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Abstract

In our previous paper, we showed that a simplified probabilistic ap-
proach to interval uncertainty leads to the known notion of a united solu-
tion set. In this paper, we show that a more realistic probabilistic analysis
of data fitting under interval uncertainty leads to another known notion
— the notion of a tolerable solution set. Thus, the notion of a tolerance
solution set also has a clear probabilistic interpretation. Good news is
that, in contrast to the united solution set whose computation is, in gen-
eral, NP-hard, the tolerable solution set can be computed by a feasible
algorithm.

Keywords: Interval uncertainty, united solution set, tolerable solution set, prob-
abilistic uncertainty
AMS subject classifications: 65G20, 65G30, 65G40

1 General motivation

When processing data, most practitioners use probabilistic methods. It is therefore
desirable to study how, for the case of interval uncertainty, these methods compare
with interval techniques; see, e.g., [1, 5, 6, 7].

2 Data fitting problem

In many situations:

e we know the general form y = F(z,c) of the dependence of a quantity y on
quantities z = (z1,...,%,), but

e we do not know the exact values of the parameters ¢ = (c1,...,¢m).
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Let us have a few example.

e We may have a linear dependence
Yy=c¢1-Ti+...+Cn Tn+Cpt1.

e We may have a general quadratic dependence.

e For a radioactive delay, we have a linear combination of exponentially decreasing
terms

p
Y= 2621—1 - exp(—ca; - t),

=1

etc.

In all these cases, the values ¢; must be determined from the measurement results.

For this purpose, several (K) times, we measure z; and y. Based on the mea-
surement results T = (Tk1,...,Tkn) and Y, we need to estimate the values of the
parameters that fit the data. This problem is also called problem of parameter esti-
mation.

3 Need to take measurement uncertainty into
account

Measurements are never absolutely accurate. Because of this, we need to take into
account that the measurement results ¥ are, in general, different from the actual
(unknown) values of the corresponding quantity v, i.e., that there is a non-zero mea-
surement error Av := v — v; see, e.g., [7].

It is important to take the corresponding measurement uncertainty into account
when estimating the values of the parameters c;.

4 Situations when we know the probability dis-
tributions

In many cases, we know the probability distributions f;(Az;) and f(Ay) of the mea-
surement errors, and the measurement errors corresponding to different distributions
are independent.

In this case, we can use the Maximum Likelihood (ML) approach; see, e.g., [9].
This means that we select the most probable values ¢ (and xy;), i.e., the values for
which the corresponding probability — which is equal to the product

K

1 (760~ Fon. ) T A~ )

k=1

attains its largest possible value.

Usually, instead of maximizing the likelihood, we solve the equivalent problem of
maximizing the logarithm of the likelihood — which is known as log-likelihood. This
reduction often simplifies the computations — e.g., for the Gaussian distribution, log-
arithm is an easy-to-maximize quadratic function.
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5 Interval uncertainty

In many practical situations, we do not know the probability distributions, all we know
is that the measurement errors Av are located on the given interval [—A,, Ay]; see,
e.g., [1, 5,6, 7.

In such situations, a usual probabilistic approach is to select, on this interval, the
distribution with maximal entropy. This turns out to be the uniform distribution; see,
e.g., [2].

6 Simplest case

The simplest — and rather frequent — case is when the values x; are measured very
accurately. In this case, we can safely ignore the corresponding measurement errors
and conclude that Z;x = z; for all ¢ and k. In this case, the ML approach selects the
folllowing set:

The set of all possible values ¢ for which, for all k, we have
F(ak, ) € [Jx — Dy, U + Ay].

Interestingly, in this case, the probabilistic approach leads to the same answer as
the interval techniques — for which this set is called the united solution set.

7 General case

In general, we also know the values zx; with interval uncertainty. Then the ML
approach selects the following set:

The set of all the values ¢ for which F(z,c) € y, = [y — Ay, Y + Ay] for some
values Tr; € Tii = [Tri — Du;, Thi + Agy).

This is also exactly the united solution set to the interval equation system constructed
from interval data. Thus, the united solution set has a natural probabilistic meaning;
see, e.g., [4].

8 A more realistic description of the practical
problem

Often, when we get a measurement result, this does not mean that there was only one
measurement. [t means that there were several different measurements leading to the
same result — e.g., same intervals. Let us give a few examples.

e When a patient’s blood pressure is measured at the doctor’s office, usually, the
device performs three measurements and — if they coincide — combines them into
a single measurement result.

e This is also how super-precise atomic clocks work — each of them consists of
several independent clocks, whose results are returned to the user if most of
their readings coincide.
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e This is how new values are measured — be it a more accurate value of the
distance to the Moon or a new values of an element’s atomic weight. With
a single measurement, the result is not fully reliable, so, to make it reliable,
several measurements are performed and if they all coincide, the joint result is
accepted.

9 How probabilistic techniques deal with this
situation

For each k, instead of a single combination xx, we have several xy, for different ¢. For
each combination of values xre; € xr;, we can form the log-likelihood

DD > (il — Flake, ) (1)
k=1 ¢ i=1

We do not know the actual values ;. Following the maximum entropy idea, we
assume that they are uniformly distributed on the corresponding intervals xy;.

For a reasonably large number of constituent measurement ¢, the sample average
of any quantity — i.e., the arithmetic average over ¢ — is very close to its expected
value; see, e.g, [9]. Thus, the sum over £ in the formula (1) — which is proportional to
the sample average — is proportional to the expected value.

Multiplying the objective function by a proportionality constant does not change
the location of its maxima. Thus, maximizing the original expression (1) for the
likelihood (1) is equivalent to maximizing the expected value of the log-likelihood

> In(fi(fi — Flare, ©))

k=11i=1

over these uniform distributions.

10 What is the resulting estimate
Result. Let us show that, as a result, we return the following set:

The set of all the values ¢ for which f(zk,c) € y,, for all zp; € xp;.

Proof. Indeed, if the condition f(zx,c) € y, is not satisfied for some zp; € T,
then, for a continuous function f(z,c), there is a whole subrange of the interval @i,
on which this condition is not satisfied. On this subrange, the likelihood will be equal
to 0. Thus, on this subrange, the log-likelihood is equal to In(0) = —oo; hence, the
expected value of log-likelihood is equal to —oo — so it cannot be the largest. Thus,
for all the tuples c selected by the Maximum Likelihood approach, we indeed have
f(zk,c) €y, for all xp; € @

Since we consider uniform distributions, for each probability distribution, all non-
zero values are the same. Thus, for all such tuples ¢, we will have the exact same values
of the expected log-likelihood. So, all such tuples ¢ will be selected by the Maximum
Likelihood approach.
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This is exactly the tolerable solution set. The above formula is exactly the tol-
erable solution set to the interval equation system constructed from data; see, e.g., [8].
So, the tolerable solution set also makes sense in the probabilistic setting.

Unexpected consequence: a more realistic analysis makes the data fitting
problem easier to solve. Good news is that:
e in contrast to the united solution set — whose computation is, in general, NP-
hard even when the expression f(z,c) linearly depends on ¢; (see, e.g., [3]),

e computation of the tolerable solution set can be, for the case when f(z,c) is
linear in ¢;, reduced to linear programming and is, thus, feasible; see, e.g., [3, 8].
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