
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

6-1-2022 

Estimating Skewness and Higher Central Moments of an Interval-Estimating Skewness and Higher Central Moments of an Interval-

Valued Fuzzy Set Valued Fuzzy Set 

Juan Carlos Figueroa-Garcia 
Universidad Distrital Bogata, jcfigueroag@udistrital.edu.co 

Martine Ceberio 
The University of Texas at El Paso, mceberio@utep.edu 

Olga Kosheleva 
The University of Texas at El Paso, olgak@utep.edu 

Vladik Kreinovich 
The University of Texas at El Paso, vladik@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Sciences Commons, and the Mathematics Commons 

Comments: 

Technical Report: UTEP-CS-22-79 

Recommended Citation Recommended Citation 
Figueroa-Garcia, Juan Carlos; Ceberio, Martine; Kosheleva, Olga; and Kreinovich, Vladik, "Estimating 
Skewness and Higher Central Moments of an Interval-Valued Fuzzy Set" (2022). Departmental Technical 
Reports (CS). 1719. 
https://scholarworks.utep.edu/cs_techrep/1719 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1719?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1719&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Estimating Skewness and Higher Central
Moments of an Interval-Valued Fuzzy Set

Juan Carlos Figueroa Garcia, Martine Ceberio, Olga Kosheleva, and Vladik
Kreinovich

Abstract A known relation between membership functions and probability den-
sity functions allows us to naturally extend statistical characteristics like central
moments to the fuzzy case. In case of interval-valued fuzzy sets, we have several
possible membership functions consistent with our knowledge. For different mem-
bership functions, in general, we have different values of the central moments. It
is therefore desirable to compute, in the interval-valued fuzzy case, the range of
possible values for each such moment. In this paper, we provide efficient algorithms
for this computation.

1 Outline

From the purely mathematical viewpoint, the main difference between a membership
function 𝜇(𝑥) (see, e.g., [1, 2, 3, 4, 5, 7]) and a probability density function 𝑓 (𝑥) is
that they are normalized differently:

• for 𝜇(𝑥), we require that its maximum is equal to 1, while
• for 𝑓 (𝑥), we require that its integral is equal to 1.

Both functions can be re-normalized, so there is a natural probability density function
assigned to each membership function, and vice versa. This assignments allow to
naturally extend probabilistic notions to membership functions, and define mean
(which turns out to be equivalent to a centroid), skewness, etc.

Juan Carlos Figueroa Garcia
Departamento de Ingenieria Industrial, Universidad Distrital
Bogota, Colombia, e-mail: jcfigueroag@udistrital.edu.co

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich
University of Texas at El Paso, 500 W. University, El Paso, Texas 79968, USA
e-mail: mceberio@utep.edu, olgak@utep.edu, vladik@utep.edu

1



2 Juan Carlos Figueroa Garcia, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

These transformation implicitly assume that for each 𝑥, we can extract the exact
value 𝜇(𝑥) from the expert. In practice, the experts can, at best, provide an interval[
𝜇(𝑥), 𝜇(𝑥)

]
of possible values of 𝜇(𝑥). This case – known as interval-valued fuzzy

case – means that we have many different membership functions 𝜇(𝑥) as long as we
have 𝜇(𝑥) ∈

[
𝜇(𝑥), 𝜇(𝑥)

]
for all 𝑥. For different possible membership functions, we

have different values of skewness and of other characteristics. It is therefore desirable
to estimate the range of possible values of such a characteristic. In this paper, we
provide efficient algorithms for such an estimation.
The structure of this paper is as follows. In Section 2, we formulate the problem

in precise terms. In Section 3, we analyze the resulting computational problem for
the case of skewness. In Section 4, we use this analysis to describe the resulting
algorithm. In Section 5, we extend this algorithm to all central moments.

2 Formulation of the Problem

Known relation between probabilistic and fuzzy uncertainty. As Zadeh himself,
the father of fuzzy logic, emphasized several times, the same data can be described
by a probability density function 𝑓 (𝑥) and a membership function 𝜇(𝑥). The main
difference between these two descriptions is in the normalization:

• for a probability density function, the normalizing requirement is that the overall
probability should be equal to 1:∫

𝑓 (𝑥) 𝑑𝑥 = 1, (1)

• while for a membership function, the normalizing requirement is that the largest
value of this function must be equal to 1:

max
𝑥

𝜇(𝑥) = 1. (2)

Because of this relation, it is possible to re-normalized each of these functions by
multiplying it by an appropriate constant. For example, to each membership function
𝜇(𝑥), we can assign the corresponding probability density function:

𝑓 (𝑥) = 𝜇(𝑥)∫
𝜇(𝑦) 𝑑𝑦

. (3)

This allows us to naturally extend probabilistic characteristics to the fuzzy case.
The transformation (3) enables us to naturally extend known characteristics of a
probability distribution – such as its central moments (see, e.g., [6]) – to the fuzzy
case. The first moment – the mean value – is defined as:
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𝑀1 =

∫
𝑥 · 𝑓 (𝑥) 𝑑𝑥. (4)

Substituting the expression (3) for 𝑓 (𝑥) into this formula, we get the corresponding
fuzzy expression:

𝑀1 =

∫
𝑥 · 𝜇(𝑥) 𝑑𝑥∫
𝜇(𝑥) 𝑑𝑥

. (5)

Interestingly, this is exactly what is called centroid defuzzification.
Similarly, for any natural number 𝑛 ≥ 2, we can plug in the expression (3) into a

formula for the 𝑛-th order moment:

𝑀𝑛 =

∫
(𝑥 − 𝑀1)𝑛 · 𝑓 (𝑥) 𝑑𝑥, (6)

and get the corresponding fuzzy expression:

𝑀𝑛 =

∫
(𝑥 − 𝑀1)𝑛 · 𝜇(𝑥) 𝑑𝑥∫

𝜇(𝑥) 𝑑𝑥
. (7)

Need for interval-valued fuzzy. Traditional [0, 1]-based fuzzy approach implicitly
assumes that for each 𝑥, we can extract the exact value 𝜇(𝑥) from the expert. In
practice, the experts cannot very accurately gauge their degrees of confidence. At
best, they provide an interval

[
𝜇(𝑥), 𝜇(𝑥)

]
of possible values of 𝜇(𝑥).

This case – known as interval-valued fuzzy case – means that we have many
different membership functions 𝜇(𝑥) as long as we have 𝜇(𝑥) ∈

[
𝜇(𝑥), 𝜇(𝑥)

]
for

all 𝑥.
For different possiblemembership functions, we have different values of skewness

𝑀3 and of other central moments 𝑀𝑛. It is therefore desirable to estimate the range
of possible values of each of these characteristics. In this paper, we provide efficient
algorithms for such an estimation.

3 Case of Skewness: Analysis of the Problem

Case of skewness: explicit formula. Let us start with the case when 𝑛 = 3. In this
case, the formula (7) takes the form

𝑀3 =

∫
(𝑥 − 𝑀1)3 · 𝜇(𝑥) 𝑑𝑥∫

𝜇(𝑥) 𝑑𝑥
. (8)

Here,
(𝑥 − 𝑀1)2 = 𝑥3 − 3 · 𝑥2 · 𝑀1 + 3 · 𝑥 · 𝑀21 − 𝑀31 , (9)
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thus the expression (9) takes the form

𝑀3 =

∫
𝑥3 · 𝜇(𝑥) 𝑑𝑥∫
𝜇(𝑥) 𝑑𝑥

− 3 · 𝑀1 ·
∫
𝑥2 · 𝜇(𝑥) 𝑑𝑥∫
𝜇(𝑥) 𝑑𝑥

+ 3 · 𝑀21 ·
∫
𝑥 · 𝜇(𝑥) 𝑑𝑥∫
𝜇(𝑥) 𝑑𝑥

−𝑀31 . (10)

Substituting the formula (5) into this expression, we get

𝑀3 =

∫
𝑥3 · 𝜇(𝑥) 𝑑𝑥∫
𝜇(𝑥) 𝑑𝑥

− 3 ·

(∫
𝑥2 · 𝜇(𝑥) 𝑑𝑥

)
·
(∫

𝑥 · 𝜇(𝑥) 𝑑𝑥
)

(∫
𝜇(𝑥) 𝑑𝑥

)2 +

3 ·

(∫
𝑥 · 𝜇(𝑥) 𝑑𝑥

)3(∫
𝜇(𝑥) 𝑑𝑥

)3 −

(∫
𝑥 · 𝜇(𝑥) 𝑑𝑥

)3(∫
𝜇(𝑥) 𝑑𝑥

)3 =

∫
𝑥3 · 𝜇(𝑥) 𝑑𝑥∫
𝜇(𝑥) 𝑑𝑥

− 3 ·

(∫
𝑥2 · 𝜇(𝑥) 𝑑𝑥

)
·
(∫

𝑥 · 𝜇(𝑥) 𝑑𝑥
)

(∫
𝜇(𝑥) 𝑑𝑥

)2 + 2 ·

(∫
𝑥 · 𝜇(𝑥) 𝑑𝑥

)3(∫
𝜇(𝑥) 𝑑𝑥

)3 . (11)

Basic facts from calculus: reminder. In general, according to calculus, a function
𝐹 (𝑣) attains its maximum with respect to the input 𝑣 ∈ [𝑣, 𝑣] in one of the three
cases:
• It can be that this maximum is attained inside the interval; in this case, at this
point the derivative 𝐹 ′(𝑣) of the maximized function is equal to 0.

• It can be that this maximum is attained at the lower endpoint 𝑣 of the given
interval. In this case, the derivative 𝐹 ′(𝑣) at this point has to be non-positive:
otherwise, if this derivative was positive, then for a sufficiently small 𝜀 > 0, at
a point 𝑣 + 𝜀 we would have larger values of 𝐹 (𝑣) – which contradicts to our
assumption that the largest value of the function 𝐹 (𝑣) is attained for 𝑣 = 𝑣.

• It can also be that this maximum is attained at the upper endpoint 𝑣 of the given
interval. In this case, the derivative 𝐹 ′(𝑣) at this point has to be non-negative:
otherwise, if this derivative was negative, then for a sufficiently small 𝜀 > 0, at
a point 𝑣 − 𝜀 we would have larger values of 𝐹 (𝑣) – which contradicts to our
assumption that the largest value of the function 𝐹 (𝑣) is attained for 𝑣 = 𝑣.

Similarly, a function 𝐹 (𝑣) attains its minimum with respect to the input 𝑣 ∈ [𝑣, 𝑣] in
one of the three cases:
• It can be that this minimum is attained inside the interval; in this case, at this
point the derivative 𝐹 ′(𝑣) of the maximized function is equal to 0.

• It can be that this minimum is attained at the lower endpoint 𝑣 of the given interval.
In this case, the derivative 𝐹 ′(𝑣) at this point has to be non-negative: otherwise,
if this derivative was negative, then for a sufficiently small 𝜀 > 0, at a point 𝑣 + 𝜀

we would have smaller values of 𝐹 (𝑣) – which contradicts to our assumption that
the smallest value of the function 𝐹 (𝑣) is attained for 𝑣 = 𝑣.
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• It can also be that this minimum is attained at the upper endpoint 𝑣 of the given
interval. In this case, the derivative 𝐹 ′(𝑣) at this point has to be non-positive:
otherwise, if this derivative was positive, then for a sufficiently small 𝜀 > 0, at
a point 𝑣 − 𝜀 we would have smaller values of 𝐹 (𝑣) – which contradicts to our
assumption that the smallest value of the function 𝐹 (𝑣) is attained for 𝑣 = 𝑣.

Let us apply this idea to our case. In our case, unknown are values 𝜇(𝑥). For each
expression

𝐼𝑘
def
=

∫
𝑥𝑘 · 𝜇(𝑥) 𝑑𝑥, (12)

the derivative with respect to 𝜇(𝑥) is equal to

𝜕𝐼𝑘

𝜕𝜇(𝑥) = 𝑥𝑘 . (13)

Thus, for the expression (11) – which, in terms of the notations 𝐼𝑘 has the form

𝑀3 =
𝐼3
𝐼0

− 3 · 𝐼2 · 𝐼1
𝐼20

+ 2 ·
𝐼31

𝐼30
, (14

the derivative 𝑑 (𝑥) with respect to 𝜇(𝑥) takes the following form:

𝑑 (𝑥) = 𝑥3 · 𝐼0 − 𝐼3

𝐼20
− 2 ·

𝑥2 · 𝐼1 · 𝐼20 + 𝐼2 · 𝑥 · 𝐼20 − 2𝐼0
𝐼40

+

2
3𝐼1 · 𝑥 · 𝐼30 − 𝐼3 · 3𝐼20

𝐼60
. (15)

In other words, this derivative is a cubic polynomial

𝑑 (𝑥) = 𝑎0 + 𝑎1 · 𝑥 + 𝑎2 · 𝑥2 + 𝑎3 · 𝑥3, (16)

with a positive coefficient 𝑎3 = 1/𝐼0 at 𝑥3.
It is known that a cubic function has either 1 or 3 roots, i.e., in general, we have

values 𝑥1 ≤ 𝑥2 ≤ 𝑥3 at which 𝑑 (𝑥) = 0. Since the coefficient at 𝑥3 is positive:

• we have 𝑑 (𝑥) < 0 for 𝑥 < 𝑥1,
• we have 𝑑 (𝑥) > 0 for 𝑥1 < 𝑥 < 𝑥2,
• we have 𝑑 (𝑥) < 0 for 𝑥2 < 𝑥 < 𝑥3, and
• we have 𝑑 (𝑥) > 0 for 𝑥 > 𝑥3.

When 𝑑 (𝑥) > 0, then, as we have mentioned:

• maximum cannot be attained inside the interval
[
𝜇(𝑥), 𝜇(𝑥)

]
, and it cannot be

attained at the lower endpoint of this interval, so maximum has to be attained for
𝜇(𝑥) = 𝜇(𝑥);



6 Juan Carlos Figueroa Garcia, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

• similarly, minimum cannot be attained inside the interval
[
𝜇(𝑥), 𝜇(𝑥)

]
, and it

cannot be attained at the upper endpoint of this interval, so minimum has to be
attained for 𝜇(𝑥) = 𝜇(𝑥).

When 𝑑 (𝑥) < 0:

• maximum cannot be attained inside the interval
[
𝜇(𝑥), 𝜇(𝑥)

]
, and it cannot be

attained at the upper endpoint of this interval, so maximum has to be attained for
𝜇(𝑥) = 𝜇(𝑥);

• similarly, minimum cannot be attained inside the interval
[
𝜇(𝑥), 𝜇(𝑥)

]
, and it

cannot be attained at the lower endpoint of this interval, so minimum has to be
attained for 𝜇(𝑥) = 𝜇(𝑥).

Thus, once we know the values 𝑥𝑖 , we can uniquely determine the membership
functions 𝜇(𝑥) ∈

[
𝜇(𝑥), 𝜇(𝑥)

]
at which the skewness attains, for these 𝑥𝑖 , its largest

and smallest values. So, to find the overall largest and smallest values of the skewness,
it is sufficient to find the values 𝑥𝑖 for which the resulting skewness is the largest
and for which it is the smallest. Hence, we arriove at the following algorithm for
computing the range

[
𝑀3, 𝑀3

]
of possible values of skewness.

4 Resulting Algorithm for Computing the Range
[

𝑴3, 𝑴3
]

of
Possible Values of Skewness

What is given and what we want. For each 𝑥, we have an interval
[
𝜇(𝑥), 𝜇(𝑥)

]
.

We want to find the range
[
𝑀3, 𝑀3

]
of all possible values of the skewness 𝑀3 –

as defined by the formulas (5) and (8) – over all functions 𝜇(𝑥) for which 𝜇(𝑥) ∈[
𝜇(𝑥), 𝜇(𝑥)

]
for all 𝑥.

Computing 𝑀3. For each triple of real numbers 𝑥1 ≤ 𝑥2 ≤ 𝑥3, we compute the
skewness 𝑀3 (𝑥1, 𝑥2, 𝑥3) corresponding to the following membership function:

• when 𝑥 < 𝑥1 or 𝑥2 < 𝑥 < 𝑥3, we take 𝜇(𝑥) = 𝜇(𝑥); and
• we take 𝜇(𝑥) = 𝜇(𝑥) when 𝑥1 < 𝑥 < 𝑥2 or 𝑥 > 𝑥2.

Then, we use an optimization algorithm to compute

𝑀3 = max
𝑥1 ,𝑥2 ,𝑥3

𝑀3 (𝑥1, 𝑥2, 𝑥3). (17)

Computing 𝑀3. For each triple of real numbers 𝑥1 ≤ 𝑥2 ≤ 𝑥3, we compute the
skewness 𝑀3 (𝑥1, 𝑥2, 𝑥3) corresponding to the following membership function:
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• when 𝑥 < 𝑥1 or 𝑥2 < 𝑥 < 𝑥3, we take 𝜇(𝑥) = 𝜇(𝑥); and
• we take 𝜇(𝑥) = 𝜇(𝑥) when 𝑥1 < 𝑥 < 𝑥2 or 𝑥 > 𝑥2.

Then, we use an optimization algorithm to compute

𝑀3 = min
𝑥1 ,𝑥2 ,𝑥3

𝑀3 (𝑥1, 𝑥2, 𝑥3). (18)

5 General Case of Arbitrary Central Moments

What is given and what we want. For each 𝑥, we have an interval
[
𝜇(𝑥), 𝜇(𝑥)

]
.

We are also given a natural number 𝑛. We want to find the range
[
𝑀𝑛, 𝑀𝑛

]
of all

possible values of the 𝑛-th central moment 𝑀𝑛 – as defined by the formulas (5) and
(7) – over all functions 𝜇(𝑥) for which 𝜇(𝑥) ∈

[
𝜇(𝑥), 𝜇(𝑥)

]
for all 𝑥.

Discussion. In the general case of the 𝑛-th order central moment, similar arguments
leads to an 𝑛-th order polynomial 𝑑 (𝑥) with a positive coefficient at 𝑥𝑛. Thus, similar
arguments lead to the following algorithm.

Computing 𝑀𝑛. For each 𝑛-tuple of real numbers 𝑥1 ≤ 𝑥2 ≤ . . . ≤ 𝑥𝑛, we take 𝑥0
def
=

−∞ and 𝑥𝑛+1
def
= +∞. Thus, the whole real line is divided into 𝑛+1 intervals (𝑥0, 𝑥1),

(𝑥1, 𝑥2), . . . , (𝑥𝑛, 𝑥𝑛+1). Then, we compute the 𝑛-th central moment 𝑀𝑛 (𝑥1, . . . , 𝑥𝑛)
corresponding to the following membership function:

• for 𝑥 ∈ (𝑥𝑘 , 𝑥𝑘+1) for which 𝑛 − 𝑘 is odd, we take 𝜇(𝑥) = 𝜇(𝑥) and
• when 𝑛 − 𝑘 is even, we take 𝜇(𝑥) = 𝜇(𝑥).

Then, we use an optimization algorithm to compute

𝑀𝑛 = max
𝑥1 ,...,𝑥𝑛

𝑀𝑛 (𝑥1, . . . , 𝑥𝑛). (19)

Computing 𝑀𝑛. For each 𝑛-tuple of real numbers 𝑥1 ≤ 𝑥2 ≤ . . . ≤ 𝑥𝑛, we take 𝑥0
def
=

−∞ and 𝑥𝑛+1
def
= +∞. Thus, the whole real line is divided into 𝑛+1 intervals (𝑥0, 𝑥1),

(𝑥1, 𝑥2), . . . , (𝑥𝑛, 𝑥𝑛+1). Then, we compute the 𝑛-th central moment 𝑀𝑛 (𝑥1, . . . , 𝑥𝑛)
corresponding to the following membership function:

• for 𝑥 ∈ (𝑥𝑘 , 𝑥𝑘+1) for which 𝑛 − 𝑘 is odd, we take 𝜇(𝑥) = 𝜇(𝑥) and
• when 𝑛 − 𝑘 is even, we take 𝜇(𝑥) = 𝜇(𝑥).

Then, we use an optimization algorithm to compute

𝑀𝑛 = min
𝑥1 ,...,𝑥𝑛

𝑀𝑛 (𝑥1, . . . , 𝑥𝑛). (20)
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