f (x), the
function µX ( f−1(y)) also belongs to this family.

2.3 What is a piecewise constant function

Definition 5. We say that a function f (x) from real numbers to real numbers is
piecewise constant if there exist values x1 < x2 < .. . < xn such that on each interval
(−∞,x1), (x1,x2), . . . , (xn−1,xn), (xn,∞), the function f (x) is constant.

3 Main Result

Simplifying assumption. For simplicity, let us consider non-strictly increasing
membership functions. Such functions correspond to such properties as “large”.

Our result can be easily extended to other membership functions that consist to
two or more non-strictly increasing and non-strictly decreasing segments.

Definition 6. We say that a membership function µ(x) is non-strictly increasing if
x ≤ x′ implies that µ(x)≤ µ(x′).

Definition 7. We say that a family of membership functions is closed under increas-
ing transformations if for every function µX (x) from this family and for every in-
creasing 1-1 function f (x), the function µX ( f−1(y)) also belongs to this family.

Discussion. For a membership function µX (x) and for a 1-1 increasing function
f (x), the only value x for which f (x) = y is the value f−1(y). So, in this case,
Zadeh’s extension principle means that for y= f (x), the membership function µY (y)
has the form µY (y) = µX ( f−1(x)). One can check that if the function µX (x) was
increasing then the function µY (y) = µX ( f−1(x)) will be increasing as well. Now,
we are ready to formulate our main result.

Proposition. Let F be a finite-parametric family of non-strictly increasing member-
ship functions which is closed under increasing transformations. Then, each func-
tion from this family is piecewise constant.

Comment. For readers’ convenience, the proof is placed in a special last section.

Discussion. So, if we want to have a finite-parametric family of membership func-
tions for which each relation y = f (x) between physical quantities leads to a similar
relation between the corresponding membership functions, we should use piecewise
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constant membership functions, i.e., functions from the real line to a finite subset of
the interval [0,1]. This is equivalent to using this finite subset instead of the whole
interval [0,1], i.e., to considering a finite-valued logic instead of the usual full [0,1]-
based fuzzy logic.

Once we limit ourself to this finite set of confidence degrees, then Zadeh’s exten-
sion principle will keep the values within this set. Indeed, this principle is based on
using minimum and maximum, and both operations do not introduce new values,
they just select from the existing values.

4 Proof

1◦. Let µ(x) be a membership function from a finite-parametric family of non-
strictly increasing membership functions which is closed under increasing trans-
formations. To prove the proposition, it is sufficient to prove that all its values form
a finite set. Then, the fact that this function is piecewise constant would follow from
this result and from the fact that the function µ(x) is non-strictly increasing.

We will prove this statement by contradiction. Let us assume that the set V of
values of the function µ(x) is infinite.

2◦. Let us pick an infinite sequence S of different values µ(x1), µ(x2), . . . , from this
set one by one. To do that, we pick one value µ(x1) from the set V . Once we have
picked the values µ(x1), . . . ,µ(xk), since the set V is infinite, it has other values than
these selected ones, so we pick one of them as µ(xk+1). This way, we get a sequence
of different values µ(xk). These values correspond to x-values x1,x2, . . . Since the
values µ(xn) are all different, the values xn are also all different.

3◦. It is known that if we add an infinity point to the real line and consider the usual
convergence to infinity, we get a set which is topologically equivalent to a circle:
after all positive numbers, we have the infinity point, and after this infinity point, we
have all negative numbers. This is known as a one-point compactification of the real
line.

A circle is a compact set. So, by the properties of a compact set, from any se-
quence – including the sequence {xn}n – we can extract a convergent subsequence.
Let us denote this subsequence by {cn}n, and its limit by

x0
def
= lim

n→∞
cn.

4◦. Let us prove that this sequence {cn}n either contains infinitely many elements
that follow x0 or it contains infinitely many elements which precede x0. Here:

• for finite x0, follow and precede simply means, correspondingly, larger and
smaller;

• for x0 = ∞, follow means the values are negative and precede means that these
values are positive.
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This statement – that the sequence {cn}n either contains infinitely many ele-
ments that follow x0 or it contains infinitely many elements which precede x0 – can
be easily proven by contradiction. Indeed, if we would have only finitely elements
cn preceding x0 and only finitely many elements cn following x0, then the whole
sequence cn would only have finitely many values – but we know this sequence has
infinitely many different values.

5◦. Let us prove that when we have infinitely many elements preceding x0, then from
the sequence {cn}n, we can extract a strictly increasing subsequence {Xn}n.

Let us consider only elements of the sequence {cn}n that precede x0. Let us
denote the subsequence of the sequence {cn}n formed by such elements by {sn}n.

Then, as X1, let us take X1 = s1. Because of the convergence sn → x0, all the
elements sn – starting with some element – get close to x0 and thus, become larger
than X1. Let us take the first element of the sequence sn which is larger than X1 as
X2. Similarly, there exists elements which are larger than X2. Let is select the first of
them by X3, etc. Thus, we get a strictly increasing sequence X1 < X2 < .. . for which
all the values µ(Xn) are different, i.e., for which µ(X1)< µ(X2)< .. .

6◦. Let us prove that when we have infinitely many elements following x0, then from
the sequence {cn}n, we can extract a strictly decreasing subsequence {Xn}n.

Let us consider only elements of the sequence {cn}n that follow x0. Let us denote
the subsequence formed by such elements by {sn}n. As X1, let us take X1 = s1.
Because of the convergence sn → x0, all the elements sn – starting with some element
– get close to x0 and thus, become smaller than X1. Let us take the first element of the
sequence sn which is smaller than X1 as X2. Similarly, there exists elements which
are smaller than X2. Let is select the first of them by X3, etc. Thus, we get a strictly
decreasing sequence X1 > X2 > .. . for which all the values µ(Xn) are different, i.e.,
for which µ(X1)> µ(X2)> .. .

7◦. In both cases, we have either a strictly increasing or a strictly decreasing se-
quence {Xn}n for which the corresponding values µ(Xn) are, corresponding, either
strictly increasing of strictly decreasing.

7.1◦. When the sequence {Xn}n is strictly increasing, we can take the values

Yn
def
= inf{x : µ(x) = µ(Xn)}

and so Y1 <Y2 < .. . For any other strictly increasing sequence Z1 < Z2 < .. . tending
to the same limit, we can form a piecewise linear transformation function f (x) that
maps Zn into Yn, namely:

• for x ≤ Z1, we take f (x) = x+(Y1 −Z1);
• for Zn ≤ x ≤ Zn+1, we take

f (x) = Yn +
Yn+1 −Yn

Zn+1 −Zn
· (x−Zn);
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and
• if the limit x0 is finite, then for x ≥ x0, we take f (x) = x.

For each such sequence, the transformed membership function µ ′(x) = µ( f−1(x)),
because of closed-ness, also belongs to the given family. For this function, we
have inf{x : µ ′(x) = µ(Xn)}= Zn. Thus, all these functions µ ′(x) are different. So,
the given family contains an infinite-parametric subfamily determined by infinitely
many parameters Zn. This contradicts to our assumption that the family is finite-
parametric.

7.2◦. Similarly, when the sequence {Xn}n is strictly decreasing, we can take the
values

Yn
def
= sup{x : µ(x) = µ(Xn)}

for which too Y1 >Y2 > .. . For any other decreasing sequence Z1 > Z2 > .. . tending
to the same limit, we can form a piecewise linear transformation function f (x) that
maps Zn into Yn, namely:

• for x ≥ Z1, we take f (x) = x+(Y1 −Z1);
• for Zn+1 ≤ x ≤ Zn, we take

f (x) = Yn+1 +
Yn −Yn+1

Zn −Zn+1
· (x−Zn+1);
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and
• if the limit x0 is finite, then for x ≤ x0, we take f (x) = x.

For each such sequence, the transformed membership function µ ′(x) = µ( f−1(x)),
because of closed-ness, also belongs to the given family. For this function µ ′(x),
we have inf{x : µ(x) = µ(Xn)} = Zn. Thus, all these functions are different. So,
the given family contains an infinite-parametric subfamily determined by infinitely
many parameters Zn – which contradicts to our assumption that the family is finite-
parametric.

8◦. In both cases, we get a contradiction. So the set of values of the membership
function µ(x) cannot be infinite and must, thus, be finite. The proposition is proven.
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