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Abstract

In our previous paper, we showed that a simplified probabilistic ap-
proach to interval uncertainty leads to the known notion of a united solu-
tion set. In this paper, we show that a more realistic probabilistic analysis
of data fitting under interval uncertainty leads to another known notion
– the notion of a tolerable solution set. Thus, the notion of a tolerance
solution set also has a clear probabilistic interpretation. Good news is
that, in contrast to the united solution set whose computation is, in gen-
eral, NP-hard, the tolerable solution set can be computed by a feasible
algorithm.

Keywords: Interval uncertainty, united solution set, tolerable solution set, prob-
abilistic uncertainty
AMS subject classifications: 65G20, 65G30, 65G40

1 General motivation

When processing data, most practitioners use probabilistic methods. It is therefore
desirable to study how, for the case of interval uncertainty, these methods compare
with interval techniques; see, e.g., [1, 5, 6, 7].

2 Data fitting problem

In many situations:

� we know the general form y = F (x, c) of the dependence of a quantity y on
quantities x = (x1, . . . , xn), but

� we do not know the exact values of the parameters c = (c1, . . . , cm).
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Let us have a few example.

� We may have a linear dependence

y = c1 · x1 + . . .+ cn · xn + cn+1.

� We may have a general quadratic dependence.

� For a radioactive delay, we have a linear combination of exponentially decreasing
terms

y =

p∑
i=1

c2i−1 · exp(−c2i · t),

etc.

In all these cases, the values ci must be determined from the measurement results.

For this purpose, several (K) times, we measure xi and y. Based on the mea-
surement results x̃k = (x̃k1, . . . , x̃kn) and ỹk, we need to estimate the values of the
parameters that fit the data. This problem is also called problem of parameter esti-
mation.

3 Need to take measurement uncertainty into
account

Measurements are never absolutely accurate. Because of this, we need to take into
account that the measurement results ṽ are, in general, different from the actual
(unknown) values of the corresponding quantity v, i.e., that there is a non-zero mea-
surement error ∆v := ṽ − v; see, e.g., [7].

It is important to take the corresponding measurement uncertainty into account
when estimating the values of the parameters ci.

4 Situations when we know the probability dis-
tributions

In many cases, we know the probability distributions fi(∆xi) and f(∆y) of the mea-
surement errors, and the measurement errors corresponding to different distributions
are independent.

In this case, we can use the Maximum Likelihood (ML) approach; see, e.g., [9].
This means that we select the most probable values c (and xki), i.e., the values for
which the corresponding probability – which is equal to the product

K∏
k=1

(
f(ỹk − F (xk, c)) ·

n∏
i=1

fi(x̃ki − xki)
)
,

attains its largest possible value.

Usually, instead of maximizing the likelihood, we solve the equivalent problem of
maximizing the logarithm of the likelihood – which is known as log-likelihood. This
reduction often simplifies the computations – e.g., for the Gaussian distribution, log-
arithm is an easy-to-maximize quadratic function.
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5 Interval uncertainty

In many practical situations, we do not know the probability distributions, all we know
is that the measurement errors ∆v are located on the given interval [−∆v,∆v]; see,
e.g., [1, 5, 6, 7].

In such situations, a usual probabilistic approach is to select, on this interval, the
distribution with maximal entropy. This turns out to be the uniform distribution; see,
e.g., [2].

6 Simplest case

The simplest – and rather frequent – case is when the values xi are measured very
accurately. In this case, we can safely ignore the corresponding measurement errors
and conclude that x̃ik = xik for all i and k. In this case, the ML approach selects the
folllowing set:

The set of all possible values c for which, for all k, we have
F (xk, c) ∈ [ỹk −∆y, ỹk +∆y].

Interestingly, in this case, the probabilistic approach leads to the same answer as
the interval techniques – for which this set is called the united solution set.

7 General case

In general, we also know the values xki with interval uncertainty. Then the ML
approach selects the following set:

The set of all the values c for which F (xk, c) ∈ yk = [ỹk −∆y, ỹk +∆y] for some
values xki ∈ xki = [x̃ki −∆xi , x̃ki +∆xi ].

This is also exactly the united solution set to the interval equation system constructed
from interval data. Thus, the united solution set has a natural probabilistic meaning;
see, e.g., [4].

8 A more realistic description of the practical
problem

Often, when we get a measurement result, this does not mean that there was only one
measurement. It means that there were several different measurements leading to the
same result – e.g., same intervals. Let us give a few examples.

� When a patient’s blood pressure is measured at the doctor’s office, usually, the
device performs three measurements and – if they coincide – combines them into
a single measurement result.

� This is also how super-precise atomic clocks work – each of them consists of
several independent clocks, whose results are returned to the user if most of
their readings coincide.
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� This is how new values are measured – be it a more accurate value of the
distance to the Moon or a new values of an element’s atomic weight. With
a single measurement, the result is not fully reliable, so, to make it reliable,
several measurements are performed and if they all coincide, the joint result is
accepted.

9 How probabilistic techniques deal with this
situation

For each k, instead of a single combination xk, we have several xkℓ for different ℓ. For
each combination of values xkℓi ∈ xki, we can form the log-likelihood

K∑
k=1

∑
ℓ

n∑
i=1

ln(fi(ỹk − F (xkℓ, c))). (1)

We do not know the actual values xkℓi. Following the maximum entropy idea, we
assume that they are uniformly distributed on the corresponding intervals xki.

For a reasonably large number of constituent measurement ℓ, the sample average
of any quantity – i.e., the arithmetic average over ℓ – is very close to its expected
value; see, e.g, [9]. Thus, the sum over ℓ in the formula (1) – which is proportional to
the sample average – is proportional to the expected value.

Multiplying the objective function by a proportionality constant does not change
the location of its maxima. Thus, maximizing the original expression (1) for the
likelihood (1) is equivalent to maximizing the expected value of the log-likelihood

K∑
k=1

n∑
i=1

ln(fi(ỹk − F (xkℓ, c)))

over these uniform distributions.

10 What is the resulting estimate

Result. Let us show that, as a result, we return the following set:

The set of all the values c for which f(xk, c) ∈ yk for all xki ∈ xki.

Proof. Indeed, if the condition f(xk, c) ∈ yk is not satisfied for some xki ∈ xki,
then, for a continuous function f(x, c), there is a whole subrange of the interval xki

on which this condition is not satisfied. On this subrange, the likelihood will be equal
to 0. Thus, on this subrange, the log-likelihood is equal to ln(0) = −∞; hence, the
expected value of log-likelihood is equal to −∞ – so it cannot be the largest. Thus,
for all the tuples c selected by the Maximum Likelihood approach, we indeed have
f(xk, c) ∈ yk for all xki ∈ xki.

Since we consider uniform distributions, for each probability distribution, all non-
zero values are the same. Thus, for all such tuples c, we will have the exact same values
of the expected log-likelihood. So, all such tuples c will be selected by the Maximum
Likelihood approach.
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This is exactly the tolerable solution set. The above formula is exactly the tol-
erable solution set to the interval equation system constructed from data; see, e.g., [8].

So, the tolerable solution set also makes sense in the probabilistic setting.

Unexpected consequence: a more realistic analysis makes the data fitting
problem easier to solve. Good news is that:

� in contrast to the united solution set – whose computation is, in general, NP-
hard even when the expression f(x, c) linearly depends on ci (see, e.g., [3]),

� computation of the tolerable solution set can be, for the case when f(x, c) is
linear in ci, reduced to linear programming and is, thus, feasible; see, e.g., [3, 8].
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