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How to Simulate If We Only Have Partial
Information But We Want Reliable Results?

Vladik Kreinovich and Olga Kosheleva

Abstract The main objective of a smart energy system is to make control decisions
that would make energy systems more efficient and more reliable. To select such
decisions, the system must know the consequences of different possible decisions.
Energy systems are very complex, they cannot be described by a simple formula, the
only way to reasonably accurately find such consequences is to test each decision on
a simulated system. The problem is that the parameters describing the system and
its environment are usually known with uncertainty, and we need to produce reliable
results – i.e., results that will be true for all possible values of the corresponding pa-
rameters. In this chapter, we describe techniques for performing reliable simulations
under such uncertainty.

1 Need for Reliable Simulations under Uncertainty: Formulation
of the Problem

1.1 Need for smart energy systems: a brief reminder

Our civilization runs on energy. Energy needs to be produced, transmitted, and dis-
tributed. A complex network of interconnected systems has been developed for en-
ergy production, transmission, and distribution. This network has to operate under
changing conditions. Energy supply changes; for example:

• on an hour by hour basis, the wind stops or the sun gets hidden by the clouds,
and the supply decreases,

• on a larger time scale, new source of energy – e.g., new sources of reliable energy
– are added.
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Energy demand changes; for example:

• on an hour by hour basis, the temperature goes down or up – and we start using
more or less energy for heating or cooling;

• on a larger time scale, cars are replaced by electric cars, computers and computer
networks consume an increasing portion of energy.

Because of these changes, we need to constantly adjust the systems’ parameters –
i.e., to control these systems.

Energy systems are very complex, it is difficult to come up with efficient control
algorithms for such systems. As a result, while a lot of control functions have been
automated – especially on the lowest control level, as, e.g., in power plants – still
a lot of control decisions are made by experts – i.e., by humans. These decisions
are not always optimal: the resulting control is often not the most efficient one, and,
moreover, not always reliable – situations when customers do not get the desired
amount of energy remain common even in the most advanced systems such as en-
ergy systems in the US or in Western Europe, and even blackouts are unfortunately
still rather common.

Since the existing algorithms are, at present, not perfect, a natural way to improve
the current energy systems is to make these systems automatically learn from their
experience. This is not just a dream-like distant-future possibility: machine learning
systems have been successfully used in many applications; see, e.g., [12]. It is also
desirable to incorporate the knowledge of expert controllers into an automated (or
even automatic) system. Such energy systems that can use expert knowledge and
that can learn from their experience are known as smart energy systems.

1.2 Smart energy systems: need for simulations

The main objective of a smart energy system is to provide efficient and reliable pro-
duction, transmission, and distribution of energy. To select the best control strategy
– i.e., the strategy that provides sufficient high levels of efficiency and reliability –
the system needs to know the consequences of different control strategies.

As we have mentioned, energy systems are very complex, so that he cannot hope
to have simple formulas (or even simple algorithms) predicting such consequences.
So the only way to reliably determine the consequences of each control strategy is
to test it on a computer simulation.

1.3 Need for simulations under uncertainty

Simulating a complex system is not easy even if we have full information about
this system and all its subsystems. In practice, the problem is even more complex
– since we only know the parameters describing the system (and the environment
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affecting this system) with some uncertainty. This is especially true if we want to
develop a control for the next hour or even the next day: we can only predict, e.g.,
the next day temperature with some uncertainty, and changes in temperature affect
the energy demand for cooling or heating. So, we need to simulate the system in
situations when this system is only known with uncertainty.

1.4 Need for reliable simulation results

In situations with uncertainty, a natural idea is to use, in our simulations, the most
probable values of the corresponding parameters. The actual values of these param-
eters are, in general, somewhat different from the most probable values. As a con-
sequences, the simulation results obtained by such simulations will be, in general,
somewhat different from what will happen on the actual energy system.

This difference may be critical. As an example, we can consider an area where
energy consumption is close to the distribution networks’ maximal capacity m. If
the simulation predicts that the next day’s consumption will be 0.9m, is this good
news or bad news? It depends:

• If the actual consumption is 0.9± 0.05 of the threshold value m, this is good
news, since we are guaranteed that the demand will not exceed the dangerous
threshold.

• On the other hand, if the actual consumption is 0.9±0.2 of the threshold value,
there is a real possibility that the demand will exceed the threshold, so limitations
on energy distribution may need to be imposed.

In general, it is desirable to come up with reliable simulation results, i.e., with
bounds that guarantee (or at least guarantee with high probability) that the actual
value will remain within these bounds.

Thus, we arrive at the need to have reliable simulations under uncertainty.

1.5 How this problem is resolved now and why new methods are
needed

A natural way to take uncertainty into account is to supplement simulations based
on most probable values of the corresponding parameters with simulations based on
combinations of other possible values. After such simulations, we get a reasonable
understanding of how much the actual value of the quantity that we are trying to
predict will differ from the value obtained by simulations that use most probable
values. However, there are two main limitations of this approach:

• first, this approach is very time-consuming: there are many possible combina-
tions of parameters, and for each such combination, we need to repeat simula-
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tions – which, for complex systems, are time-consuming already; so, this ap-
proach is not efficient;

• second, even if we try a large number of different combinations, there is no guar-
antee that one of the combinations that we did not try will lead to completely
different result – so this approach is not reliable.

So, since we would like to have techniques for efficient reliable simulations under
uncertainty, we need to come up with a new method.

1.6 What we do in this chapter and why this problem is important
beyond smart energy systems

In this chapter, we describe techniques that provide efficient reliable simulations
under uncertainty.

Our main objective is to help design smart energy systems. However, similar
problems appear in many other application areas where we need to simulate com-
plex systems – be it:

• a public transportation system,
• a food demand, transportation, and distribution system, etc.

Because this problem is important in many application areas – and not only for
smart energy systems – in the following sections, we will try our best to formulate
the corresponding techniques in the most general form. This way, readers interested
in other possible applications will be able to understand and use these techniques.

2 Towards Formulation of the Problem in Precise Terms

2.1 What we want to estimate: first approximation

We want to predict the future state of an energy system in case we make one of the
possible control decisions. In general, the state of a system is characterized by the
values of the corresponding quantities.

• Some of these quantities are continuous – e.g., quantities describing supply and
demand.

• Some of these quantities are discrete – e.g., for each subnetwork, we can have a
boolean (“yes”-“no”) variables describing:

– whether this subnetwork is functioning
– on this subnetwork is in a temporary blackout situation.

For an electricity transmission line, we can have a boolean variable describing:
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– whether this line remains functional
– or this line is damaged (e.g., by a storm) and transmissions along this line are

disrupted.

2.2 What we want to estimate: a realistic description

The functioning of the energy system depends on many factors. Even when we
know the exact values c1, . . . ,cn of all the parameters describing the system, there
are many random factors describing the effect of the environment. For example, in
case of a severe storm:

• we cannot predict which exactly transmission lines will be damaged,
• we can also predict – based on the past experiences – the probabilities of different

lines being damaged.

In general, we cannot predict the exact values of the corresponding quantities, we
can only predict the probabilities of different values.

• For discrete variables, e.g., for the variable describing the presence or absence of
a blackout in a given area, we can only predict the probability of this happening.

• For continuous variables, we can only predict the probability distribution.

Of course, the only things the computers can return are numbers. So, in this case, we
want to estimate a finite number of numerical characteristics of the corresponding
probability distribution.

• These can be moments of the corresponding distributions, such as mean and vari-
ance.

• These can be parameters describing the corresponding distribution from a se-
lected family, etc.

In general, we want to estimate one or more numerical characteristics y of the cor-
responding probability distribution.

2.3 What we have

We assume that we already have a simulation algorithm that:

• given the exact values of all the parameters c1, . . . ,cn describing the system itself
and the parameters of all probability distributions involved in the simulation,

• returns, for each of the desired numerical characteristics y, the estimate ỹ.

To estimate a characteristic – related to random quantities – based on a simula-
tion, we emulate the situation several times, and use the resulting sample to estimate
the value of the desired characteristic. In general, when we have a sufficiently large
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sample, the distribution of the difference ∆y def
= ỹ − y between the sample-based

estimate ỹ and the actual (unknown) value of the corresponding characteristic is ap-
proximately normal, with mean 0. There are well-known methods for estimating the
standard deviation σy of this difference based on the sample values; see, e.g., [37].

Thus, we can say that, given the exact values of all the parameters ci, the simula-
tion algorithm returns:

• not only the estimate ỹ,
• but also the standard deviation σy describing the inaccuracy of this estimate.

The estimate ỹ can be described as ỹ = y(c1, . . . ,cn)+∆y, where:

• the actual dependence y(c1, . . . ,cn) is unknown, and
• the value ∆y is normally distributed with mean 0 and standard deviation

σy(c1, . . . ,cn).

Strictly speaking, we do not get the exact value of the standard deviation σy, what
we get is a sample-based estimate σ̃y for this value. We can ignore this difference
if we simply want to estimate y: e.g., no one will say “accuracy 10.1%”, it is, from
the practical viewpoint, the same as to say that accuracy is 10%. However, if we
do want to come up with a better estimate for σy, we can take into account that
there are known methods for estimating the accuracy of a sample-based estimate
σ̃y, i.e., estimating the value of the difference ∆σy

def
= σ̃y −σy. This difference is

also normally distributed, with a known standard deviation σσ ; see, e.g., [37].

2.4 Let us take uncertainty into account

In practice, we have some information about the values of the parameters c1, . . . ,cn
– if we had no information at all, we would not be able to make any prediction.
However, as we have mentioned, in practice, we do not know the exact values of the
parameters c1, . . . ,cn, we only know these values with uncertainty.

This usually means that:

• we know approximate values c̃1, . . . , c̃n of these parameters, and
• we also know how accurate these estimates are – i.e., in precise terms, we know

the upper bounds ∆1, . . . ,∆n on the absolute values of the differences

∆ci
def
= c̃i − ci.

In other words, the only information that we have about the actual (unknown) value
of each parameter ci is that this value is located somewhere in the interval

[c̃i −∆i, c̃i +∆i];

see, e.g., [13, 23, 25, 27, 33].
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The fact that we know the approximate values means that the bounds ∆i de-
scribing uncertainty are reasonably small, and thus, the corresponding intervals are
reasonably narrow.

Thus, we arrive at the following precise formulation of our problem.

2.5 Resulting precise formulation of the problem

In effect, we have two problems:

2.5.1 First (main) problem

What we have:

• We have a simulation algorithm that, given the numerical values c1, . . . ,cn, re-
turns two numbers:

– the value σ̃(c1, . . . ,cn) and
– the value ỹ which is equal to y(c1, . . . ,cn)+∆y, where y(c1, . . . ,cn) is an un-

known function, and ∆y is normally distributed with mean 0 and standard
deviation σ̃(c1, . . . ,cn).

• We also have n intervals [c̃1 −∆1, c̃1 +∆1], . . . , [c̃n −∆n, c̃n +∆n], for which

∆i ≪ |c̃i|.

What we want: we want to find the ranges of possible values for y(c1, . . . ,cn) when
all ci are located in the corresponding intervals:[

y,y
]
= {y(c1, . . . ,cn) : c1 ∈ [c̃1 −∆1, c̃1 +∆1], . . . ,cn ∈ [c̃n −∆n, c̃n +∆n]}.

2.5.2 Second (auxiliary) problem

What we have:

• We have a simulation algorithm that, given the numerical values c1, . . . ,cn, re-
turns two numbers:

– the value σσ (c1, . . . ,cn) and
– the value σ̃y which is equal to σy(c1, . . . ,cn)+∆σy, where σy(c1, . . . ,cn) is an

unknown function, and ∆σ is normally distributed with mean 0 and standard
deviation σσ (c1, . . . ,cn).

• We also have n intervals [c̃1 −∆1, c̃1 +∆1], . . . , [c̃n −∆n, c̃n +∆n], for which

∆i ≪ |c̃i|.
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What we want: we want to find the ranges of possible values for σy(c1, . . . ,cn when
all ci are located in the corresponding intervals:[

σ y,σ y
]
= {σy(c1, . . . ,cn) : c1 ∈ [c̃1 −∆1, c̃1 +∆1], . . . ,cn ∈ [c̃n −∆n, c̃n +∆n]}.

2.6 Mathematical comment

• From the substantive viewpoint, these two problems are different.
• However, from the mathematical and computational viewpoint, they are, in ef-

fect, the same problem.

Because of this, in the following text, we will illustrate our algorithms on the exam-
ple of the first (main) problem – since the exact same algorithm solves the second
(auxiliary) problem as well.

3 Analysis of the Problem

3.1 Linearization helps us simplify the problem

Our objective is to estimate the range of the function y(c1, . . . ,cn) when each of
the parameters has the form ci = c̃i −∆ci, with ∆ci located between −∆i and ∆i.
Since the values ∆i are relatively small, the differences ∆ci are also small, so we
can linearize the formulas, i.e., expand the dependence

y(c1, . . . ,cn) = y(c̃1 −∆c1, . . . , c̃n −∆cn)

in Taylor series in terms of ∆ci and keep only linear terms in this expansion. Thus,
we get

y(c1, . . . ,cn) = y0 −
n

∑
i=1

yi ·∆ci, (1)

where y0
def
= y(c̃1, . . . , c̃n) and

yi
def
=

∂y
∂ci |c1=c̃1,...,cn=c̃n

.
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3.2 Formula for the range under linearization

Finding the range means finding the largest and the smallest possible values of the
expression (1). The largest value of this expression is attained when each term in the
sum is the largest.

• When yi ≥ 0, the term yi ·∆ci is non-decreasing, so its largest value is attained
when ∆ci attains its largest possible value ∆ci = ∆i. The resulting largest value
of this term is yi ·∆i.

• When yi ≤ 0, the term yi ·∆ci is non-increasing, so its largest value is attained
when ∆ci attains its smallest possible value ∆ci = −∆i. The resulting largest
value of this term is −yi ·∆i.

In both cases, the largest possible value of the i-th term is |yi| ·∆i. Thus, the largest
possible value of y(c1, . . . ,cn) is equal to y0 +∆ , where we denoted

∆
def
=

n

∑
i=1

|yi| ·∆i. (2)

Similarly, we can show that the smallest possible value of y(c1, . . . ,cn) is equal to
y0 −∆ . So, the desired range has the form [y0 −∆ ,y0 +∆ ].

So, to estimate the desired range, we need to estimate the values y0 and ∆ .

3.3 How we can estimate y0

The value y0 is the easiest to estimate. Indeed, as we have mentioned, when we
use the approximate values c̃i of the parameters, then the result ỹ of the simulation
has the form ỹ = y(c̃1, . . . , c̃n)+∆y, i.e., in our notations, ỹ = y0 +∆y, where ∆y is
normally distributed with mean 0 and standard deviation σy. In this sense, each such
result ỹ is an estimate for the quantity y0.

So, a natural way to get a more accurate estimate is to repeat this simulation
several (N) times and to compute the arithmetic average of the corresponding results
y(1), . . . , y(N)

0 :

y0 ≈
1
N
·

N

∑
k=1

y(k)0 . (3)

3.4 But how can we estimate ∆ : brainstorming

We are talking about simulation techniques. So, in line with the usual simulation
techniques, we want to select some independent probability distributions for simu-
lated differences δc(k)i so that:
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• by processing the corresponding simulation results y(k),
• we will be able to reconstruct the value ∆ .

The value ỹ obtain by the given simulation algorithm for the values c(k)i = c̃i +δc(k)i

is equal to y(k) = y
(

c(k)1 , . . . ,c(k)n

)
+∆y, i.e., in view of linearization (1), the form

y(k) = y0 +
n

∑
i=1

yi ·δci +∆y.

The only term in this expression that depends on ∆ci is the sum
n
∑

i=1
yi ·δci. Thus, to

be able to estimate ∆ , we need to select a probability distribution for which, from
the distribution of this sum, we can extract the value ∆ .

To find such a distribution, we need to be able:

• given the probability distribution of each of the variables δci,

• to estimate the distribution of their linear combination
n
∑

i=1
yi ·δci.

There are many ways to describe a probability distribution:

• we can describe its probability density function,
• we can describes its cumulative distribution function,
• we can describe its moments, etc.

The description in which a linear combination is the easiest to describe is a repre-
sentation of each random variable x in terms of a characteristic function χx(ω)

def
=

E[exp(i ·ω ·x)], where E[·] means the mean value and i def
=

√
−1. Indeed, in this case,

χ n
∑

i=1
yi·δci

(ω) = E

[
exp

(
i ·ω ·

(
n

∑
i=1

yi ·δci

))]
.

Here,

i ·ω ·
n

∑
i=1

yi ·∆ci =
n

∑
i=1

(i ·ω · yi ·δci).

Since exp(a+b) = exp(a)+ exp(b), we thus have

χ n
∑

i=1
yi·δci

(ω) = E

[
n

∏
i=1

exp(i ·ω · yi ·δci)

]
.

Since the variables δci are independent, the expected value of the product is equal
to the product of expected values:

χ n
∑

i=1
yi·δci

(ω) =
n

∏
i=1

E [exp(i ·ω · yi ·δci)] . (4)
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This expression can be rewritten as

χ n
∑

i=1
yi·δci

(ω) =
n

∏
i=1

E [exp(i · (ω · yi) ·δci)] ,

i.e., by definition of a characteristic function, as

χ n
∑

i=1
yi·δci

(ω) =
n

∏
i=1

χδci(ω · yi).

To get an expression depending on the sum ∆ =
n
∑

i=1
|yi| ·∆i, a natural idea is to

select, for each δci, the characteristic function

χδci(ω) = exp(i ·∆i · |ω|). (5)

For this selection, the formula (4) takes the form

χ n
∑

i=1
yi·δci

(ω) =
n

∏
i=1

χδci(ω · yi) =
n

∏
i=1

exp(i ·∆i · |ω| · |yi|) ,

i.e., since exp(a) · exp(b) = exp(a+b), the desired form

χ n
∑

i=1
yi·δci

(ω) = exp

(
n

∑
i=1

(i ·∆i · |ω| · |yi|)

)
= exp

(
i · |ω| ·

(
n

∑
i=1

|yi| ·∆i

))
=

exp(i · |ω| ·∆). (6)

The distribution with the desired characteristic function (5) corresponds to the
probability density function

ρ∆i(x) =
1

π ·∆i
· 1

1+
x2

∆ 2
i

.

This distributions was first considered by Cauchy and is thus known as the Cauchy
distribution [37]. It is often cited in textbooks on statistics as an example of a weird
distribution, for which the variance is infinite. In these terms:

• if the differences δci are Cauchy distributed,

• then the sum
n
∑

i=1
yi ·δci is also Cauchy distributed, with parameter ∆ .

For thus selected distribution, each difference ∆ (k) def
= y(k)− y0 has the form

∆
(k) =

(
y
(

c(k)1 , . . . ,c(k)n

)
+∆y(k)

)
− y0 =

(
y
(

c(k)1 , . . . ,c(k)n

)
− y0

)
+∆y(k) =
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n

∑
i=1

yi ·δci

)
+∆y(k).

The first term in this expression – the sum – is, as we have mentioned, Cauchy dis-
tributed, with characteristic function exp(i · |ω| ·∆). The second term is a normally
distributed random variables with mean 0 and variance σ2

y . So, its characteristic

function is equal to exp
(
−1

2
·ω2 ·σ2

y

)
.

The characteristic function of the sum ∆ (k) =

(
n
∑

i=1
yi ·δci

)
+∆y(k) of the two

independent terms is thus equal to the product of the characteristic functions of
these terns, i.e., is equal to

χ∆ (ω) = exp
(

i · |ω| ·∆ − 1
2
·ω2 ·σ2

y

)
. (7)

We can estimate this expected value based on the sample of the values
∆ (1), . . . ,∆ (N), as

χ∆ (ω)≈ χ(ω)
def
=

1
N
·

N

∑
k=1

exp
(

i ·ω ·∆ (k)
)
. (8)

Based on these values, we need to estimate ∆ .
This is the main idea behind the algorithm. To transform this idea into an actual

algorithm, we need to solve several auxiliary problems.

3.5 How to simulate Cauchy distribution

Most programming languages have a built-in random number generator that sim-
ulated random variables uniformly distributed on the interval [0,1]. To simulate
Cauchy distribution with parameter ∆ = 1, we can take a random variable u uni-
formly distributed on the interval [0,1] (produced by this random number generator),
and take ξ = tan(π · (u−0.5)).

To get a Cauchy-distributed random variable with parameter ∆i, we multiply ξ

by ∆i.

3.6 Caution

The above formulas are based on linearization, i.e., on the assumption that all the
differences ∆ci and δci are small.

• The differences ∆ci are indeed, as we have argued, reasonable small.



How to Simulate If We Only Have Partial Information 13

• However, the values δci are obtained by a Cauchy distribution, and this distribu-
tion has a non-zero probability of generating large values – for which lineariza-
tion is no longer applicable.

To avoid this problem, we need to scale down the simulated values, to make sure
that the resulting values δci are still within the [−∆i,∆i] ranges on which all the
expressions can be linearized.

3.7 How to reconstruct ∆ from the final expression

A natural way to reconstruct ∆ from the equation (7) is to reduce this formula to
linear regression. This can be done by taking logaorthm of both sides:

ln(χ(ω))≈ i · |ω| ·∆ − 1
2
·ω2 ·σ2

y . (9)

We need to be careful here, since for complex numbers, the logarithm is defined
modulo adding an integer multiple of 2π · i. To avoid this non-uniqueness, we need
to start with ω = 0, for which the logarithm should be 0, and then, for each next value
ω , choose the value of the logarithm which is the closest to the previous value.

An additional simplification comes from the fact that in the right-hand side of the
formula (9), the real part is already known, we are only interested in the imaginary
part. So, we can simplify the formula (9) into

Im(ln(χ(ω)))≈ |ω| ·∆ . (10)

Since now we have linear regression, it is reasonable to use the usual Least
Squares approach to find the desired parameter ∆ . To do it, we need to know the
variance of the difference. If σ0 is the standard deviation of the difference be-
tween the left-hand side and the right-hand side of the equality (7–8), then, since

∆(lnx) ≈ ∆x
x

, the variance of the differences between the left-hand side and right-

hand sides of the formula (9) (and thus, of the formula (10)) is equal to
σ0

|χ(ω)|
.

Thus, the least squares method leads to minimizing the sum

∑
ω

(Im(ln(χ(ω)))−|ω| ·∆)2

σ2
0

|χ(ω)|2

.

Differentiating this expression with respect to ∆ and equating the resulting deriva-
tive to 0, we conclude that

∆ =
∑
ω

Im(ln(χ(ω))) · |ω| · |χ(ω)|2

∑
ω

|ω|2 · |χ(ω)|2
.
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Now, we are ready to describe the resulting algorithm.

4 Resulting Algorithm

4.1 The problem: reminder

What we have:

• We have a simulation algorithm that, given the numerical values c1, . . . ,cn, re-
turns two numbers:

– the value σ̃(c1, . . . ,cn) and
– the value ỹ which is equal to y(c1, . . . ,cn)+∆y, where y(c1, . . . ,cn) is an un-

known function, and ∆y is normally distributed with mean 0 and standard
deviation σ̃(c1, . . . ,cn).

• We also have n intervals [c̃1 −∆1, c̃1 +∆1], . . . , [c̃n −∆n, c̃n +∆n], for which

∆i ≪ |c̃i|.

What we want: we want to find the ranges of possible values for y(c1, . . . ,cn) when
all ci are located in the corresponding intervals:[

y,y
]
= {y(c1, . . . ,cn) : c1 ∈ [c̃1 −∆1, c̃1 +∆1], . . . ,cn ∈ [c̃n −∆n, c̃n +∆n]}.

4.2 First step: computing y0

Several (N) times we apply the simulation algorithm with the parameters c̃1, . . . , c̃n,
and then take the arithmetic average of the results y(1)0 , . . . , y(N)

0 :

y0 =
1
N
·

N

∑
k=1

y(k)0 .

4.3 Second step: preparing Cauchy distributed random variables

For each k from 1 to N and for each i from 1 to n, we:

• use the standard random number generator to generate a value u(k)i which is uni-
formly distributed on the interval [0,1], and then

• we compute the values ξ
(k)
i = tan(π · (u(k)i −0.5)).
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4.4 Third step: re-scaling, to enable linearlization

We compute the value
M = max

k,i
|ξ (k)

i |,

and then compute

δc(k)i =
1
M

·∆i ·ξ (k)
i

and the values c(k)i = c̃i +δc(k)i .

4.5 Fourth step: running simulations

For each k from 1 to N, we run the given simulation algorithm for the values
c(k)1 , . . . ,c(k)n , and get the result y(k) and the difference ∆ (k) = y(k)− y0.

4.6 Final steps

Now, for a small ∆ω , for each value ω = 0,∆ω,2∆ω, . . ., we compute the values

χ(ω) =
1
N
·

N

∑
k=1

exp
(

i ·ω ·∆ (k)
)
.

Then, consequently, for each ω = 0,∆ω,2∆ω, . . ., we compute ln(χ(ω)). In gen-
eral, for a complex number, logarithm is only defined modulo a multiple of 2π · i,
so we choose the value 0 for ω = 0, and for each consequent ω , we select the value
which is the closest to the previously select logarithm value.

Once all these logarithm values are selected, we estimate

∆ = M ·
∑
ω

Im(ln(χ(ω))) · |ω| · |χ(ω)|2

∑
ω

|ω|2 · |χ(ω)|2
.

We then conclude that the desired range is [y0 −∆ ,y0 +∆ ].
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4.7 Caution: the proposed algorithm is NOT a usual true-to-life
simulation

Traditional approach is to make all simulations as true to life as possible, so that the
values of the parameters are as close to the actual values as possible. However, this
is possible only if we know the exact values of all these parameters.

In situations with uncertainty, when we do not know the exact values of the cor-
responding parameters, we cannot use true-to-life simulations, we have to use math-
ematical tricks to get the desired range. For example:

• while we know that each difference ∆ci is within the interval [−∆i,∆i],
• to simulate these differences, we use Cauchy distribution, for which the corre-

sponding random variable has a non-zero probability to be outside this interval.

While the simulations are not true to life, the good news is that, as we have shown,
the results of these not-true-to-life simulations correctly estimate the desired range.

4.8 How accurate and how efficient is this algorithm

The accuracy of this algorithm – as with all simulation algorithms – depends on
the number of iterations N. In general, if we run N iterations, we estimate each
parameter with accuracy 1/

√
N; see, e.g., [37]. So, if we want to achieve accuracy

20%, it is sufficient to select the number of iterations N for which 1/
√

N ≈ 20%,
i.e., N = 25.

How efficient is this algorithm in comparison with the traditional approach? In
the traditional approach, even if we select, for simulation, two possible values of
each of n quantities, then, in principle, we get 2n possible combinations of such
values. For large n, in the hundreds, is not feasible. Even for smaller n, e.g., for
n = 10, this still means 210 ≈ 1000 iterations, much more than N = 25 iterations
needed for the above-described algorithm.

4.9 Experimental and theoretical confirmation

Experimental and theoretical confirmation of the general idea of Cauchy-based
Monte-Carlo algorithms can be found in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15,
16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 29, 30, 31, 32, 34, 35, 36, 38].
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