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In the traditional fuzzy logic, we can use “and”-operations (also
known as t-norms) to estimate the expert’s degree of confidence
in a composite statement A&B based on his/her degrees of con-
fidence d(A) and d(B) in the corresponding basic statements A
and B. But what if we want to estimate the degree of confidence
in A&B&C in situations when, in addition to the degrees of
estimate d(A), d(B), and d(C) of the basic statements, we also
know the expert’s degrees of confidence in the pairs d(A&B),
d(A&C), and d(B&C)? Traditional “and”-operations can pro-
vide such an estimate – but only by ignoring some of the avail-
able information. In this paper, we show that, by going beyond
the traditional “and”- and “or”-operations, we can find a natural
estimate that takes all available information into account – and
thus, hopefully, leads to a more accurate estimate.

Key words: Fuzzy logic, degree of certainty, “and”-operation, t-norm,
“or”-operation, t-conorm, maximum entropy approach, probabilistic un-
certainty

1 INTRODUCTION

1.1 General formulation of the problem: in brief
Known operations of fuzzy logic, such as “and”-operations (t-norms), allow
us, given the expert’s degrees of certainty in several statements S1, . . . , Sn,

⋆ email: vladik@utep.edu
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estimate the expert’s degree of certainty in propositional combinations of such
statements – e.g., in the “and”-combination S1 & . . . &Sn.

This works well if all we know are expert’s degrees of certainty in indi-
vidual statements Si. In practice, however, in addition to degrees of certainty
in individual statements Si, we sometimes also have expert’s degrees of cer-
tainty in some propositional combinations of the original statements. For
example, we may know the expert’s degree of certainty in S1, S2, S3, and
in two combinations S1 &S2 and S1 &S3, and we want to estimate the ex-
pert’s degree of certainty in the “and”-combination S1 &S2 &S3 of all three
statements.

If we use the traditional “and”-operations, we can compute the desired es-
timate – but only by ignoring some of the available information. For example,
we can estimate the desired degree of certainty by combining the degrees of
S1 &S2 and S3 – but then we ignore the known expert’s degree of certainty in
the combination S1 &S3. Alternatively, we can estimate the desired degree
by combining the degrees of S1 &S3 and S2 – but then we ignore the known
degree of certainty in S1 &S2.

1.2 Main objective of this paper
The main objective of this paper is to provide a general methodology for
solving this problem.

Comment. This paper is an extended version of our conference paper [7]:

• In that paper, we only considered “and”-combinations.

• In the current paper, we consider the general case of arbitrary proposi-
tional combinations of the basic statements Si.

1.3 Structure of the paper
First, in Section 2, we provide the detailed formulation of the problem. Once
the problem is formulated, in Section 3, we analyze this problem. The re-
sulting methodology is presented in Section 4. Conclusions and future work
form the last Section 5.

2 DETAILED FORMULATION OF THE PROBLEM

2.1 Why do we need fuzzy logic in the first place?
A large amount of human activity has been automated, but in many areas,
human expertise, human skills are still needed. We use human doctors when
we are ill, we use human drivers and human pilots, etc.
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Not all experts and specialists are equal, some are much better than others.
In the ideal world, all diagnoses will be made by the top medical doctors, all
planes should be controlled by the top pilots – but in reality, there are not that
many top doctors, not that many top pilots, not that many top drivers, and it
is not possible for them to serve all patients and all the planes.

It is therefore desirable to use the knowledge of the top experts to help
others make better decisions – and even, if possible, to design automatic sys-
tems that would diagnose patients, fly planes, and drive cars as well as the
best human specialists.

Usually, top experts are quite willing to share their expertise, to teach oth-
ers. But the problem is that when they share their expertise, they use impre-
cise (“fuzzy”) words from natural language like “small”, “medium”, “large”,
“short”, etc. This is easy to explain: many of us drive cars, but hardly any-
one can express his/her driving experience in precise terms. If you ask any
driver how much to brake if a car 100 meters in front slows down from 100 to
95 km/h, a natural answer is “a little bit” – while an automatic system needs
to know for how many milliseconds to press the brake and with how many
Newtons of force.

To describe such important knowledge in precise terms, Lotfi Zadeh came
up with the idea of fuzzy logic; see, e.g., [1, 5, 9, 13, 14, 18]. His main
observation was that, in contrast to properties like “less than 0.5 sec” which
are either true or false for any given time duration, for properties like “short”
the situation is different: yes, very short time durations are absolutely short,
and very long time durations are absolutely not short, but for intermediate
time durations, their “shortness” is only true to some degree.

In a computer, “absolutely true” is usually represented by 1, and “abso-
lutely not true” (“false”) by 0. It is therefore reasonable to characterize inter-
mediate degrees of confidence by numbers between 0 and 1. This is exactly
what Zadeh proposed to describe properties like “small”: ask the expert to
indicate, for each possible value x of the corresponding quantity, to what ex-
tent – on the [0, 1]-scale – this value is small. The resulting function µ(x)

assigning a degree to each value x is known as the membership function or,
alternatively, as the fuzzy set.

2.2 Why we need “and”-operations (t-norms) and “or”-operations (t-
conorms)

Expert rules usually have several conditions: e.g., we can have a braking rule
that describes what happens when the car is close and slows down a little bit,
we can have a different rule that describes what happens when the car is close
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and slows down drastically.
We can ask an expert, for each possible value d of the distance, to what

extent this distance is close. We can also ask the expert, for each possible
value ∆v of slowing down, to what extent this value can be described as “a
little bit”. But what we need, to implement this rule, is to know the degree
to which, for two given values d and ∆v, to what extent d is small and ∆v

corresponds to “a little bit”.
Strictly speaking, for this, we need to ask the expert’s opinion about all

possible pairs of values. Often – e.g., in medical diagnostics – we need to take
into account the values not of two but of a dozen or more different quantities:
temperature, upper and lower blood pressure, pulse, etc. Even if we use only
3 or 4 different values of each quantity, we can have 312 or 412 possible
combinations of values. The value 412 is about 16 million, and there is no
way that we can ask the expert these thousands and millions of questions.

Since we cannot directly ask the expert about his/her degree of confidence
in all possible “and”-combinations S1 &S2 & . . . &Sn, we therefore need to
be able, given the expert’s degrees of confidence a and b in statement A and
B, to estimate his/her degree of confidence in the composite statement A&B.
The value of the resulting estimate – which we will denote by f&(a, b) – is
known as the “and”-operation or, for historical reason, a t-norm.

From the meaning of this operation, we can extract its natural properties.
For example, “A and B” means the same as “B and A”. It is therefore rea-
sonable to require that our estimates for these two equivalent statements co-
incide, i.e., that f&(a, b) = f&(b, a) for all a and b. In mathematical terms,
this means that the “and”-operation should be commutative.

Similarly, since “(A and B) and C” means the same as “A and (B and
C)”, we can conclude that the resulting estimates should coincide, i.e., that
we should have f&(f&(a, b), c) = f&(a, f&(b, c)) for all a, b, and c. In
mathematical terms, this means that the “and”-operation should be associa-
tive. Similar arguments explain that the “and”-operation should be mono-
tonic, continuous, etc.

Similarly, to estimate our degree of certainty in a statement A ∨ B, we
need to be able, given the expert’s degrees of confidence a and b in statement
A and B, to estimate his/her degree of confidence in the composite statement
A∨B. The value of the resulting estimate – which we will denote by f∨(a, b)

– is known as the “or”-operation or, for historical reason, a t-conorm. “Or”-
operations are also commutative, associative, monotonic, continuous, etc.
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2.3 There are many possible “and”- and “or”-operations
There exist many operations that satisfy all these properties. We need to select
the ones which best reflects the expert’s reasoning.

This selection was first done for the historically first medical expert system
MYCIN (see, e.g., [2]), and since then, has been done for many application
areas. Interestingly, in different application areas – and sometimes even in
the same application areas but for different tasks – different “and”-operations
are most adequate.

2.4 Comment
The desired most adequate “and”-operation can be determined as follows:

• for several pairs of statements (Ak, Bk), we ask the experts to estimate
their degrees of confidence d(Ak), d(Bk), and d(Ak &Bk) in state-
ments Ak, Bk, and Ak &Bk, and then

• we find a function f&(a, b) for which, for all k, we have

d(Ak &Bk) ≈ f&(d(Ak), d(Bk)).

Similarly, the desired most adequate “or”-operation can be determined as fol-
lows:

• for several pairs of statements (Ak, Bk), we ask the experts to estimate
their degrees of confidence d(Ak), d(Bk), and d(Ak ∨ Bk) in state-
ments Ak, Bk, and Ak ∨Bk, and then

• we find a function f∨(a, b) for which, for all k, we have

d(Ak ∨Bk) ≈ f∨(d(Ak), d(Bk)).

2.5 Why do we need to go beyond traditional “and”- and “or”-
operations

So far, we have considered two extreme situations. To describe such situa-
tions, let us denote possible basic statements by S1, . . . , Sn.

• In the first – ideal – situation, we know the expert’s degrees of confi-
dence in these statements d(Si) and in all possible “and”-combinations
of these statements d(Si1 & . . . &Sik).

• The second – more realistic – situation is when we only know the
degrees of confidence d(Si) in the basic statements. In this case,
we estimate our degree of confidence in each “and”-combination
Si1 & . . . &Sik as f&(d(Si1), . . . , d(Sik)).
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The problem is that in practice, we sometimes have intermediate situa-
tions, when we know the degrees of confidence in some – but not all – “and”-
combinations, and we are interested in estimating the expert’s degree of con-
fidence in other “and”-combinations. For example, in addition to the de-
grees of confidence d(S1), d(S2), and d(S3) in the three basic statements,
we may know the degrees of confidence in all possible pairs d(S1 &S2),
d(S1 &S3), and d(S2 &S3), and we want to estimate the degree of confi-
dence d(S1 &S2 &S3) in all three of these statements.

By using the traditional “and”-operation, we can get several estimates
for this desired degree, e.g., f&(d(S1), d(S2 &S3)), f&(d(S1 &S2), d(S3)),
etc., but they will be, in general, different – and each of them takes into ac-
count some available information while ignoring other information.

How can we take all the available information into account – and thus
come up with the most adequate estimate? We cannot do this by using the
traditional “and”-operations, we need to go beyond. Similarly, we need to go
beyond the traditional “or”-operations.

This is what we do in this paper: we will show how such an estimate can
be obtained.

3 ANALYSIS OF THE PROBLEM

3.1 What are subjective probabilities and how they are related to fuzzy
degrees

The ultimate goal of expert’s estimates is to make a decision. The diagnosis
of a medical expert helps decide which treatment to select for a given patient.
The decision of an expert pilot helps decide how, e.g., how to best avoid the
turbulence zone. So, to solve problems related to expert estimates, it makes
sense to recall how exactly these estimates are used in decision making.

Decision theory – see, e.g., [3, 6, 8, 10, 12, 16] – deals, in particular,
with situations in which a decision maker is uncertain about some possible
events E. Decision theory provides a natural scale for measuring this uncer-
tainty – namely, we compare the E-related lottery

L(E)
def
= “I get $100 if E, otherwise I get nothing”

with lotteries L(p) in which a person gets $100 with some probability p.
When this probability is equal to 1, i.e., when the person gets $100 uncon-

ditionally, then clearly the lottery L(1) is better; we will denote this situation
by L(E) < L(1). On the other hand, if the probability p is equal to 0, then

6



the person does not get anything at all, so clearly the lottery L(E) in which
there is a change to get something is better: L(0) < L(E).

As we increase the probability p from 0 and continue comparing, at some
probability level p0, we will switch from L(p) < L(E) to L(E) < L(p).
This threshold value p0 is known as the subjective probability ps(E) of the
event E.

Both degree of confidence and subjective probability describe our degree
of belief that the event will happen – i.e., that the corresponding statement is
true. If in two situations, we have the same degree of belief, it is reasonable to
expect that we have the same subjective probabilities and the same degrees of
confidence. In mathematical terms, this means that the degree of confidence
uniquely determines the subjective probability, i.e., that ps(E) = f(d(E))

for some monotonic function f(d).

3.2 How can we determine the corresponding function f(d): case when
we only know the “and”-operation

In this case, if we know the degrees of confidence a and b in statements A

and B, then we estimate the degree of confidence in A&B as f&(a, b).
What if we only know the subjective probabilities ps(A) and ps(B)

and we want to estimate the subjective probability ps(A&B)? In princi-
ple, we have several different probability measures with different values of
ps(A&B). Which of these values should we choose?

The usual approach in probability theory is to take into account that dif-
ferent alternative have different uncertainty – as measured, e.g., by entropy
– the average number of binary (“yes”-“no”) questions that we need to ask
to fully determine the situation. In general, if have N alternatives with prob-

abilities P1, . . . , PN , then entropy is equal to S = −
N∑
i=1

Pi · log2(Pi); see,

e.g., [4, 12]. For two statements A and B, we have 4 possible alternatives:
A&B, A&¬B, ¬A&B, and ¬A&¬B. Once we know the probabilities
p(A), p(B), and p(A&B), we can determine the probabilities Pi of all these
4 events: indeed, we already know the probability P1 = p(A&B), we can
then determine

P2 = p(A&¬B) = p(A)− p(A&B),

P3 = p(¬A&B) = p(B)− p(A&B), and

P4 = p(¬A&¬B) = 1− p(A&B)− p(A,&¬B) = p(¬A&B).

For different values of p(A&B), we get, in general, different values of the
entropy: some are smaller, some are larger. The only thing that we know
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about this uncertainty is that it is in some interval [S, S]. We can guarantee
that the average number of binary questions does not exceed S.

If we select a value p(A&B) for which S < S, we then artificially add
certainty which is not there, we kind of cheating by pretending that we have
less uncertainty than possible. To avoid such cheating, it makes sense to select
the value p(A&B) for which S = S, i.e., for which entropy is the largest
possible. This idea is known as the maximum entropy approach.

For the above case, as one can show, this approach leads to

p(A&B) = p(A) · p(B).

In particular, for subjective probabilities, we get

ps(A&B) = ps(A) · ps(B).

Taking into account that

ps(A) = f(d(A)) = f(a), ps(B) = f(d(B)) = f(b),

and
ps(A&B) = f(d(A&B)) = f(f&(a, b)),

we conclude that f(f&(a, b)) = f(a) · f(b), i.e., equivalently, that

f&(a, b) = f−1(f(a) · f(b)). (1)

Here f−1(p) denotes the inverse function: f−1(p) is the value d for
which f(d) = p.

So, So, if the only information that we have about expert reasoning in
some application area is the “and”-operation f&(a, b) that best describes ex-
pert reasoning, we can then determine the corresponding function f(d) as the
one for which (1) holds.

3.3 Is not the formula (1) an additional restriction on possible “and”-
operations?

Can such a function f(d) be found for all possible “and”-operations? From
the purely mathematical viewpoint, the formula (1) is indeed a limitation:
e.g., a popular “and”-operation f&(a, b) = min(a, b) cannot be represented
in this form.

However, from the practical viewpoint, there is no limitation: it is known
(see, e.g., [11]) that for every “and”-operation f&(a, b) and for every ε > 0,
there exists an ε-close “and”-operation of the type (1). For sufficiently small
ε > 0, ε-close operations are practically indistinguishable: hardly an expert
can say that his/her degree of confidence is 0.51 and not 0.52.
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3.4 How can we determine the corresponding function f(d): case when
we only know the “or”-operation

In this case, if we know the degrees of confidence a and b in statements A

and B, then we estimate the degree of confidence in A ∨B as f∨(a, b).
What if we only know the subjective probabilities ps(A) and ps(B) and

we want to estimate the subjective probability ps(A ∨ B)? In principle, we
have several different probability measures with different values of ps(A∨B).
In this case, the maximum entropy approach leads to

ps(A ∨B) = ps(A) + ps(B)− ps(A) · ps(B).

Taking into account that

ps(A) = f(d(A)) = f(a), ps(B) = f(d(B)) = f(b),

and
ps(A ∨B) = f(d(A ∨B)) = f(f∨(a, b)),

we conclude that

f(f∨(a, b)) = f(a) + f(b)− f(a) · f(b),

i.e., equivalently, that

f∨(a, b) = f−1(f(a) + f(b)− f(a) · f(b)). (2)

So, if the only information that we have about expert reasoning in some appli-
cation area is the “or”-operation f∨(a, b) that best describes expert reasoning,
we can then determine the corresponding function f(d) as the one for which
(2) holds.

3.5 The formula (2) is not an additional restriction on possible “or”-
operations

It is known (see, e.g., [11]) that for every “or”-operation f∨(a, b) and for
every ε > 0, there exists an ε-close “or”-operation of the type (2). As we have
mentioned, for sufficiently small ε > 0, ε-close operations are practically
indistinguishable. Thus, from the practical viewpoint, every “or”-operation
can be represented in the form (2).

3.6 How can we determine the corresponding function f(d): general
case

What if we know both the “and”- and the “or”-operations corresponding to the
given expert(s)? In this case, at first glance, it is also reasonable to come up
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with a function f(d) for which the values ps(A) = f(d(A)) corresponding
to different statements A form the probability distribution with the largest
possible entropy. In particular, since for every two statements A and B, we
always have

p(A ∨B) + p(A&B) = p(A) + p(B),

we should also have

ps(A ∨B) + ps(A&B) = ps(A) + ps(B),

i.e., for all a and b, we should have:

f(f∨(a, b)) + f(f&(a, b)) = f(a) + f(b). (3)

Unfortunately, this system of equations for determining the function f(d) is
over-determined: if we consider N possible values of the degree of confi-
dence, then we need to determine N unknowns f(d), and we need to satisfy
N · (N + 1)

2
≫ N equations corresponding to all possible pairs (a, b). This

means that, in general, we cannot find a function f(d) for which the equality
(3) is exactly satisfied for all a and b.

Such situations – when we have more measurements than unknowns and,
thus, we have an over-determined system of equations – are typical in data
processing; see, e.g., [15, 17]. Usually, to solve such systems, we use the
Least Squares approach, i.e., we minimize the sum of the squares of the dif-
ferences between the left-hand and the right-hand sides of the corresponding
equations. When we have infinitely many unknowns – as in the formula (3) –
the sum becomes an integral. For equations (3), this means that we minimize
the integral∫

(f(f∨(a, b)) + f(f&(a, b))− f(a)− f(b))2 da db. (4)

3.7 Maximum entropy approach is more general than using “and”- and
“or”-operations

We have mentioned that the maximum entropy approach can be used to esti-
mate the probability p(A&B) of an “and”-statement A&B and the probabil-
ity p(A ∨B) of an “or”-statement A ∨B when all we know are probabilities
p(A) and p(B) of the basic statements. However, the same maximum en-
tropy approach can be – and is – used in many other situations when we only
have partial information about the probabilities. It can be used to find any
missing probability – including a missing probability of an “and”- or “or”-
combination.
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Since there is a natural transformation ps = f(d) from degrees of con-
fidence d to probabilities ps, we can therefore find the missing degrees as
follows:

• first, we transform all known degrees into probabilities;

• then, we use the Maximum Entropy approach to find the missing prob-
abilities;

• finally, we use the inverse function f−1(p) to transform the newly
found probabilities into degrees of confidence.

Let us describe this methodology in precise terms.

4 RESULTING METHODOLOGY

4.1 Preliminary step
First, we find a function f(d) that transforms degree of belief into subjective
probabilities. How we determine this function depends on what information
we have about the expert reasoning.

• For some application areas, we only know the “and”-operation f&(a, b)

that most adequately describes the expert reasoning in this area. In this
case, we find a function f(d) for which, for every a and b, we have

f(f&(a, b)) = f(a) · f(b).

• For some application areas, we only know the “or”-operation f∨(a, b)

that most adequately describes the expert reasoning in this area. In this
case, we find a function f(d) for which, for every a and b, we have

f(f∨(a, b)) = f(a) + f(b)− f(a) · f(b).

• In some application areas, we know both the “and”-operation f&(a, b)

and the “or”-operation f∨(a, b) that most adequately describes the ex-
pert reasoning in this area. In this case, we select, among all monotonic
functions f(d) for which f(0) = 0 and f(1) = 1, the function for
which the integral∫

(f(f&(a, b)) + f(f∨(a, b))− f(a)− f(b))2 da db

attains its smallest possible value.
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4.2 Comment
In some application areas, we may have not yet determined the appropriate
“and”- and “or”-operations. In such cases:

• for several pairs of statements (Ak, Bk), we ask the experts to estimate
their degrees of confidence

d(Ak), d(Bk), d(Ak &Bk), and d(Ak ∨Bk)

in statements Ak, Bk, Ak &Bk, and Ak ∨Bk, and then

• we find commutative associative monotonic continuous functions
f&(a, b) and f∨(a, b) for which, for all k, we have

d(Ak &Bk) ≈ f&(d(Ak), d(Bk)) and d(Ak ∨Bk) ≈ f∨(d(Ak), d(Bk)).

4.3 The corresponding problem
We have several basic statements S1, . . . , Sn. For some of these statements
and/or for some of their propositional combinations C1, . . . , Cm, we have
expert estimates d(Ci) of their degree of confidence. We also have another
propositional combination C for which we do not have the expert’s estimate.

Based on the available information – i.e., on the values d(Ci) – we want
to estimate the expert’s degree of confidence d(C) in the statement C.

4.4 Example 1
The traditional “and”-operation corresponds to the case when n = 2, m =

2, C1 = S1, C2 = S2 and C = S1 &S2. This is the case for which the
traditional fuzzy “and”-operation provides a reasonable solution

d(C) ≈ f&(d(S1), d(S2)) = f−1(f(d(S1), f(d(S2))).

4.5 Example 2
Here is an example when we need to go beyond the traditional “and”-
operation: n = 3, m = 6, C1 = S1, C2 = S2, C3 = S3, C4 = S1 &S2,
C5 = S1 &S3, C6 = S2 &S3, and C = S1 &S2 &S3. We know the values
di

def
= d(Si) and dij

def
= d(Si &Sj), and we want to estimate the degree

d
def
= d(S1 &S2 &S3).

4.6 General solution
• first, we transform all known degrees d(Ci) into subjective probabili-

ties, by computing ps(Ci) = f(d(Ci));
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• then, among all the probability distributions with given values ps(Ci),
we find the one for which the entropy is the largest possible, and for this
maximum-entropy distribution, we determine the (subjective) probabil-
ity ps(C);

• finally, we transform this probability back into degrees by computing

d(C) = f−1(ps(C)).

4.7 Comment
For n statements, to get a full probability distribution, we need to know
the probability of all 2n atomic combinations, i.e., combinations of the
form Sε1

1 & . . . &Sεn
n , where εi is either + or −, S+

i means Si, and S−
i

means ¬Si.
Thus, the entropy is

−
∑

ε1,...,εn

ps(Sε1
1 & . . . &Sεn

n ) · log2(ps(S
ε1
1 & . . . &Sεn

n )).

4.8 Solution to Example 2
In the second example, first, we compute the probabilities

pi = ps(Si) = f(di) and pij = ps(Si &Sj) = f(dij).

Once we know the subjective probability p of the desired statement
S1 &S2 &S3, we can then determine the (subjective) probabilities of all 8
atomic statements:

ps(S1 &S2 &S3) = p; ps(S1 &S2 &¬S3) = p12 − p;

ps(S1 &¬S2 &S3) = p13 − p; ps(¬S1 &S2 &S3) = p23 − p;

ps(S1 &¬S2 &¬S3) = p1 − p12 − p13 + p;

ps(¬S1 &S2 &¬S3) = p2 − p12 − p23 + p;

ps(¬S1 &¬S2 &S3) = p3 − p13 − p23 + p;

ps(¬S1 &¬S2 &¬S3) = 1− p1 − p2 − p3 + p12 + p13 + p23 − p.

The value p can be determined by maximizing the corresponding entropy.
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4.9 Comment
In the simplified case when p1 = p2 = p3 and p12 = p13 = p23, the expres-
sion for the entropy has the form

−p·log2(p)−3(pij−p)·log2(pij−p)−3(pi−2pij+p)·log2(pi−2pij+p)−

(1− 3p+ 3pij − p) · log2(1− 3p+ 3pij − p).

5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusions
Traditional fuzzy logic allow us, based on the expert’s degrees of certainty
in several statements S1, . . . , Sn, to estimate the expert’s degree of certainty
in different propositional combinations of these statements. Often, however,
in addition to expert’s degrees of confidence in the basic statements Si, we
also know expert’s degrees of confidence in several propositional combina-
tions of these statements. It is desirable to take this additional information
into account when estimating the expert’s degree of certainty in the desired
combination C.

In this paper, we provide a general methodology that solves this problem.

5.2 Future work
An important – and computationally complex – part of the propose method-
ology is finding the function f(d) that transforms degrees of confidence into
subjective probabilities. It is desirable to come up with efficient algorithms
for finding this function.
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